Prawo Gaussa. Potencjał elektryczny.
|
|
- Sabina Góra
- 6 lat temu
- Przeglądów:
Transkrypt
1 Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla zagadnień elektostatyki jest ono w pełni ównowaŝne pawu Coulomba. Dla pawa Gaussa istotne jest wpowadzenie umownej zamkniętej powiezchni, zwanej powiezchnią Gaussa. MoŜe mieć ona dowolny kształt, ale najbadziej uŝyteczny jest wybó powiezchni naśladującej symetię ozwaŝanego zagadnienia. Dlatego powiezchnia Gaussa będzie często sfeą, powiezchnią walcową lub powiezchnią innej symetycznej były. Musi być ona zawsze powiezchnią zamkniętą, tak aby moŝna było wyaźnie ozóŝnić punkty wewnątz powiezchni, na powiezchni i na zewnątz powiezchni. Pawo Gaussa okeśla związek między natęŝeniem pola elektycznego w punktach na (zamkniętej) powiezchni Gaussa i całkowitym ładunkiem objętym tą powiezchnią.
2 Stumień Φ ( v cosθ ) S v S Stumień nie oznacza, Ŝe coś pzechodzi pzez tę powiezchnię - oznacza właściwie iloczyn pola powiezchni i pola pewnej wielkości, okeślonej na tej powiezchni. 3 Stumień pola elektycznego Stumienia pola elektycznego dla powiezchni Gaussa: Φ E S Lub dokładniej: Φ E ds Całkę naleŝy obliczyć po całej (zamkniętej) powiezchni. Stumień pola elektycznego jest skalaem i jego jednostką w układzie SI jest niuton azy met kwadatowy na kulomb (N m /C). Stumień elektyczny Φ pzenikający pzez powiezchnię Gaussa jest popocjonalny do całkowitej liczby linii pola elektycznego, pzechodzących pzez tę powiezchnię. 4
3 Pawo Gaussa Pawo Gaussa opisuje związek między stumieniem Φ pola elektycznego, pzenikającym pzez zamkniętą powiezchnię (powiezchnię Gaussa) i całkowitym ładunkiem q wewn, zawatym wewnątz tej powiezchni. ε Φ q wewn Lub kozystając z definicji stumienia moŝna zapisać: ε E ds q wewn Ładunek q wewn jest algebaiczną sumą wszystkich dodatnich i ujemnych ładunków zawatych wewnątz tej powiezchni i moŝe być dodatni, ujemny lub zeowy. Uwzględniamy znak ładunku, zamiast uŝywać tylko jego bezwzględnej watości, poniewaŝ znak zawiea istotną infomację o wypadkowym stumieniu pzenikającym pzez powiezchnię Gaussa. Jeśli ładunek q wewn Jest dodatni, to pzewaŝa stumień na 5 zewnątz; jeśli ładunek q wewn jest ujemny, to pzewaŝa stumień do wewnątz. Pawo Gaussa Powiezchnia S. We wszystkich punktach na tej powiezchni linie pola elektycznego wychodzą na zewnątz. Stąd stumień pola elektycznego pzenikający pzez tę powiezchnię jest dodatni, dodatni jest teŝ całkowity ładunek wewnątz powiezchni, jak wymaga tego pawo Gaussa. Powiezchnia S. We wszystkich punktach na tej powiezchni linie pola elektycznego wchodzą do wnętza. Stąd stumień pola elektycznego jest ujemny i taki jest teŝ całkowity ładunek wewnątz powiezchni, jak wymaga tego pawo Gaussa. Powiezchnia S 3. Ta powiezchnia nie otacza Ŝadnego ładunku i stąd q wewn. Powiezchnia S 4. Całkowity ładunek wewnątz tej powiezchni jest ówny zeu, bo otaczane ładunki, dodatni i ujemny, mają jednakowe watości. Pawo Gaussa wymaga, aby wypadkowy stumień pola elektycznego pzez tę powiezchnię był ówny zeu. Jest tak zeczywiście, bo tyle samo linii opuszcza powiezchnię S 4, co na nią pada. 6 3
4 Pawo Gaussa a pawo Coulomba Z właściwości symetii wynika, Ŝe w kaŝdym punkcie natęŝenie pola elektycznego E ównieŝ jest postopadłe do powiezchni i skieowane na zewnątz. Kąt θ między E i ds jest ówny zeu, więc moŝemy zapisać: ε ε E ds EdS ε E ds q qwewn Całka jest teaz tylko sumą po polach powiezchni ds elementów sfey i jest ówna polu powiezchni 4π. Po podstawieniu tej watości otzymujemy: ε E 4π q E q 7 Zastosowanie pawa Gaussa Nieskończenie długi walcowy pęt plastikowy, naładowany jednoodnie dodatnio z gęstością liniową λ. Pole powiezchni bocznej walca wynosi πh, poniewaŝ długość obwodu podstawy jest ówna π, a wysokość jest ówna h. Stumień natęŝenia E pzez powiezchnię walca wynosi: Φ ES cosθ E πh cos E πh Ładunek objęty ozwaŝaną powiezchnią wynosi λh i pawo Gaussa: ε Φ q wewn ε E πh λh E λ πε 8 4
5 Zastosowanie pawa Gaussa płyta niepzewodząca Ładunek jest dodatni, to natęŝenie E jest skieowane od płyty i stąd linie pola elektycznego pzecinają denka powiezchni Gaussa, wychodząc na zewnątz. Linie pola nie pzecinają powiezchni bocznej, dlatego teŝ stumień elektyczny pzez tę część powiezchni Gaussa jest ówny zeu. Na powiezchni denek E. ds wynosi po postu EdS i pawo Gaussa: E ds ε Pzyjmuje postać: q wewn ( ES + ES ) σs ε gdzie σs jest ładunkiem objętym pzez powiezchnię Gaussa. Ostatecznie: σ E ε 9 Zastosowanie pawa Gaussa dwie pzewodzące płyty Płyty są pzewodnikami, dlatego teŝ po ównoległym ich ustawieniu ładunek nadmiaowy na jednej płycie pzyciąga ładunek nadmiaowy na dugiej i cały nadmiaowy ładunek pzesunie się na wewnętzne powiezchnie płyt (ys. c). Pzy dwukotnie większym ładunku nowa gęstość powiezchniowa ładunku σ na kaŝdej wewnętznej powiezchni jest ówna σ. Stąd natęŝenie pola elektycznego w dowolnym punkcie między płytami ma watość: E ε σ σ ε 5
6 Potencjał elektyczny JeŜeli w polu elektostatycznym znajduje się ciało póbne, posiadające ładunek q, wówczas doznaje ono działania siły: F qe JeŜeli to ciało ulega pzesunięciu, wówczas siła wykonuje pacę. Gdy ciało zostanie pzesunięte o odległość l, wówczas paca wynosi W Fo l F l cosα Paca jest dodatnia, jeŝeli α < π/, ujemna, gdy α > π/. Potencjał elektyczny Ciało pzesuwamy z punktu () do punktu (). Kzywoliniową dogę moŝna podzielić na kilka elementanych odcinków l, wówczas paca dana jest wzoem: W i F i l i cosαi Zmniejszając długość odcinków l do badzo małych, otzymujemy wzó lub inaczej W () () W q F cosαdl () () E cosαdl 6
7 Potencjał elektyczny Dla kzywej zamkniętej, paca pola elektostatycznego jest zawsze ówna zeo, stąd Dla dowolnych dwóch punktów A i na kzywej zamkniętej, otzymujemy ale A() E cosαdl E cosαdl W q A E cosαdl + E cosαdl A () () E cosαdl A() E cosαdl 3 Potencjał elektyczny Wobec tego A() E cosαdl E cosαdl A() Ostatecznie otzymujemy E cosαdl A() A() E cosαdl Watość całki zaleŝy jedynie od połoŝenia punktów A i a nie zaleŝy od dogi pomiędzy tymi punktami. Watość tej całki nazywa się napięciem lub óŝnicą potencjałów pomiędzy punktami A i : U A E cosαdl A A Edl 4 7
8 Potencjał elektyczny Odsuwamy punkt w nieskończoność. Napięcie elektyczne pomiędzy punktem A a nieskończonością nazywamy potencjałem elektycznym w punkcie A i oznaczamy V A (potencjał w nieskończoności jest ówny zeo). Wtedy U A V czyli moŝemy pzejść od A do nieskończoności i wócić z nieskończoności do. Paca jaką wykonuje pole elektyczne, gdy odpowadzamy ładunek z dowolnego punktu M pola do nieskończoności, jest ówna: stąd otzymujemy elację: A W V M V Q W V M Q Potencjał w danym punkcie ówna się stosunkowi pacy W wykonanej pzez pole pzy 5 odpowadzanie dowolnego ładunku z tego punktu do nieskończoności, do watości tego ładunku. Potencjał elektyczny jednostką potencjału w układzie SI jest dŝul na kulomb. Taka jednostka pojawia się tak często, Ŝe uŝywa się specjalnej nazwy wolt (w skócie V) dla tej jednostki i stąd: wolt dŝul na kulomb. Ta nowa jednostka pozwala pzyjąć inną jednostkę natęŝenia pola elektycznego E, któe dotąd miezyliśmy w niutonach na kulomb. Po dwóch pzekształceniach jednostek otzymujemy: N V C J N / C V / m C J N m ev e 9 9 ( V ) (.6 C)( J / C).6 J 6 8
9 Powiezchnie ekwipotencjalne Sąsiadujące ze sobą punkty, któe mają taki sam potencjał elektyczny, twozą powiezchnię ekwipotencjalną, któa moŝe być albo wyobaŝoną powiezchnią, albo zeczywistą powiezchnią fizyczną. Jeśli cząstka pousza się między dwoma punktami początkowym i końcowym po tej samej powiezchni ekwipotencjalnej, to pole elektyczne nie wykonuje nad cząstką naładowanąŝadnej pacy W, zgodnie z któym W, jeśli V konc V pocz. 7 Powiezchnie ekwipotencjalne Powiezchnie ekwipotencjaine są zawsze postopadłe do linii pola elektycznego i stąd do natęŝenia E, któe jest zawsze styczne do tych linii. Jeśli natęŝenie E nie byłoby postopadłe do powiezchni ekwipotencjalnej, to miałoby składową leŝącą wzdłuŝ tej powiezchni. Składowa ta wykonywałaby więc pacę nad cząstką naładowaną, pzy jej uchu po powiezchni. 8 9
10 Obliczanie potencjału na podstawie natęŝenia pola elektycznego RóŜnicę potencjałów między dowolnymi dwoma punktami początkowym P i końcowym K w polu elektycznym moŝemy obliczyć, jeśli znamy wekto natęŝenia pola elektycznego E wzdłuŝ jakiejkolwiek dogi łączącej te punkty. Paca dw, wykonana nad cząstką pzez siłę F, pzy pzesunięciu ds wynosi: dw Fo ds q Eo ds Całkowita paca wynosi: dw q kon pocz Eo ds V kon V pocz kon pocz Eo ds Jeśli wybiezemy potencjał V pocz w punkcie początkowym ówny zeu, wtedy kon V Eo ds pocz 9 Potencjał pola ładunku elektycznego Pzesuwamy dodatni ładunek póbny q z punktu P do nieskończoności. Eo ds E cosθds NatęŜenie pola elektycznego E jest skieowane adialnie od wybanej cząstki. Stąd pzesunięcie ds cząstki póbnej wzdłuŝ jej tou ma ten sam kieunek co E, stąd kąt θ i cosθ. To jest adialny, a więc moŝna napisać ds d. V kon V pocz R Ed Pzyjmijmy, Ŝe ( w ) i V pocz V oaz, Ŝe V kon q E
11 Potencjał pola ładunku elektycznego V q q q d R R R Ostatecznie wyaŝenie na potencjał V pola wytwozonego pzez cząstkę o ładunku q, w dowolnej odległości od cząstki. otzymujemy: V q Cząstka dodatnio naładowana wytwaza dodatni potencjał elektyczny. Cząstka ujemnie naładowana wytwaza ujemny potencjał elektyczny. Potencjał pola układu ładunków punktowych Wypadkowy potencjał układu ładunków punktowych w jakimś punkcie moŝemy obliczyć, kozystając z zasady supepozycji. V n V i i 4 πε n i gdzie q i jest watością i-tego ładunku, a i jest odległością danego punktu od i-tego ładunku. q i i Suma we wzoze jest sumą algebaiczną, a nie sumą wektoową, jak suma pzy obliczaniu natęŝenia pola elektycznego dla układu ładunków punktowych.
12 Potencjał pola dipola elektycznego W punkcie P dodatni ładunek punktowy (znajdujący się w odległości (+) ) wytwaza potencjał V (+) i ujemny ładunek punktowy (w odległości (-) ) wytwaza potencjał V (-) Wypadkowy potencjał w punkcie P wynosi: V q ( ) ( + ) V i V( + ) + V( ) + 4 i πε ( + ) ( ) ( ) ( + ) Dla duŝych odległości od dipola, >> d, gdzie d jest odległością między ładunkami: Wtedy ( ) ( + ) d cosθ ( ) ( + ) q q d cosθ V gdzie kąt θ jest miezony od osi dipola. 3
- substancje zawierające swobodne nośniki ładunku elektrycznego:
Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo
Elektrostatyka. + (proton) - (elektron)
lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością
Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:
E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia
Elektrostatyka. A. Sieradzki IF PWr. Ogień Świętego Elma
A. Sieadzki I PW Elektostatyka Wykład Wocław Univesity of Technology 3-3- Ogień Świętego Elma Ognie świętego Elma (ognie św. Batłomieja, ognie Kastoa i Polluksa) zjawisko akustyczno-optyczne w postaci
Guma Guma. Szkło Guma
1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma
Fizyka elektryczność i magnetyzm
Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone
Zjawisko indukcji. Magnetyzm materii.
Zjawisko indukcji. Magnetyzm mateii. Wykład 6 Wocław Univesity of Technology -04-0 Dwa symetyczne pzypadki PĘTLA Z PĄDEM MOMENT SIŁY + + POLE MAGNETYCZNE POLE MAGNETYCZNE P A W O I N D U K C J I MOMENT
ZJAWISKA ELEKTROMAGNETYCZNE
ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego
Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne
Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką
Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
XIX. PRAWO COULOMBA Prawo Coulomba
XIX PRAWO COULOMBA 191 Pawo Coulomba Wielkość oddziaływania cząstki z otaczającymi ją obiektami zależy od jej ładunku elektycznego, zwykle oznaczanego pzez Ładunek elektyczny może być dodatni lub ujemny
= ± Ne N - liczba całkowita.
POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9
Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1.
Wykład 9 7. Pojemność elektyczna 7. Pole nieskończonej naładowanej wastwy z σ σładunek powiezchniowy S y ds x S ds 8 maca 3 Reinhad Kulessa Natężenie pola elektycznego pochodzące od nieskończonej naładowanej
3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E =
3b. LKTROTATYKA 3.4 Postawowe pojęcia Zasaa zachowania łaunku umayczny łaunek ukłau elektycznie izolowanego jest stały. Pawo Coulomba - siła oziaływania elektostatycznego 4 1 18 F C A s ˆ gzie : k 8,85*1
20 ELEKTROSTATYKA. PRAWO COULOMBA.
Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
cz. 1. dr inż. Zbigniew Szklarski
Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie
Energia kinetyczna i praca. Energia potencjalna
Enegia kinetyczna i paca. Enegia potencjalna Wykład 4 Wocław Uniesity of Technology 1 5-XI-011 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut 63 kg Paul Andeson
POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO Wykład 8 lato 2015/16 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia
E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW
4. BADANI POLA LKTRYCZNGO W POBLIŻU NAŁADOWANYCH PRZWODNIKÓW tekst opacował: Maek Pękała Od oku 1785 pawo Coulomba opisuje posty pzypadek siły oddziaływania dwóch punktowych ładunków elektycznych, któy
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
Magnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE
Magnetyzm Wykład 5 1 Wocław Univesity of Technology 14-4-1 Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY? POLE ELEKTRYCZNE POLE MAGNETYCZNE Jak wytwozyć pole magnetyczne? 1) Naładowane elektycznie
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO
POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 01 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia to uchu ładunku
( ) 2. 4πε. Prawo Coulomba
Pawo Coulomba. Cztey identyczne ładunki dodatnie q umieszczono w wiezchołkach kwadatu o boku a. W śodku symetii kwadatu umieszczono ładunek ujemny taki, Ŝe cały układ pozostaje w ównowadze. Znaleźć watość
Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
Wykład 17. 13 Półprzewodniki
Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa
Źródła pola magnetycznego
Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny
Wykład 10. Reinhard Kulessa 1
Wykład 1 14.1 Podstawowe infomacje doświadczalne cd. 14. Pąd elektyczny jako źódło pola magnetycznego 14..1 Pole indukcji magnetycznej pochodzące od nieskończenie długiego pzewodnika z pądem. 14.. Pawo
Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
ROZDZIAŁ 2. Elektrotechnika podstawowa 23
lektotechnika podstawowa 3 ROZDZIAŁ lektostatyka. Kondensatoy + Nieuchome (niezmienne) ładunki elektyczne ozmieszczone w śodowisku dielektycznym są źódłami pola elektostatycznego. W paktyce model taki
magnetyzm ver
e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu
Energia kulombowska jądra atomowego
744 einhad Kulessa 6. Enegia kulombowska jąda atomowego V Enegię tą otzymamy w opaciu o wzó (6.6) wstawiając do niego wyażenie na potencjał (6.4) pochodzący od jednoodnie naładowanej kuli. Obliczenie wykonamy
dr inż. Zbigniew Szklarski
Wykład 10: Gawitacja d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Siły centalne Dla oddziaływań gawitacyjnych C Gm 1 m C ˆ C F F 3 C C Dla oddziaływań elektostatycznych
Podstawy elektrotechniki
Wydział Mechaniczno-Enegetyczny Podstawy elektotechniki Pof. d hab. inż. Juliusz B. Gajewski, pof. zw. PW Wybzeże S. Wyspiańskiego 7, 5-37 Wocław Bud. A4 Staa kotłownia, pokój 359 Tel.: 7 3 3 Fax: 7 38
Część I Pole elektryczne
Mateiały pomocnicze dla studentów Studiów Zaocznych Wydz Mechatoniki semest II Część I Pole elektyczne Ładunek elektyczny Q wytwaza pole elektyczne, do opisu któego możemy wykozystać dwie wielkości: natężenie
cz.2 dr inż. Zbigniew Szklarski
Wykład 11: Gawitacja cz. d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pawo Gaussa - PZYKŁADY: Masa punktowa: ds Powiezchnia Gaussa M g g S g ds S g ds 0 cos180 S gds
Atom (cząsteczka niepolarna) w polu elektrycznym
Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do
Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
Fizyka 2 Wróbel Wojciech. w poprzednim odcinku
Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD
GEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.
1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Lekcja 40. Obraz graficzny pola elektrycznego.
Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał
Wykład 15. Reinhard Kulessa 1
Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.
Rozdział 22 Pole elektryczne
Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego
OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz
POLE MAGNETYCZNE 1. Obsewacje pola magnetycznego 2. Definicja pola magnetycznego i siła Loentza 3. Ruch ładunku w polu magnetycznym; synchoton 4. Siła działająca na pzewodnik pądem; moment dipolowy 5.
DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π
DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana
Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku.
Równania Maxwella Wstęp James Clek Maxwell Żył w latach 1831-1879 Wykonał decydujący kok w ustaleniu paw opisujących oddziaływania ładunków i pądów z polami elektomagnetycznymi oaz paw ządzących ozchodzeniem
Oddziaływania fundamentalne
Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających
Pola elektryczne i magnetyczne
Pola elektyczne i magnetyczne Zadania z ozwiązaniami Pojekt współfinansowany pzez Unię Euopejską w amach Euopejskiego Funduszu Społecznego Zadanie 1 Cząstka alfa (jądo atomu helu) ma masę m = 6.64*1 7
Wybrane zagadnienia z elektryczności
Wybane zaganienia z elektyczności Pomia łaunku elektycznego oświaczenie Millikana atomize płaszczyzna (+) bateia kople oleju mikoskop F el F g płaszczyzna (-) F g F el mg mg e.6 0 9 C Łaunek elektyczny
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,
Zastosowanie zasad dynamiki Newtona.
Wykład z fizyki. Piot Posmykiewicz 33 W Y K Ł A D IV Zastosowanie zasad dynamiki Newtona. W wykładzie tym zostanie omówione zastosowanie zasad dynamiki w zagadnieniach związanych z taciem i uchem po okęgu.
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych
Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych
Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.
Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata
Grzegorz Kornaś. Powtórka z fizyki
Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,
Elektrostatyczna energia potencjalna U
Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko
Elektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
Badanie siły elektromotorycznej Faraday a
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW ZESPÓŁ FIZYKI I MATEMATYKI STOSOWANEJ LABORATORIUM Z FIZYKI Badanie siły elektomotoycznej Faaday a 1. Wpowadzenie Jedną
Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Elektryczność i Magnetyzm
Elektyczność i Magnetyzm Wykład: Piot Kossacki Pokazy: Magda Gzeszczyk, Paweł Tautman Wykład tzeci 6 maca 2018 Z popzedniego wykładu Ustawianie igły i nanodutów w polu elektycznym, wizualizacja pola elektycznego
Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
Pole magnetyczne prąd elektryczny
Pole magnetyczne pąd elektyczny Czy pole magnetyczne może wytwazać pąd elektyczny? Piewsze ekspeymenty dawały zawsze wynik negatywny. Powód: statyczny układ magnesów. Michał Faaday piewszy zauważył, że
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasada zachowania pędu p Δp i 0 p i const. Zasady zachowania: pęd W układzie odosobnionym całkowity pęd (suma pędów wszystkich ciał) jest wielkością stałą. p 1p + p p + = p 1k + p
17.1.2 Zachowanie ładunku Jednym z podstawowych praw fizyki jest zasada zachowania ładunku. Zasada ta sformułowana przez Franklina mówi, że
MODUŁ VI Moduł VI Pole elektyczne 17 Pole elektyczne Pzechodzimy teaz do omówienia oddziaływania elektomagnetycznego. Oddziaływanie to ma fundamentalne znaczenie bo pozwala wyjaśnić nie tylko zjawiska
Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
Linie sił pola elektrycznego
Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,
[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE
LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa
ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:
POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa
Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
Podstawowe konstrukcje tranzystorów bipolarnych
Tanzystoy Podstawowe konstukcje tanzystoów bipolanych Zjawiska fizyczne występujące w tanzystoach bipolanych, a w związku z tym właściwości elektyczne tych tanzystoów, zaleŝą od ich konstukcji i technologii
Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.
Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest
Zasady dynamiki ruchu obrotowego
DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika
XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:
Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,
Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe
Pzygotowanie do Egzaminu Potwiedzającego Kwalifikacje Zawodowe Powtózenie mateiału Opacował: mg inż. Macin Wieczoek Jednostki podstawowe i uzupełniające układu SI. Jednostki podstawowe Wielkość fizyczna
Zadania do rozdziału 7.
Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły
Siły centralne, grawitacja (I)
Pojęcia Gawitacja postawowe (I) i histoia Siły centalne, gawitacja (I) Enegia potencjalna E p B A E p ( ) E p A W ( ) F W ( A B) B A F Pawo gawitacji (siła gawitacji) - Newton 665 M N k F G G 6.6700 F,
Lista zadań nr 1 - Wektory
Lista zadań n 1 - Wektoy Zad. 1 Dane są dwa wektoy: a = 3i + 4 j + 5k, b = i + k. Obliczyć: a) długość każdego wektoa, b) iloczyn skalany a b, c) kąt zawaty między wektoami,, d) iloczyn wektoowy a b e)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
ELEKTROMAGNETYZM cz.1
LKTROMAGNTYZM cz. I. Ładunek i materia W przyrodzie obserwujemy dwa rodzaje ładunków elektrycznych: dodatnie i ujemnie. Wielkość sił elektrycznych, zarówno przyciągających jak i odpychających opisuje prawo
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Wykład 2. POLE ELEKTROMEGNETYCZNE:
Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków
a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E
Równania Mawella a fale świetlne Wykład 3 Fale wyaŝone pzez zespolone amplitudy wektoowe Pola zespolone, a więc i ich amplitudy są teaz wektoami: % % Równania Mawella Wypowadzenie ównania falowego z ównań
Prawo powszechnego ciążenia Newtona
Pawo powszechnego ciążenia Newtona m M FmM Mm =G 2 Mm FMm = G 2 Stała gawitacji G = 6.67 10 11 2 Nm 2 kg Wielkość siły gawitacji z jaką pzyciągają się wzajemnie ciała na Ziemi M = 100kg N M = Mg N m =
Teoria Pola Elektromagnetycznego
Teoia Pola Elektomagnetycznego Wykład Pole elektostatyczne Stefan Filipowicz . Pole elektostatyczne 1.1. Ładunek elektyczny Pzy badaniu zjawisk pola elektycznego, w wielu ważnych z punktu widzenia paktyki