Badania Operacyjne Ćwiczenia nr 5 (Materiały)
|
|
- Halina Ciesielska
- 9 lat temu
- Przeglądów:
Transkrypt
1 ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga obróbki na trzech maszynach. Jeden tysiąc ryz papieru modelu S wymaga 4 godz. obróbki na maszynie M 1, 6 godz. obróbki na maszynie M 2 oraz 4 godz. obróbki na maszynie M 3. Do wyprodukowania tysiąca ryz papieru F niezbędne jest 10 godz. pracy maszyny M 1, 4 godz. pracy maszyny M 2 i 6 godz. pracy maszyny M 3, a dla tysiąca ryz wyrobu N niezbędne czasy pracy maszyn wynoszą odpowiednio: 4, 2 i 6 godz. Maszyny w ciągu tygodnia mogą maksymalnie pracować: M 1 80 godz., M 2 i M 3 po 60 godz. (1) Wiedząc, że cena ryzy papieru S wynosi 12 zł, papieru F 24 zł, zaś papieru N 16 zł określić optymalną tygodniową produkcję ryz papierów dającą maksymalny przychód ze sprzedaży. Pierwszym etapem jest zapisanie powyższego problemu decyzyjnego za pomocą programu liniowego: Zmienne decyzyjne: ść ść ść ł Warunki ograniczające: Artur Piątkowski WZ UW Strona 1
2 Funkcja celu: Badania Operacyjne Ćwiczenia nr 5 (Materiały) Następnie należy zaimplementować powyższy program do arkusza kalkulacyjnego MS Excel Przenosimy do arkusza poszczególne części programu: zmienne decyzyjne, warunki ograniczające oraz funkcję celu. Po zaimplementowaniu modelu (programu) do arkusza kalkulacyjnego, należy go rozwiązać z wykorzystaniem dodatku Solver. Odp1.: Optymalna tygodniowa produkcja wynosi: 6 tys. ryz papieru F oraz 3 tys. ryz papieru N (X 1 * =0,X 2 * =6, X 3 * =3 ). Taka kombinacja produkcji ryz papieru gwarantuje maksymalny przychód ze sprzedaży, który wynosi 213 tys. zł. Artur Piątkowski WZ UW Strona 2
3 Programowanie całkowitoliczbowe Zadanie programowania liniowego, w którym zmienne decyzyjne muszą przyjmować wartości całkowite nazywamy zadaniem programowania całkowitoliczbowego. Programowanie całkowitoliczbowe stosuje się w przypadkach, kiedy ułamkowe wartości zmiennych decyzyjnych nie mają sensu w rzeczywistości (np. Jedną z metod rozwiązywania zagadnień programowania całkowitoliczbowego jest metoda podziału i ograniczeń. Działanie metody polega na analizie drzewa rozwiązań. Drzewo reprezentuje wszystkie możliwe ścieżki, jakimi może pójść algorytm rozwiązując dany problem. Algorytm zaczyna w korzeniu drzewa i przechodząc do któregoś liścia konstruuje rozwiązanie. Przegląd całego drzewa rozwiązań jest bardzo czasochłonny i kosztowny. Dzięki metodzie podziału i ograniczeń można przyciąć drzewo rozwiązań i analizować tylko obiecujące obszary. (2) Dodatkowy warunek: x 1, x 2, x 3 są całkowite (warunek całkowitej liczbowości). W powyższym zadaniu optymalne wartości produkcji poszczególnych rodzajów papieru są liczbami rzeczywistymi: nie są liczbami całkowitymi. Wykorzystując metodę podziału i ograniczeń narzucamy dodatkowe ograniczenia, które wycinają pasy niecałkowitej liczbowości. Wybieramy zmienną decyzyjną o wartości ułamkowej np. i narzucamy warunki: Następnie implementujemy nowe ograniczenie do arkusza kalkulacyjnego i rozwiązujemy program. Zacznijmy od ograniczenia Artur Piątkowski WZ UW Strona 3
4 Po dodaniu nowego ograniczenia funkcja celu i zmienne decyzyjne przyjęły następujące wartości: X 1 oraz X 2 są liczbami całkowitymi, ale X 3 jest liczbą rzeczywistą (nie spełnia warunku całkowitej liczbowości). Należy narzucić kolejne warunki: Implementujemy ograniczenie i rozwiązujemy program. Artur Piątkowski WZ UW Strona 4
5 Dodanie nowego ograniczenia spowodowało, że program nie ma rozwiązania. BRAK ROZWIĄZANIA Implementujemy ograniczenie i rozwiązujemy program. Po dodaniu nowego ograniczenia funkcja celu i zmienne decyzyjne przyjęły następujące wartości: X 2 oraz X 3 są liczbami całkowitymi, ale X 1 jest liczbą rzeczywistą (nie spełnia warunku całkowitej liczbowości). Należy narzucić kolejne warunki: Artur Piątkowski WZ UW Strona 5
6 BRAK ROZWIĄZANIA Wróćmy do pierwszej pary ograniczeń (początkowego rozgałęzienia) i dodajmy ograniczenie Po dodaniu nowego ograniczenia funkcja celu i zmienne decyzyjne przyjęły następujące wartości: Zmienne decyzyjne X 1, X 2 oraz X 3 są liczbami całkowitymi. Dodatkowo funkcja celu w gałęzi zapoczątkowanej warunkiem X 2 i jest większa niż Artur Piątkowski WZ UW Strona 6
7 w gałęzi zapoczątkowanej warunkiem X 2, gdzie wynosi. Nie opłaca się dalej analizować gałęzi zapoczątkowanej przez warunek X 2 funkcja celu przyjmie w niej wartość co najwyżej równą 208, która jest mniejsza od wartości funkcji celu w pierwszej gałęzi. OK BRAK ROZWIĄZANIA Teraz wybieramy drugą zmienną decyzyjną o wartości ułamkowej i narzucamy warunki: Powstają dwie nowe gałęzie: Artur Piątkowski WZ UW Strona 7
8 Następnie implementujemy nowe ograniczenie do arkusza kalkulacyjnego i rozwiązujemy program. Zacznijmy od ograniczenia Po dodaniu nowego ograniczenia funkcja celu i zmienne decyzyjne przyjęły następujące wartości: Zmienne decyzyjne X 1, X 2 oraz X 3 są liczbami całkowitymi. Funkcja celu w gałęzi zapoczątkowanej warunkiem X 3 i jest mniejsza niż funkcja celu w gałęzi zapoczątkowanej warunkiem X 2 ( OK Analizujemy ostatnią gałąź, zapoczątkowaną przez ograniczenie implementujemy do arkusza kalkulacyjnego., które Artur Piątkowski WZ UW Strona 8
9 Po dodaniu nowego ograniczenia funkcja celu i zmienne decyzyjne przyjęły następujące wartości: X 3 jest liczbą całkowitą, ale X 1 oraz X 2 są liczbami rzeczywistymi, które nie spełniają warunku całkowitej liczbowości. Nie opłaca się analizować dalej tej gałęzi pomimo tego, że jest większe niż (wartość funkcji celu w gałęzi zapoczątkowanej ograniczeniem X 2. Funkcja celu posiada następująca postać: Jeżeli wartość funkcji celu w rozwinięciu analizowanej gałęzi przyjmie wartość z przedziału (212, 213), to będzie to oznaczać, że nie wszystkie zmienne decyzyjne spełniają warunek całkowitej liczbowości. Jeżeli wartość funkcji celu przyjmie wartość 212, to będzie wynosiła ona tyle samo, co w przypadku gałęzi zapoczątkowanej ograniczeniem X 2. OK Odp2.: Po narzuceniu warunku całkowitej liczbowości zmienne decyzyjne przyjęły następujące wartości:, które gwarantują przychód na poziomie FCL * =212 tys. złotych. Artur Piątkowski WZ UW Strona 9
10 Powyższy problem można również rozwiązać z wykorzystaniem dodatku Solver oraz ograniczenia integer (całkowitoliczbowego). Należy przejść w okno dodatku Solver oraz dodać trzy nowe ograniczenia, które bezpośrednio dotyczą zmiennych decyzyjnych: W okienku Podlegających ograniczeniom pojawi się sześć ograniczeń, w tym trzy dotyczące całkowitoliczbowości zmiennych decyzyjnych. Artur Piątkowski WZ UW Strona 10
11 Po dodaniu trzech warunków int zmienne decyzyjne i funkcja celu przyjęły następujące wartości: Odp2.: Po narzuceniu warunku całkowitej liczbowości zmienne decyzyjne przyjęły następujące wartości:, które gwarantują przychód na poziomie FCL * =212 tys. złotych. Zagadnienie transportowe Zagadnienie transportowe problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych źródeł zaopatrzenia do kilku punktów zgłaszających zapotrzebowanie na ten towar. Model zagadnienia transportowego można sformułować następująco: I dostawców pewnego jednorodnego towaru, z których każdy dysponuje A i (i=1,,i) jednostkami tego towaru, zaopatruje J odbiorców. Zapotrzebowanie każdego z odbiorców wynosi B j jednostek (j=1,,j). Każdy z dostawców może zaopatrywać dowolnego odbiorcę. Każdy odbiorca może otrzymywać towar od dowolnego dostawcy. Jednostkowe koszty transportu od i-tego dostawcy do j-tego odbiorcy: c ij (i=1,2,,i; j=1,2,,j). Całkowity koszt transportu jest sumą kosztów transportu na poszczególnych trasach. Należy opracować plan przewozu towarów pomiędzy dostawcami i odbiorcami, tak aby łączne koszty transportu były możliwie najniższe. Plan przewozu towarów ma określić ile Artur Piątkowski WZ UW Strona 11
12 towaru powinien dostarczyć i-ty dostawca j-temu odbiorcy te wielkości są zmiennymi decyzyjnymi.: x ij (i=1,2,,i; j=1,2,,j). Aby model transportowy miał rozwiązanie musi być spełniony następujący warunek: odbiorców). (łączna podaż dostawców powinna być nie mniejsza niż łączne zapotrzebowanie Jeżeli warunek jest spełniony z równością: to mamy do czynienia z zamkniętym zagadnieniem transportowym. Jeżeli warunek jest spełniony z nierównością (ostro): to mamy do czynienia z otwartym zagadnieniem transportowym. Zamknięte zagadnienie transportowe posiada). Warunki dla dostawców (i-ty dostawca ma dostarczyć odbiorcom tyle towaru, ile Artur Piątkowski WZ UW Strona 12
13 Warunek dla odbiorców (j-ty odbiorca ma otrzymać od wszystkich dostawców tyle towaru, ile potrzebuje). Warunki brzegowe. Funkcja celu (minimalizacja łącznych kosztów transportu od wszystkich dostawców do wszystkich odbiorców). ZADANIE 2 Trzy magazyny: M 1, M 2 oraz M 3 zaopatrują w mąkę cztery piekarnie: P 1, P 2, P 3, P 4. Wielkości charakteryzujące popyt, podaż i koszty transportu mąki (w zł za tonę) z każdego magazynu do każdej piekarni ilustruje poniższa tablica. Magazyny Piekarnie Podaż P 1 P 2 P 3 P 4 M M M Popyt Opracować plan przewozu mąki z magazynów do piekarń, w którym funkcja celu minimalizuje koszty przewozu. Pierwszym krokiem jest sprawdzenie, czy łączna podaż dostawców jest nie mniejsza niż łączny popyt odbiorców: Warunek jest spełniony z równością w takim wypadku mamy do czynienia z zamkniętym zagadnieniem transportowym. Artur Piątkowski WZ UW Strona 13
14 Następnie należy zapisać powyższy problem decyzyjny za pomocą programu liniowego: Zmienne decyzyjne (jest dwanaście zmiennych decyzyjnych): ść ą ść ść ą ą ść ą Warunki ograniczające: Podażowe: Popytowe: Funkcja celu: Artur Piątkowski WZ UW Strona 14
15 Następnie należy zaimplementować powyższy program do arkusza kalkulacyjnego MS Excel Przenosimy do arkusza poszczególne części programu: zmienne decyzyjne, warunki ograniczające, funkcję celu oraz tabelę z kosztami transportu. Artur Piątkowski WZ UW Strona 15
16 Do konstrukcji funkcji celu wykorzystujemy tabelę z kosztami transportu: Artur Piątkowski WZ UW Strona 16
17 Program rozwiązujemy z wykorzystaniem dodatku Solver. Należy pamiętać, że ograniczenia mają postać równości, ponieważ jest to zamknięte zagadnienie transportowe. Warunków ograniczających (popytowych i podażowych) jest razem siedem. Po zaimplementowaniu poszczególnych części zadania do dodatku Solver należy rozwiązań program. Artur Piątkowski WZ UW Strona 17
18 wartości: Po rozwiązaniu programu zmienne decyzyjne i funkcja celu przyjęły następujące Odp.: Z pierwszego magazynu należy przewieść 30 ton mąki do trzeciej piekarni oraz 40 ton mąki do czwartej piekarni. Z drugiego magazynu należy przewieść 40 ton mąki do pierwszej piekarni oraz 10 ton mąki do czwartej piekarni. Z trzeciego magazynu należy przewieść 60 ton mąki do drugiej piekarni oraz 20 ton mąki do trzeciej piekarni. Taki plan przewozu gwarantuje minimalne koszty transportu na poziomie 8000 zł. Artur Piątkowski WZ UW Strona 18
19 Literatura 1. Guzik B. (2009). Wstęp do badań operacyjnych. Wydawnictwo Uniwersytetu Ekonomicznego, Poznań. 2. Kukuła K. (1999). Badania operacyjne w przykładach i zadaniach. PWN, Warszawa. 3. Lipiec-Zajchowska M. Wspomaganie procesów decyzyjnych. Tom III. Badania Operacyjne, Wyd. C.H. Beck, Warszawa Radzikowski W. (1994). Badania operacyjne w zarządzaniu. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa. 5. Sikora W. (2008). Badania operacyjne. PWE, Warszawa. Artur Piątkowski WZ UW Strona 19
ZAGADNIENIE TRANSPORTOWE
ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia
Badania Operacyjne Ćwiczenia nr 6 (Materiały)
Otwarte zagadnienie transportowe Jeżeli łączna podaż dostawców jest większa niż łączne zapotrzebowanie odbiorców to mamy do czynienia z otwartym zagadnieniem transportowym. Warunki dla dostawców (i-ty
Badania Operacyjne Ćwiczenia nr 4 (Materiały)
Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Przykład: frytki i puree Analiza wrażliwości współczynników funkcji celu
Analiza wrażliwości: współczynników funkcji celu analiza wrażliwości pozwala odpowiedzieć na pytanie, w jakich granicach mogą się zmieniać te parametry, aby dotychczasowe rozwiązanie było optymalne, wyrazów
Badania Operacyjne Ćwiczenia nr 2 (Materiały)
Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy
Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe
Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym
Badania Operacyjne Ćwiczenia nr 1 (Materiały)
Wprowadzenie Badania operacyjne (BO) to stosunkowo młoda dyscyplina naukowa, która powstała w czasie II Wojny Światowej, w związku z utworzeniem przy niektórych sztabach sił zbrojnych specjalnych grup
Zagadnienie transportowe i zagadnienie przydziału
Temat: Zagadnienie transportowe i zagadnienie przydziału Zadanie 1 Trzy piekarnie zlokalizowane na terenie miasta są zaopatrywane w mąkę z trzech magazynów znajdujących się na peryferiach. Zasoby mąki
Rozwiązanie Ad 1. Model zadania jest następujący:
Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych
BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda
BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy
Programowanie liniowe
Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu
OPTYMALIZACJA DYSKRETNA
Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych
1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że
Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?
Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy
Badania Operacyjne Ćwiczenia nr 3 (Materiały)
Metoda analityczna Przed przystąpieniem do rozwiązania programu liniowego metodą analityczną, należy sprowadzić program do postaci KANONICZNEJ. Model o postaci kanonicznej to taki, w którym wszystkie warunki
ZAGADNIENIA TRANSPORTOWE
ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych
ZAGADNIENIE TRANSPORTOWE (część 1)
ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
Programowanie liniowe
Badania operacyjne Ćwiczenia 2 Programowanie liniowe Metoda geometryczna Plan zajęć Programowanie liniowe metoda geometryczna Przykład 1 Zbiór rozwiązań dopuszczalnych Zamknięty zbiór rozwiązań dopuszczalnych
Badania operacyjne. Ćwiczenia 1. Wprowadzenie. Filip Tużnik, Warszawa 2017
Badania operacyjne Ćwiczenia 1 Wprowadzenie Plan zajęć Sprawy organizacyjne (zaliczenie, nieobecności) Literatura przedmiotu Proces podejmowania decyzji Problemy decyzyjne w zarządzaniu Badania operacyjne
Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02
Optymalizacja całkowitoliczbowa Przykład. Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02 Firma stolarska produkuje dwa rodzaje stołów Modern i Classic, cieszących się na rynku dużym zainteresowaniem,
Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe
Modelowanie całkowitoliczbowe
1 Modelowanie całkowitoliczbowe Zmienne binarne P 1 Firma CMC rozważa budowę nowej fabryki w miejscowości A lub B lub w obu tych miejscowościach. Bierze również pod uwagę budowę co najwyżej jednej hurtowni
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko
ZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
Rozwiązywanie problemów z użyciem Solvera programu Excel
Rozwiązywanie problemów z użyciem Solvera programu Excel Podstawowe czynności: aktywować dodatek Solver oraz ustawić w jego opcjach maksymalny czas trwania algorytmów na sensowną wartość (np. 30 sekund).
Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:
Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
Zagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Problem zarządzania produkcją i zapasami
Problem zarządzania produkcją i zapasami Wykorzystamy zasadę optymalności Bellmana do poradzenia sobie z zarządzaniem zapasami i produkcją w określonym czasie z punktu widzenia istniejącego i mogącego
Excel - użycie dodatku Solver
PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym
PROGRAM OPTYMALIZACJI PLANU PRODUKCJI
Strona 1 PROGRAM OPTYMALIZACJI PLANU PRODUKCJI Program autorski opracowany przez Sławomir Dąbrowski ul. SIENKIEWICZA 3 m. 18 26-220 STĄPORKÓW tel: 691-961-051 email: petra.art@onet.eu, sla.dabrowscy@onet.eu
Programowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
BADANIA OPERACYJNE pytania kontrolne
DUALNOŚĆ 1. Podać twierdzenie o dualności 2. Jaka jest zależność pomiędzy funkcjami celu w zadaniu pierwotnym i dualnym? 3. Prawe strony ograniczeń zadania pierwotnego, w zadaniu dualnym są 4. Współczynniki
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Zadanie niezbilansowane. Gliwice 1
Zadanie niezbilansowane 1 Zadanie niezbilansowane Przykład 11 5 3 8 2 A 4 6 4 2 B 9 2 3 11 C D E F G dostawcy odbiorcy DOSTAWCY: A: 15 B: 2 C: 6 ODBIORCY: D: 8 E: 3 F: 4 G: 5 2 Zadanie niezbilansowane
Rozwiązanie problemu transportowego metodą VAM. dr inż. Władysław Wornalkiewicz
Rozwiązanie problemu transportowego metodą VAM dr inż. Władysław Wornalkiewicz Występuje wiele metod rozwiązywania optymalizacyjnego zagadnienia transportowego. Jedną z nich jest VAM (Vogel s approximation
Rozwiązywanie programów matematycznych
Rozwiązywanie programów matematycznych Program matematyczny składa się z następujących elementów: 1. Zmiennych decyzyjnych:,,, 2. Funkcji celu, funkcji-kryterium, która informuje o jakości rozwiązania
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet
=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)
Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału Problem przydziału Przykład Firma KARMA zamierza w okresie letnim przeprowadzić konserwację swoich urządzeń; mieszalników,
Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda
Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe dr Adam Sojda Literatura o Kukuła K. (red.): Badania operacyjne w przykładach i zadaniach.
Badania operacyjne egzamin
Imię i nazwisko:................................................... Nr indeksu:............ Zadanie 1 Załóżmy, że Tablica 1 reprezentuje jeden z kroków algorytmu sympleks dla problemu (1)-(4). Tablica
Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego
Przykład wykorzystania dodatku SOLVER 1 w arkuszu Ecel do rozwiązywania zadań programowania matematycznego Firma produkująca samochody zaciągnęła kredyt inwestycyjny w wysokości mln zł na zainstalowanie
Microsoft EXCEL SOLVER
Microsoft EXCEL SOLVER 1. Programowanie liniowe z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję
Rozwiązanie zadania 1. Krok Tym razem naszym celem jest, nie tak, jak w przypadku typowego zadania transportowego
Zadanie 1 Pośrednik kupuje towar u dwóch dostawców (podaż: 2 i, jednostkowe koszty zakupu 1 i 12), przewozi go i sprzedaje trzem odbiorcom (popyt: 1, 28 i 27, ceny sprzedaży:, 25 i ). Jednostkowe koszty
Badania operacyjne. Lista zadań projektowych nr 2
Badania operacyjne Lista zadań projektowych nr 2 1. Trzy PGR-y mają odstawić do czterech punktów skupu pszenicę w następujących ilościach: PGR I - 100 ton, PGR II - 250 ton, PGR III - 100 ton. Punkty skupu
ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.3. ZADANIA Wykorzystując
1 Programowanie całkowitoliczbowe PLC
Metody optymalizacji, wykład nr 9 Paweł Zieliński Programowanie całkowitoliczbowe PLC Literatura [] S.P. Bradley, A.C. Hax, T. L. Magnanti Applied Mathematical Programming Addison-Wesley Pub. Co. (Reading,
c j x x
ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony
KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT).
KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT). Przez klasyczne zagadnienie transportowe rozumiemy problem znajdowania najtańszego programu przewozowego jednorodnego dobra pomiędzy punktami nadania (m liczba
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Programowanie dynamiczne Zarządzanie produkcją i zapasami
Badania operacyjne Ćwiczenia 12 Programowanie dynamiczne Zarządzanie produkcją i zapasami Filip Tużnik, Warszawa 2017 Plan zajęć Zarządzanie produkcją i zapasami Filip Tużnik, Warszawa 2017 2 Literatura
Standardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie
Programowanie nieliniowe
Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Badania operacyjne Instrukcja do c wiczen laboratoryjnych Rozwiązywanie problemów programowania liniowego z użyciem MS Excel + Solver
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Techniki Morskiej i Transportu Katedra Konstrukcji, Mechaniki i Technologii Okręto w Badania operacyjne Instrukcja do c wiczen laboratoryjnych
Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7
Ćwiczenia laboratoryjne - 7 Problem (diety) mieszanek w hutnictwie programowanie liniowe Ćw. L. 7 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym zapisem
Programowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Przedmiot: Nr ćwiczenia: 1 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie liniowe Cel ćwiczenia: Opanowanie umiejętności modelowania i rozwiązywania problemów
Barbadoska 16 mb 24 mb Afrykańska 16 mb 10 mb
I. Ćwiczenia 2 Firma McCain jest światowym potentatem w branży frytek. W swojej fabryce, która znajduje się w Buriey (stan Idaho), produkuje frytki Golden Longs oraz frytki My Fries Classic. Fabryka zaopatruje
Zagadnienia programowania liniowego dotyczą modelowania i optymalizacji wielu problemów decyzyjnych, na przykład:
Programowanie liniowe. 1. Aktywacja polecenia Solver. Do narzędzia Solver można uzyskać dostęp za pomocą polecenia Dane/Analiza/Solver, bądź Narzędzia/Solver (dla Ex 2003). Jeżeli nie można go znaleźć,
Badania operacyjne Operation research. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Badania
Opis przedmiotu: Badania operacyjne
Opis : Badania operacyjne Kod Nazwa Wersja TR.SIK306 Badania operacyjne 2013/14 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka
Ekonometria Programowanie Liniowe. Robert Pietrzykowski
Ekonometria Programowanie Liniowe Robert Pietrzykowski ZADANIE: Przedsiębiorstwo produkuje dwa wyroby: W1 i W2. Ograniczeniem w procesie produkcji jest czas pracy trzech maszyn: M1, M2 i M3. W tablicy
łączny czas pracy (1 wariant) łączny koszt pracy (2 wariant) - całkowite (opcjonalnie - dla wyrobów liczonych w szt.)
14. Zadanie przydziału z ustalonym poziomem produkcji i limitowanym czasem pracy planowanie wielkości produkcji (wersja uproszczona) Producent może wytwarzać n rodzajów wyrobów. Każdy z wyrobów można być
METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest
Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby
Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany
Wieloetapowe zagadnienia transportowe
Przykład 1 Wieloetapowe zagadnienia transportowe Dwóch dostawców o podaży 40 i 45 dostarcza towar do trzech odbiorców o popycie 18, 17 i 26 za pośrednictwem dwóch punktów pośrednich o pojemnościach równych
Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego.
Firma produkująca płatki śniadaniowe rozważa wypuszczenie na rynek nowego produktu. Ma to być mieszanka pszenicy, ryżu i kukurydzy. Normy zawartości przedstawia tabela: Dane Pszenica Ryż Kukurydza Zawartość
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Zadanie transportowe
Zadanie transportowe Opracowanie planu przewozu jednorodnego produktu z różnych źródeł zaopatrzenia do punktów, które zgłaszają zapotrzebowanie na ten produkt. Wykład ARo Metody optymalizacji w ekonomii
etody programowania całkowitoliczboweg
etody programowania całkowitoliczboweg Wyróżnia się trzy podejścia do rozwiazywania zagadnień programowania całkowitoliczbowego metody przegladu pośredniego (niebezpośredniego), m.in. metody podziału i
ZADANIE 1 W 1 W 2 W 3 P P P P
ZADANIE 1 Trzy wydawnictwa: W 1, W 2 i W 3 zaopatrują się w materiały w czterech papierniach: P 1, P 2, P 3 oraz P 4. Zapotrzebowanie zakładów wynosi kolejno: 300, 400 oraz 100 kg papieru tygodniowo, natomiast
Badania operacyjne. Dr Michał Kulej. Pokój 509, budynek B4 Forma zaliczenia wykładu: egzamin pisemny.
Badania operacyjne Dr Michał Kulej. Pokój 509, budynek B4 michal.kulej@pwr.wroc.pl Materiały do zajęć będa dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia wykładu: egzamin
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Komputerowe wspomaganie rozwiązywania zadań programowania nieliniowego Zachodniopomorski Uniwersytet Technologiczny
Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.
BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie
Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
METODY OBLICZENIOWE OPTYMALIZACJI zadania
METODY OBLICZENIOWE OPTYMALIZACJI zadania Przedstawione dalej zadania rozwiąż wykorzystując Excel/Solver. Zadania 8 są zadaniami optymalizacji liniowej, zadania 9, dotyczą optymalizacji nieliniowej. Przed
PROGRAMOWANIE CAŁKOWITOLICZBOWE
PROGRAMOWANIE CAŁKOWITOLICZBOWE METODA PODZIAŁU I OGRANICZEŃ Przykład 6. Metoda podziału i ograniczeń Rozwiązać zadanie z Przykładu 1. metodą podziału i ograniczeń, przy czym wielkość produkcji wyrobu
Opis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.SIK306 Nazwa przedmiotu Badania operacyjne Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Sieć (graf skierowany)
Sieci Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B), (A, D), (A, C), (B, C),..., } Ścieżki i cykle
Ekonometria - ćwiczenia 11
Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy
Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych
dr inż. Ryszard Rębowski 1 OPIS ZJAWISKA Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych 8 listopada 2015 1 Opis zjawiska Będziemy obserwowali proces tworzenia
PRZEWODNIK PO PRZEDMIOCIE
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
Opis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK405 Nazwa przedmiotu Badania operacyjne Wersja przedmiotu 2015/2016 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów