OPTYMALIZACJA W LOGISTYCE
|
|
- Przybysław Andrzejewski
- 6 lat temu
- Przeglądów:
Transkrypt
1 OPTYALIZACJA W LOGISTYCE Zagadnienie transportowe 2 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ
2 Zagadnienie transportowe z kryterium czasu I rodzaju () Jeżeli w modelu klasycznego zagadnienia transportowego jednostkowe koszty transportu c ij zastąpimy jednostkowymi czasami przewozu (czas przewozu jednostki dobra) t ij, to otrzymamy model zagadnienia transportowego z kryterium czasu I-rodzaju. Funkcja celu tego modelu zamiast łącznych kosztów transportu (klasyczne zagadnienie transportowe) wyrażać będzie łączny czas przewozu dobra w ilości zaspokajającej popyt w punktach odbioru. Zagadnienia transportowe z kryterium czasu I-rodzaju są użyteczne w przypadku, gdy dysponujemy ograniczoną liczbą środków transportowych, a jeden środek transportowy może przewozić jednorazowo jedną sztukę produktu (np. kontener)
3 Funkcja celu: (łączny czas transportu) T( x) m Ograniczenia: n x i m i Zagadnienie transportowe z kryterium czasu I rodzaju (2) ij x ij n i j a b Warunki brzegowe: i j t ij x ij min t ij czas transportu jednostki dobra i =,2,,m (bilanse dla punktów nadania) j =,2,,n (bilanse dla punktów odbioru) x ij i =,2,,m j =,2,,n
4 Zagadnienie transportowe z kryterium czasu II rodzaju () Podejście drugiego rodzaju stosuje się najczęściej w sytuacji, gdy całość przewozów musi być ukończona w możliwie najkrótszym czasie ( łatwo psujące się produkty) i mamy możliwość jednoczesnego użycia wystarczającej liczby środków transportowych. odel matematyczny takiego zagadnienia będzie miał odmienną funkcję celu w stosunku do zagadnienia transportowego z kryterium czasu I-rodzaju. Poszukiwanie optymalnego programu przewozowego w zagadnieniach transportowych z kryterium czasu II-rodzaju polega na znalezieniu takiego dopuszczalnego programu przewozowego xϵx, dla którego największa z odległości czasowych występująca w danym programie przewozowym * max t t x ij ij jest najmniejszą z punktu widzenia wszystkich dopuszczalnych programów przewozowych.
5 Zagadnienie transportowe z kryterium czasu II rodzaju (2) Funkcja celu: (najdłuższy czas przewozu w optymalnym programie przewozowym jest najkrótszy spośród wszystkich dopuszczalnych programów przewozowych program przewozu zakończy się najszybciej) Z x X min max{ t x ij ij } t ij czas przejazdu pomiędzy punktem nadania i a punktem odbioru j Ograniczenia: n x i m ij x i ij a b i j i =,2,,m j =,2,,n (bilanse dla punktów nadania) (bilanse dla punktów odbioru) Warunki brzegowe: x ij i =,2,,m j =,2,,n
6 Zagadnienie transportowe z kryterium czasu II rodzaju () Naszym celem jest wyznaczenie planu przewozów, dla którego maksymalny czas trwania dostawy jest najkrótszy. W kolejnych iteracjach staramy się znaleźć takie rozwiązanie, któremu odpowiada najdłuższy czas trwania dostawy nie dłuższy niż w poprzednim rozwiązaniu. Uzyskanie takiego rozwiązania zapewniamy sobie przez następującą modyfikację współczynników t ij : (n) H,,, gdy gdy gdy t t ij t ij ij (n) tmax (n) max (n) tmax t gdzie Ustalona w ten sposób macierz H (n) = [ h (n) ij ] zastępuje macierz T = [ t ij ] przy badaniu optymalności kolejnego rozwiązania.
7 Zagadnienie transportowe z kryterium czasu II rodzaju () Przykład Z trzech gospodarstw rybnych należy dostarczyć ryby do czterech zakładów przetwórstwa rybnego. Podaż gospodarstw wynosi :, 8, ton. Zapotrzebowanie zakładów to: 5, 7 i 2 ton. Czasy dostaw z gospodarstw do zakładów zawiera macierz T: T Należy znaleźć taki plan przewozu ryb przy, którym zostanie zminimalizowany najdłuższy czas dostawy.
8 Zagadnienie transportowe z kryterium czasu II rodzaju (5) O O2 O O podaż D 5 9 D T D 2 Popyt t* =max (5,2,,7,6,9) = 9
9 Zagadnienie transportowe z kryterium czasu II rodzaju (6) Sprawdzenie optymalności programu przewozowego O O2 O O u i D D2 D v j - - H
10 Zagadnienie transportowe z kryterium czasu II rodzaju (7) Korekta programu przewozowego O O2 O O podaż D D D popyt min{9,6,2} = 6
11 Zagadnienie transportowe z kryterium czasu II rodzaju (8) O O2 O O podaż D 5 6 D2 8 8 T D 7 6 Popyt t* = max (5,2,5,,6,9) = 9
12 Zagadnienie transportowe z kryterium czasu II rodzaju (9) Sprawdzenie optymalności programu przewozowego O O2 O O u i D D2 D - - v j H 2
13 Zagadnienie transportowe z kryterium czasu II rodzaju () Korekta programu przewozowego O O2 O O podaż D D2 8 8 D popyt min{5,6} = 5
14 Zagadnienie transportowe z kryterium czasu II rodzaju () O O2 O O podaż D D2 8 8 T D 5 7 Popyt t* = max(2,5,,,6,9) = 9
15 Zagadnienie transportowe z kryterium czasu II rodzaju (2) Sprawdzenie optymalności programu przewozowego O O2 O O u i D D2 D - v j H
16 Zagadnienie transportowe z kryterium czasu II rodzaju () Korekta programu przewozowego O O2 O O podaż D D2 8 8 D popyt min{,} =
17 Zagadnienie transportowe z kryterium czasu II rodzaju () O O2 O O podaż D 2 2 D2 8 8 T D 5 7 Popyt t* = max(2,5,,,,6) = 6
18 Zagadnienie transportowe z kryterium czasu II rodzaju (5) Sprawdzenie optymalności programu przewozowego O O2 O O u i D - D2 - D v j H
19 Zagadnienie transportowe z kryterium czasu II rodzaju (6) Korekta programu przewozowego O O2 O O podaż D D2 8 8 D popyt min{2,7} = 2
20 Zagadnienie transportowe z kryterium czasu II rodzaju (7) O O2 O O podaż D 2 2 D2 8 8 T D 5 5 Popyt t* =max(,5,,,,6) = 6
21 Zagadnienie transportowe z kryterium czasu II rodzaju (8) Sprawdzenie optymalności programu przewozowego O O2 O O u i D - - D2 - - D - v j - - H 5
22 Zagadnienie transportowe z kryterium czasu II rodzaju (9) Korekta programu przewozowego O O2 O O podaż D D D popyt min{2,8,5} = 5
23 Zagadnienie transportowe z kryterium czasu II rodzaju (2) O O2 O O podaż D 7 7 D2 5 8 T D 5 8 Popyt t* =max(,5,,,,) = 5
24 Zagadnienie transportowe z kryterium czasu II rodzaju (2) Sprawdzenie optymalności programu przewozowego O O2 O O u i D D2 D v j H 6
25 Zagadnienie transportowe z kryterium czasu II rodzaju (22) Korekta programu przewozowego O O2 O O podaż D D D 5 8 popyt min{,7} =
26 Zagadnienie transportowe z kryterium czasu II rodzaju (2) O O2 O O podaż D 7 D2 8 8 T D 5 8 Popyt t* = max(2,,5,,,) = 5
27 Zagadnienie transportowe z kryterium czasu II rodzaju (2) Sprawdzenie optymalności programu przewozowego O O2 O O u i D D2 - D v j T H
28 Zagadnienie transportowe z kryterium czasu II rodzaju (25) Rozwiązanie uzyskane dla macierzy H 7 jest rozwiązaniem optymalnym. Jednakże macierz H 7 jest identyczna jak macierz H 6. Oznacza to, że w sensie zagadnienia czasowego II-rodzaju optymalnym jest również rozwiązanie sprzężone z macierzą H 6. Oba programy przewozowe można zrealizować w ciągu 5 jednostek czasowych (t * =5). Programy te przedstawiają się następująco: 7 7 o X H 5 X o H
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania
ZAGADNIENIE TRANSPORTOWE (część 1)
ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Zadanie niezbilansowane. Gliwice 1
Zadanie niezbilansowane 1 Zadanie niezbilansowane Przykład 11 5 3 8 2 A 4 6 4 2 B 9 2 3 11 C D E F G dostawcy odbiorcy DOSTAWCY: A: 15 B: 2 C: 6 ODBIORCY: D: 8 E: 3 F: 4 G: 5 2 Zadanie niezbilansowane
BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda
BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy
Zagadnienie transportowe i zagadnienie przydziału
Temat: Zagadnienie transportowe i zagadnienie przydziału Zadanie 1 Trzy piekarnie zlokalizowane na terenie miasta są zaopatrywane w mąkę z trzech magazynów znajdujących się na peryferiach. Zasoby mąki
Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe
OPTYMALIZACJA DYSKRETNA
Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Optymalizacja zadań bazy transportowej ( część 2 ) Opracowano na podstawie : Stanisław Krawczyk, Metody ilościowe w logistyce ( przedsiębiorstwa ), Wydawnictwo C. H. Beck, Warszawa
ZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
Rozwiązanie Ad 1. Model zadania jest następujący:
Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko
KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT).
KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT). Przez klasyczne zagadnienie transportowe rozumiemy problem znajdowania najtańszego programu przewozowego jednorodnego dobra pomiędzy punktami nadania (m liczba
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Lista 1 PL metoda geometryczna
Lista 1 PL metoda geometryczna 1.1. Znajdź maksimum funkcji celuf(x 1,x 2 )=5x 1 +7x 2 przy ograniczeniach: 2x 1 +2x 2 600, 2x 1 +4x 2 1000, x i 0 dlai=1,2 1.2. Znajdź maksimum funkcji celuf(x 1,x 2 )=2x
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych
Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:
Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
BADANIA OPERACYJNE ANALITYKA GOSPODARCZA
BADANIA OPERACYJNE ANALITYKA GOSPODARCZA Egzamin pisemny 8.4.7 piątek, salae-6, godz. 8:-9:3 OBECNOŚĆ OBOWIĄZKOWA!!! Układ egzaminu. TEST z teorii: minut (test wielostronnego wyboru; próg 75%). ZADANIA:
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego
Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
ZAGADNIENIE TRANSPORTOWE
ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Wyznaczanie lokalizacji magazynów dystrybucyjnych i miejsc produkcji dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Lokalizacja magazynów dystrybucyjnych 1 Wybór miejsca produkcji
TOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
BADANIA OPERACYJNE pytania kontrolne
DUALNOŚĆ 1. Podać twierdzenie o dualności 2. Jaka jest zależność pomiędzy funkcjami celu w zadaniu pierwotnym i dualnym? 3. Prawe strony ograniczeń zadania pierwotnego, w zadaniu dualnym są 4. Współczynniki
ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.3. ZADANIA Wykorzystując
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
METODY OBLICZENIOWE OPTYMALIZACJI zadania
METODY OBLICZENIOWE OPTYMALIZACJI zadania Przedstawione dalej zadania rozwiąż wykorzystując Excel/Solver. Zadania 8 są zadaniami optymalizacji liniowej, zadania 9, dotyczą optymalizacji nieliniowej. Przed
ZAGADNIENIA TRANSPORTOWE
ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych
Analiza czasowo-kosztowa
Analiza czasowo-kosztowa Aspekt ekonomiczny: należy rozpatrzyć techniczne możliwości skrócenia terminu wykonania całego przedsięwzięcia, w taki sposób aby koszty związane z jego realizacją były jak najniższe.
celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n
123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki
Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.
BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie
ZADANIE 1 W 1 W 2 W 3 P P P P
ZADANIE 1 Trzy wydawnictwa: W 1, W 2 i W 3 zaopatrują się w materiały w czterech papierniach: P 1, P 2, P 3 oraz P 4. Zapotrzebowanie zakładów wynosi kolejno: 300, 400 oraz 100 kg papieru tygodniowo, natomiast
Zadanie transportowe
Zadanie transportowe Opracowanie planu przewozu jednorodnego produktu z różnych źródeł zaopatrzenia do punktów, które zgłaszają zapotrzebowanie na ten produkt. Wykład ARo Metody optymalizacji w ekonomii
Badania Operacyjne Ćwiczenia nr 5 (Materiały)
ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga
PROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
Modelowanie całkowitoliczbowe
1 Modelowanie całkowitoliczbowe Zmienne binarne P 1 Firma CMC rozważa budowę nowej fabryki w miejscowości A lub B lub w obu tych miejscowościach. Bierze również pod uwagę budowę co najwyżej jednej hurtowni
Rozwiązanie zadania 1. Krok Tym razem naszym celem jest, nie tak, jak w przypadku typowego zadania transportowego
Zadanie 1 Pośrednik kupuje towar u dwóch dostawców (podaż: 2 i, jednostkowe koszty zakupu 1 i 12), przewozi go i sprzedaje trzem odbiorcom (popyt: 1, 28 i 27, ceny sprzedaży:, 25 i ). Jednostkowe koszty
PROCESY I CONTROLLING W LOGISTYCE Controlling operacyjny w łańcuchu dostaw
1 PROCESY I CONTROLLING W LOGISTYCE Controlling operacyjny w łańcuchu dostaw ZALICZENIE ĆWICZEŃ 2 35pkt - kolokwium na zajęciach 15pkt test z elearningu min 30pkt - 3,0 min 34pkt - 3,5 min 37pkt - 4,0
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
Problem zarządzania produkcją i zapasami
Problem zarządzania produkcją i zapasami Wykorzystamy zasadę optymalności Bellmana do poradzenia sobie z zarządzaniem zapasami i produkcją w określonym czasie z punktu widzenia istniejącego i mogącego
Dr hab. inż. Andrzej Szarata. Katedra Systemów Komunikacyjnych Politechnika Krakowska
Dr hab. inż. Andrzej Szarata Katedra Systemów Komunikacyjnych Politechnika Krakowska Podejście jednomodalne vs multimodalne Transport indywidualny? Czynnik wpływu Transport zbiorowy Modele multimodalne
LOGISTYKA ZAOPATRZENIA I PRODUKCJI ĆWICZENIA 13 ROZMIESZCZENIE STANOWISK (LAYOUT)
1 LOGISTYKA ZAOPATRZENIA I PRODUKCJI ĆWICZENIA 13 ROZMIESZCZENIE STANOWISK (LAYOUT) Autor: dr inż. Roman DOMAŃSKI 2 LITERATURA Marek Fertsch, Danuta Głowacka-Fertsch Zarządzanie produkcją, WSL Poznań 2004
Projektowanie rozmieszczenia stanowisk roboczych
Projektowanie rozmieszczenia stanowisk roboczych Metoda trójkątów Schmigalli Metoda trójkątów Schmigalli Dane wejściowe: - liczba rozmieszczonych stanowisk - macierz powiązań transportowych Metoda trójkątów
Wykład 04 Popyt na usługi transportowe dr Adam Salomon
Wykład 04 Popyt na usługi transportowe dr Adam Salomon Katedra Transportu i Logistyki Wydział Nawigacyjny Akademia Morska w Gdyni Postulaty przewozowe Postulaty przewozowe wymagania jakościowe zgłaszane
D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO
D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Klasyczne zagadnienie przydziału
Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Studia stacjonarne I stopnia. 29 stycznia
Studia stacjonarne I stopnia 29 stycznia 2017 1 Kierunek Logistyka sem. 1 Logistyka Zadania z ćwiczeń 29 stycznia 2017 2 Przyjęcie urodzinowe PRZYJĘCIE URODZINOWE Wydarzenie: przyjęcie urodzinowe Kiedy:
Badania operacyjne i teorie optymalizacji
Badania operacyjne i teorie optymalizacji dr Zbigniew Karwacki Wydział Ekonomiczno-Socjologiczny Katedra Badań Operacyjnych Centrum Informatyczno-Ekonometryczne pok. E-137 Środa, 16.30-18.00 zakarwacki@uni.lodz.pl
ARKUSZ EGZAMINACYJNY ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE CZERWIEC 2010
Zawód: technik logistyk Symbol cyfrowy zawodu: 342[04] Numer zadania: 1 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu 342[04]-01-102 Czas trwania egzaminu: 180 minut ARKUSZ
Zagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700
Zagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700 jednostek, przy czym dla mikroelementu M1 maksymalna dzienna
Zadanie egzaminacyjne
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik logistyk 342[04] Zadanie egzaminacyjne Opracuj projekt realizacji czynności logistycznych zakładu przetwórstwa owocowowarzywnego
JW - 6 ZMIANA TREŚCI OGŁOSZENIA. Dotyczy: numer postępowania: W/90/2015
JEDNOSTKA WOJSKOWA NR 4226 04-470 Warszawa, ul. Marsa 110 JW - 6 Warszawa, dnia 28.05.2015 r. ZMIANA TREŚCI OGŁOSZENIA Dotyczy: numer postępowania: W/90/2015 Zamawiający informuje, że w postępowaniu prowadzonym
=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)
Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję
Laboratorium Metod Optymalizacji. Sprawozdanie nr 1
PAWEŁ OSTASZEWSKI PIŁA, dn. 01.04.2003 nr indeksu: 55566 Laboratorium Metod Optymalizacji Sprawozdanie nr 1 1. TREŚĆ ZADANIA: Producent soku jabłkowego posiada fabryki w trzech miastach A, B i C. Sok jest
Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16)
Rozkład zajęć, statystyka matematyczna, Rok akademicki 05/6, semestr letni, Grupy powtarzających (C5; C6) Lp Grupa C5 Grupa C6 Liczba godzin 0046 w godz 600-000 C03 0046 w godz 600-000 B05 4 6046 w godz
TEMAT: Ustalenie zapotrzebowania na materiały. Zapasy. dr inż. Andrzej KIJ
TEMAT: Ustalenie zapotrzebowania na materiały. Zapasy dr inż. Andrzej KIJ 1 1 Zagadnienia: Klasyfikacja zapasów w przedsiębiorstwie Zapasy produkcji w toku Ilościowe i wartościowe określenie całkowitego
Metoda simpleks. Gliwice
Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2
Optymalizacja kosztów transportu w sferze logistyki zaopatrzenia
SZKUTNIK Joanna 1 ZIÓŁKOWSKI Jarosław 2 Optymalizacja kosztów transportu w sferze logistyki zaopatrzenia WSTĘP Zagadnienie transportowe jest szczególnym rodzajem zadania programowania liniowego. Polega
1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że
Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli
Ekonometria Programowanie Liniowe. Robert Pietrzykowski
Ekonometria Programowanie Liniowe Robert Pietrzykowski ZADANIE: Przedsiębiorstwo produkuje dwa wyroby: W1 i W2. Ograniczeniem w procesie produkcji jest czas pracy trzech maszyn: M1, M2 i M3. W tablicy
Badania operacyjne. Dr Michał Kulej. Pokój 509, budynek B4 Forma zaliczenia wykładu: egzamin pisemny.
Badania operacyjne Dr Michał Kulej. Pokój 509, budynek B4 michal.kulej@pwr.wroc.pl Materiały do zajęć będa dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia wykładu: egzamin
Programowanie liniowe
Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)
Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
ALGORYTM SIMPLEX. B.Gładysz Badania operacyjne 2007
ALGORYTM SIMPLEX 7 Zagadnienie asortymentu produkcji Firma produkuje dwa wyroby P, P. Ograniczeniem dla produkcji są trzy surowce S, S i S.Nakłady jednostkowe surowców są następujące: S S S Zysk jednostkowy
( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa
Standardowe zadanie PL () Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny. akład może wytwarzać dwa wyroby: P i P. Ich produkcja jest limitowana
oznaczonym punkcie K-EX. Dane tele-adresowe znajdują się na ostatniej stronie cennika lub na
Obowiązuje od dnia 30. 09. 2016 Nasze usługi Express Standard Usługa przewozu przesyłek o masie jednego opakowania do 50 kg dostarczana na zasadach drzwi-drzwi w systemie przewidywanego terminu doręczenia
PROGRAMOWANIE WIELOKRYTERIALNE (CELOWE)
PROGRAMOWANIE WIELOKRYTERIALNE (CELOWE) Przykład 14. Zakład zamierza rozpocząć produkcję wyrobów W 1 i W 2. Wśród środków produkcyjnych, które zostaną użyte w produkcji dwa są limitowane. Limity te wynoszą:
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych
Badania Operacyjne Ćwiczenia nr 2 (Materiały)
Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy
Badania operacyjne. Lista zadań projektowych nr 2
Badania operacyjne Lista zadań projektowych nr 2 1. Trzy PGR-y mają odstawić do czterech punktów skupu pszenicę w następujących ilościach: PGR I - 100 ton, PGR II - 250 ton, PGR III - 100 ton. Punkty skupu
Optymalizacja harmonogramów budowlanych - szeregowanie zadań. Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Optymalizacja harmonogramów budowlanych - szeregowanie zadań Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Opis zagadnienia Zadania dotyczące szeregowania zadań należą do szerokiej
Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.
Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania
Sterowanie optymalne
Sterowanie optymalne Sterowanie Procesami Ciągłymi 2017 Optymalizacja statyczna funkcji Funkcja celu/kryterialna/kosztów Ograniczenie Q(x) min x x = arg min Q(x) x x X, gdzie X zbiór rozwiązań dopuszczalnych
Programowanie dynamiczne. Tadeusz Trzaskalik
Programowanie dynamiczne Tadeusz Trzaskalik 9.. Wprowadzenie Słowa kluczowe Wieloetapowe procesy decyzyjne Zmienne stanu Zmienne decyzyjne Funkcje przejścia Korzyści (straty etapowe) Funkcja kryterium
Ćwiczenie 1: Wyznaczanie lokalizacji magazynów metoda środka ciężkości.
Projektowanie systemów transportowych Ćwiczenie 1: Wyznaczanie lokalizacji magazynów metoda środka ciężkości. mgr inż. Marcin Hajdul Wyższa Szkoła Logistyki Marcin.Hajdul@wsl.com.pl Metoda środka ciężkości
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Marketing dr Grzegorz Mazurek
Marketing dr Grzegorz Mazurek Orientacja rynkowa jako podstawa marketingu Orientacja przedsiębiorstwa określa co jest głównym przedmiotem uwagi i punktem wyjścia w kształtowaniu działalności przedsiębiorstwa.
TECHNIK LOGISTYK Zadanie egzaminacyjne etap praktyczny
TECHNIK LOGISTYK Zadanie egzaminacyjne etap praktyczny Opracuj projekt realizacji czynności logistycznych zakładu przetwórstwa owocowo - warzywnego związanych z wyborem dostawców i przewoźnika. zużywa
Zarządzanie ryzykiem w łańcuchach transportowych
Transport w Logistycznych Łańcuchach Dostaw wykład 06 Zarządzanie ryzykiem w łańcuchach transportowych dr Adam Salomon Katedra Transportu i Logistyki Wydział Nawigacyjny Akademia Morska w Gdyni Transport
Poznań: Dostawa ryb słodkowodnych i ryb morskich Numer ogłoszenia: ; data zamieszczenia: OGŁOSZENIE O ZAMÓWIENIU - dostawy
Poznań: Dostawa ryb słodkowodnych i ryb morskich Numer ogłoszenia: 443106-2012; data zamieszczenia: 09.11.2012 OGŁOSZENIE O ZAMÓWIENIU - dostawy Zamieszczanie ogłoszenia: obowiązkowe. Ogłoszenie dotyczy:
Zadanie A. Pestycydy. Wejście. Wyjście. Przykłady. Techniki optymalizacyjne Sosnowiec, semestr zimowy 2016/2017
Zadanie A. Pestycydy Aby uprawiać pewną roślinę musimy ją nawozić mieszanką zawierającą wszystkie potrzebne składniki odżywcze w ilości (podawanej w gramach) nie mniejszej niż przewiduje norma. Taką mieszankę
Wielokryteriowa optymalizacja liniowa cz.2
Wielokryteriowa optymalizacja liniowa cz.2 Metody poszukiwania końcowych rozwiązań sprawnych: 1. Metoda satysfakcjonujących poziomów kryteriów dokonuje się wyboru jednego z kryteriów zadania wielokryterialnego
EKONOMIKA TRANSPORTU EKONOMIKA TRANSPORTU MARCIN FOLTYŃSKI TRANSPORTOWYCH
EKONOMIKA TRANSPORTU PROJEKTOWANIE SYSTEMÓW TRANSPORTOWYCH DEFINICJE Sieć Zbiór połączonych ze sobą i wzajemnie uwarunkowanych działań z określonym punktem początkowym i końcowym. Struktura kanałów, którymi
Nowe ogniwo w Supply Chain Transport Intermodalny
Nowe ogniwo w Supply Chain Transport Intermodalny Przemysław Hoehne www.clip-group.com Czym jest transport intermodalny Transport intermodalny to przewóz towarów w jednej i tej samej jednostce ładunkowej
Procedura wyznaczania i przypisania do danego centrum dystrybucji rejonu obsługi
2005-07-27 Procedura wyznaczania i przypisania do danego centrum dystrybucji rejonu obsługi Celem artykułu jest przedstawienie procedury wyznaczania rejonu obsługi dla centrum dystrybucji. Czytelnik zapozna
Systemowa organizacja kolejowych przewozów pasażerskich
Konferencja Rola kolei w poprawie dostępności transportowej regionów Systemowa organizacja kolejowych przewozów pasażerskich dr inż. Andrzej Żurkowski Systemowa organizacja kolejowych przewozów pasażerskich.
Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego.
Firma produkująca płatki śniadaniowe rozważa wypuszczenie na rynek nowego produktu. Ma to być mieszanka pszenicy, ryżu i kukurydzy. Normy zawartości przedstawia tabela: Dane Pszenica Ryż Kukurydza Zawartość
Programowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
Nazwa kwalifikacji: Organizacja i nadzorowanie transportu Oznaczenie kwalifikacji: A.28 Numer zadania: 01
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2016 Nazwa kwalifikacji: Organizacja i nadzorowanie transportu Oznaczenie kwalifikacji: A.28 Numer zadania:
Programowanie matematyczne
dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Optymalizacja zadań bazy transportowej ( część 1 ) Opracowano na podstawie : Stanisław Krawczyk, Metody ilościowe w logistyce ( przedsiębiorstwa ), Wydawnictwo C. H. Beck, Warszawa
Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe
Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym