Modelowanie całkowitoliczbowe
|
|
- Marian Wrona
- 6 lat temu
- Przeglądów:
Transkrypt
1 1 Modelowanie całkowitoliczbowe Zmienne binarne P 1 Firma CMC rozważa budowę nowej fabryki w miejscowości A lub B lub w obu tych miejscowościach. Bierze również pod uwagę budowę co najwyżej jednej hurtowni ale tylko w miejscowości, gdzie zbudowano nowa fabrykę. Zmienne decyzyjne, zysk NPV z każdej inwestycji oraz konieczne nakłady w mln zł. (w chwili obecnej) podane sa w poniższej tabeli 1: 2 Tabela 1: Dane do przykładu Decyzja Zmienne dec. Zysk Nakłady 1 Budowa fabryki w A 2 Budowa fabryki w B 3 Budowa hurtowni w A 4 Budowa hurtowni w B Na inwestycje firma może przeznaczyć 10 mln. zł. Wyznacz tak a lokalizację fabryk i ewentualnie hurtowni, aby zmaksymalizować zysk.
2 Model problemu: "! $%&(')+*,-&.&.&./01. 4 Zagadnienie stałych kosztów P 2 Firma tekstylna SZYK zamierza produkować trzy produkty:2 3 i. Do produkcji tych wyrobów potrzebne sa trzy rodzaje maszyn, które firma zamierza wynajać. Wynajęcie maszyn do produkcji wyrobów 4 i 2 kosztuje odpowiednio: 200, 150 i 100 zł.5 tydzień. Zmienne koszty produkcji tych wyrobów szcuje się odpowiednio na 6, 4 i 8 zł. a cena zbytu wynosi odpowiednio 12, 8 i 15 zł. Wyroby te produkuje się z materiału, którego tygodniowa dostawa nie przekracza a jednostkowe zużycie wynosi odpowiednio 4, 3 i 46. Ponadto zdolności produkcyjne firmy ogranicza zatrudnienie - dysponuje 150 roboczogodzinami tygodniowo. Pracochłonność wytwarzania jednej sztuki każdego wyrobu wynosi odpowiednio 3, 2 i 6 roboczogodzin. Sformułuj model maksymalizacji tygodniowego zysku firmy. Niech 8 będzie wielkościa produkcji wyrobu 2, gdzie 9 :/;<. Ponadto zdefiniujemy jeszcze dla 9 -/;< zmienna, która przyjmuje
3 5 wartość 1, gdy produkuje się produkt 2 a zero w przeciwnym przypadku. Model powyższego zagadnienia dla funkcji celu zysku (dochod - koszt zmienny - koszt wynajmu) jest następujacy: -% < &% / & ( ( % ( % ( % ( # (jeśli to - ) (jeśli to - ) (jeśli to - ) & całkowite, 4 $%&('). Z ograniczeń mamy, że ), ( i. Rozwiazanie optymalne to:,, -. 6 P 3 ZAGADNIENIE LOKALIZACJI Dane: n - liczba klientów zgłaszających zapotrzebowanie na produkt, m - liczba miejsc lokalizacji budowy nowych zakładów,! - popyt na produkt klienta j-tego *-&.&.&. / - podaż zakładu zlokalizowanego w i-tym miejscu lokalizacji, - koszt budowy zakładu w i-tym miejscu lokalizacji, - koszt produkcji jednostki produktu w i-tym miejscu lokalizacji,! - koszt transportu jednostki produktu z i-tego miejsca do j-tego klienta (i1,.&.&., m). Problem: Wyznaczyć miejsca lokalizacji budowy nowych zakładów i ilości produktu jaki ma zostać przewożony od nowo-wybudowanych zakładów do klientów tak, aby zminimalizawać łaczne koszty budowy nowych zakładów, koszty produkcji i transportu zaspakajając popyt klientów i nie przekraczając podaży nowo-wybudowanych zakładów. Zmienne decyzyjne:! - ilość produktu przewożona od zakładu zlokalizowanego w i-tym miejscu lokalizacji do j-tego klienta,
4 , jeśli w i-tym miejscu lokalizacji wybuduje się nowy zakład a 8 0 w przeciwnym przypadku. MODEL zagadnienia: /!! 8!!!! *,-&.&.&. /!! 9 # $%&(' 9 9 -&.&.&. -&.&.&./ -&.&.&./ *-&.&.&./ /. 8 Ograniczenia alternatywne Rozważmy następujący układ dwóch ograniczeń:. Chcemy aby co najmniej jedno z tych ograniczeń zostało spełnione (lecz niekoniecznie oba). Niech będzie dostatecznie dużą liczbą dodatnią. Spełnienie układu ograniczeń: lub
5 9 można osiągnąć poprzez następujący układ : # $%&('). 10 P 4 Firma AUTO SA produkuje trzy typy aut: combi, półciężarówki i ciężarówki. Zasobami limitującymi wielkość produkcji sa: zatrudnienie i ilość stali. Limity tych zasobów wynosza odpowiednio roboczogodzin i 6000 ton stali. Aby produkcja była ekonomicznie opłacalna należy produkować co najmniej 1000 aut w każdym typie. Pozostałe dane podane sa w tabeli 2. Tabela 2: Dane do zadania combi półciężarówki ciężarówki stal 1.5t 3t 5t 6000t rob. 30 godz. 25 godz. 40 godz zysk Wyznaczyć optymalny plan produkcji. Model problemu Niech & będzie liczba produkowanych przez firmę aut
6 11 odpowiednio combi, półciężarówek i ciężarówek. ( ). ) lub (1) lub (2) lub (3) 12 Warunki 1, 2 i 3 można zapisać następująco: 4 % # $%&(' Z danych zadania otrzymujemy, że ( :%(. Rozwiazanie optymalne jest następujace: ( :
7 13 Modelowanie implikacji - warunku "jeśli to " Rozważmy implikację postaci: Jeśli 4&.&.&./ to 4&.&.&./. Warunek ten możemy przy użyciu zmiennych binarnych zapisać w równoważnej postaci następująco: 4&.&.&./ 4&.&.&./ # $%&('). (4) (5) (6) 14 Spełnienie K z N ograniczeń Dany jest układ nierówności: &&.&.&./ &&.&.&./... &&.&.&./
8 Spełnienie dokładnie z tych ograniczeń realizuje następujący układ ograniczeń: 4&.&.&.3 4&.&.&.3 4&.&.&.3 # $%&(' -&.&.&./ 16 Funkcja o możliwych wartościach &&.&.&./ albo albo.&.&. albo 4&.&.&.! "! (Funkcja może być np. postaci: 4&.&.&. 1!.) Układ ograniczeń jest postaci: &&.&.&. # $%&(' -&.&.&./ lub Binarna reprezentacja zmiennej całkowitej
Programowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
Bardziej szczegółowoStandardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Bardziej szczegółowoProgramowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
Bardziej szczegółowoDefinicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Bardziej szczegółowoBadania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:
Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
Bardziej szczegółowoProgramowanie liniowe
Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania
Bardziej szczegółowoWspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02
Optymalizacja całkowitoliczbowa Przykład. Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02 Firma stolarska produkuje dwa rodzaje stołów Modern i Classic, cieszących się na rynku dużym zainteresowaniem,
Bardziej szczegółowoZagadnienie transportowe i zagadnienie przydziału
Temat: Zagadnienie transportowe i zagadnienie przydziału Zadanie 1 Trzy piekarnie zlokalizowane na terenie miasta są zaopatrywane w mąkę z trzech magazynów znajdujących się na peryferiach. Zasoby mąki
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba
Bardziej szczegółowoBadania Operacyjne Ćwiczenia nr 5 (Materiały)
ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga
Bardziej szczegółowoBadania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.
BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie
Bardziej szczegółowoProgramowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
Bardziej szczegółowoBadania operacyjne. Dr Michał Kulej. Pokój 509, budynek B4 Forma zaliczenia wykładu: egzamin pisemny.
Badania operacyjne Dr Michał Kulej. Pokój 509, budynek B4 michal.kulej@pwr.wroc.pl Materiały do zajęć będa dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia wykładu: egzamin
Bardziej szczegółowoBadania operacyjne. Lista zadań projektowych nr 2
Badania operacyjne Lista zadań projektowych nr 2 1. Trzy PGR-y mają odstawić do czterech punktów skupu pszenicę w następujących ilościach: PGR I - 100 ton, PGR II - 250 ton, PGR III - 100 ton. Punkty skupu
Bardziej szczegółowoOptymalizacja programu produkcji
ZARZĄDZANIE PRODUKCJĄ I USŁUGAMI Ćwiczenie 3 Optymalizacja programu produkcji Co i ile produkować i sprzedawać, aby zmaksymalizować zysk? Programowanie produkcji ZADANIE odpowiedź na pytania Co produkować?
Bardziej szczegółowoModele i narzędzia optymalizacji w systemach informatycznych zarządzania
Przedmiot: Nr ćwiczenia: 3 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie dynamiczne Cel ćwiczenia: Formułowanie i rozwiązywanie problemów optymalizacyjnych
Bardziej szczegółowoIwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ
1 Iwona Konarzewska Programowanie celowe - wprowadzenie Katedra Badań Operacyjnych UŁ 2 Programowanie celowe W praktycznych sytuacjach podejmowania decyzji często występuje kilka celów. Problem pojawia
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE
ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia
Bardziej szczegółowoProgramowanie nieliniowe
Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą
Bardziej szczegółowoSieć (graf skierowany)
Sieci Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B), (A, D), (A, C), (B, C),..., } Ścieżki i cykle
Bardziej szczegółowoZadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych"
Zadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych" 1. Zbudować model optymalizacyjny problemu opisanego w zadaniu z tabeli poniżej. 2. Rozwiązać zadanie jak w tabeli poniżej z wykorzystaniem
Bardziej szczegółowoĆwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy
Bardziej szczegółowozadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w
Sformułowanie problemu Zastosowania Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie
Bardziej szczegółowoZadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby
Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany
Bardziej szczegółowoPolitechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych
Bardziej szczegółowoWieloetapowe zagadnienia transportowe
Przykład 1 Wieloetapowe zagadnienia transportowe Dwóch dostawców o podaży 40 i 45 dostarcza towar do trzech odbiorców o popycie 18, 17 i 26 za pośrednictwem dwóch punktów pośrednich o pojemnościach równych
Bardziej szczegółowo1 Przykładowe klasy zagadnień liniowych
& " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia
Bardziej szczegółowoZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.3. ZADANIA Wykorzystując
Bardziej szczegółowoAgenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.
Tytuł: 01 Budowa portfela produktowego. Zastosowanie programowania liniowego Autor: Piotr SAWICKI Zakład Systemów Transportowych WMRiT PP piotr.sawicki@put.poznan.pl www.put.poznan.pl/~piotr.sawicki www.facebook.com/piotr.sawicki.put
Bardziej szczegółowoTypowe zadania decyzyjne (zadania transportowe, zadania przydziału)
(zadania transportowe, zadania przydziału) Autor: Paweł Szołtysek O układzie prezentacji Decyzja Bardzo trudna decyzja Typowe zadania decyzyjne Wstęp Co to jest problem decyzyjny? I kwartał I II III IV
Bardziej szczegółowoZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Bardziej szczegółowoWykład 6. Programowanie liniowe
Wykład 6. Programowanie liniowe Zakład może wytwarzać dwa produkty: P 1 i P 2. Ich produkcja jest limitowana dostępnymi zasobami trzech środków: S 1, S 2, S 3. Zasoby tych środków wynoszą odpowiednio,
Bardziej szczegółowoPROBLEMY DECYZYJNE KRÓTKOOKRESOWE
PROBLEMY DECYZYJNE KRÓTKOOKRESOWE OPTYMALNA STRUKTURA PRODUKCJI Na podstawie: J. Wermut, Rachunkowość zarządcza, ODDK, Gdańsk 2013 1 DECYZJE KRÓTKOOKRESOWE Decyzje krótkookresowe to takie, które dotyczą
Bardziej szczegółowoOPTYMALIZACJA DYSKRETNA
Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi
Bardziej szczegółowoWykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Bardziej szczegółowoMetody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych
Bardziej szczegółowoMETODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
Bardziej szczegółowoElementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Bardziej szczegółowoBarbadoska 16 mb 24 mb Afrykańska 16 mb 10 mb
I. Ćwiczenia 2 Firma McCain jest światowym potentatem w branży frytek. W swojej fabryce, która znajduje się w Buriey (stan Idaho), produkuje frytki Golden Longs oraz frytki My Fries Classic. Fabryka zaopatruje
Bardziej szczegółowoZADANIE 1 W 1 W 2 W 3 P P P P
ZADANIE 1 Trzy wydawnictwa: W 1, W 2 i W 3 zaopatrują się w materiały w czterech papierniach: P 1, P 2, P 3 oraz P 4. Zapotrzebowanie zakładów wynosi kolejno: 300, 400 oraz 100 kg papieru tygodniowo, natomiast
Bardziej szczegółowo=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)
Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję
Bardziej szczegółowoOptymalizacja programu produkcji (programowanie produkcji)
ZARZĄDZANIE PRODUKCJĄ i USŁUGAMI Ćwiczenia audytoryjne 1 Optymalizacja programu produkcji (programowanie produkcji) Co i ile produkować i sprzedawać aby zmaksymalizować zysk? Programowanie produkcji ZADANIE
Bardziej szczegółowoPROBLEMY DECYZYJNE KRÓTKOOKRESOWE. WYTWORZYĆ CZY KUPIĆ? outsourcing
PROBLEMY DECYZYJNE KRÓTKOOKRESOWE WYTWORZYĆ CZY KUPIĆ? outsourcing 1. Produkować samemu czy zlecić wytwarzanie na zewnątrz ( outsourcing)? Rozstrzygnięcie tego problemu decyzyjnego wymaga porównania ceny
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Bardziej szczegółowoElementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Bardziej szczegółowoTEORIA DECYZJE KRÓTKOOKRESOWE
TEORIA DECYZJE KRÓTKOOKRESOWE 1. Rozwiązywanie problemów decyzji krótkoterminowych Relacje między rozmiarami produkcji, kosztami i zyskiem wykorzystuje się w procesie badania opłacalności różnych wariantów
Bardziej szczegółowoOPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko
Bardziej szczegółowoAgenda. Optymalizacja w transporcie. Piotr Sawicki WIT PP, ZST 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.
Tytuł: 01 Budowa portfela produktowego. Zastosowanie programowania liniowego Autor: Piotr SAWICKI, dr hab. inż. Zakład Systemów Transportowych WIT PP piotr.sawicki@put.poznan.pl piotr.sawicki.pracownik.put.poznan.pl
Bardziej szczegółowoDeterministyczne Modele Badań Operacyjnych Semestr letni 2015 Praca domowa II
Deterministyczne Modele Badań Operacyjnych Semestr letni 2015 Praca domowa II 17/04/2015 1 Polecenie Zestaw składa się z trzech zadań, za każde z nich można zdobyć 10p. Rozwiązania do zadań należy wysłać
Bardziej szczegółowoPlan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoZagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700
Zagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700 jednostek, przy czym dla mikroelementu M1 maksymalna dzienna
Bardziej szczegółowo4. PROGRAMOWANIE LINIOWE
4. PROGRAMOWANIE LINIOWE Programowanie liniowe jest jednym z działów badań operacyjnych. Celem badań operacyjnych jest pomoc w podejmowaniu optymalnych z pewnego punktu widzenia decyzji. Etapy rozwiązywania
Bardziej szczegółowoProblem zarządzania produkcją i zapasami
Problem zarządzania produkcją i zapasami Wykorzystamy zasadę optymalności Bellmana do poradzenia sobie z zarządzaniem zapasami i produkcją w określonym czasie z punktu widzenia istniejącego i mogącego
Bardziej szczegółowo1. OPTYMALIZACJA PROGRAMU PRODUKCJI I SPRZEDAŻY
1. OPTYMALIZACJA PROGRAMU PRODUKCJI I SPRZEDAŻY Między produkcją i sprzedażą istnieją wzajemne zależności. Planowanie programu produkcji i sprzedaży (w skrócie zwane programowaniem produkcji) stanowi jednolity
Bardziej szczegółowoLista 1 PL metoda geometryczna
Lista 1 PL metoda geometryczna 1.1. Znajdź maksimum funkcji celuf(x 1,x 2 )=5x 1 +7x 2 przy ograniczeniach: 2x 1 +2x 2 600, 2x 1 +4x 2 1000, x i 0 dlai=1,2 1.2. Znajdź maksimum funkcji celuf(x 1,x 2 )=2x
Bardziej szczegółowoZadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Bardziej szczegółowoInstrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
Bardziej szczegółowoBadania Operacyjne Ćwiczenia nr 2 (Materiały)
Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy
Bardziej szczegółowoNazwisko i Imię zł 100 zł 129 zł 260 zł 929 zł 3. Jeżeli wraz ze wzrostem dochodu, maleje popyt na dane dobro to jest to: (2 pkt)
Nazwisko i Imię... Numer albumu... A 1. Utrata wartości dobra kapitałowego w ciągu roku będąca rezultatem wykorzystania tego dobra w procesie produkcji nazywana jest: (2 pkt) ujemnym przepływem pieniężnym
Bardziej szczegółowoPROGRAMOWANIE WIELOKRYTERIALNE (CELOWE)
PROGRAMOWANIE WIELOKRYTERIALNE (CELOWE) Przykład 14. Zakład zamierza rozpocząć produkcję wyrobów W 1 i W 2. Wśród środków produkcyjnych, które zostaną użyte w produkcji dwa są limitowane. Limity te wynoszą:
Bardziej szczegółowoRozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:
Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te
Bardziej szczegółowoFirma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2.
Przykład Elementy analizy wrażliwości Firma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2. Dla wyrobu 2 czasy te wynosza
Bardziej szczegółowoWykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
Wykład 7 Informatyka Stosowana Magdalena Alama-Bućko 16 kwietnia 2018 Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 1 / 23 Programowanie liniowe Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 2 / 23
Bardziej szczegółowoPrzykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego
Przykład wykorzystania dodatku SOLVER 1 w arkuszu Ecel do rozwiązywania zadań programowania matematycznego Firma produkująca samochody zaciągnęła kredyt inwestycyjny w wysokości mln zł na zainstalowanie
Bardziej szczegółowoModele i narzędzia optymalizacji w systemach informatycznych zarządzania
Przedmiot: Nr ćwiczenia: 1 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie liniowe Cel ćwiczenia: Opanowanie umiejętności modelowania i rozwiązywania problemów
Bardziej szczegółowoRachunkowość zarządcza
Rachunkowość zarządcza Dorota Kuchta www.ioz.pwr.wroc.pl/pracownicy/kuchta/dydaktyka.htm 1 Podstawowa literatura Gabrusewicz W., Kamela-Sowińska A., Poetschke H., Rachunkowość zarządcza, PWE, Warszawa
Bardziej szczegółowoZad.1. Microsoft Excel - Raport wyników Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto
Zad.1. Przedsiębiorstwo może wytwarzać trzy typy maszyn: tokarki, piły, frezarki zużywając dwa ograniczone zasoby: energię elektryczną i siłę roboczą w następujących proporcjach: energia (KWH / jedn.)
Bardziej szczegółowoZbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ).
PROGRAMOWANIE LINIOWE Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). Problem. Przedsiębiorstwo przewozowe STAR zajmuje się dostarczaniem lodów do sklepów. Dane dotyczące
Bardziej szczegółowoDualność w programowaniu liniowym
2016-06-12 1 Dualność w programowaniu liniowym Badania operacyjne Wykład 2 2016-06-12 2 Plan wykładu Przykład zadania dualnego Sformułowanie zagadnienia dualnego Symetryczne zagadnienie dualne Niesymetryczne
Bardziej szczegółowoPrzykład: frytki i puree Analiza wrażliwości współczynników funkcji celu
Analiza wrażliwości: współczynników funkcji celu analiza wrażliwości pozwala odpowiedzieć na pytanie, w jakich granicach mogą się zmieniać te parametry, aby dotychczasowe rozwiązanie było optymalne, wyrazów
Bardziej szczegółowoAlgorytmy aproksymacyjne dla problemów stochastycznych
Algorytmy aproksymacyjne dla problemów stochastycznych Piotr Sankowski Uniwersytet Warszawski PhD Open, listopad 12-13, 2008 - p. 1/45 Plan Wykład I - 2-etapowe algorytmy stochastyczne: Wstęp Wykład II
Bardziej szczegółowoRozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.3. ZADANIA W zadaniach 2.1 2.20
Bardziej szczegółowoBadania Operacyjne Ćwiczenia nr 4 (Materiały)
Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów
Bardziej szczegółowoWPROWADZENIE DO PROBLEMATYKI PODEJMOWANIA DECYZJI GOSPODARCZYCH
Mariusz Próchniak Katedra Ekonomii II, SGH WPROWADZENIE DO PROBLEMATYKI PODEJMOWANIA DECYZJI GOSPODARCZYCH Ekonomia menedżerska 1 Ekonomia menedżerska zajmuje się analizą istotnych decyzji podejmowanych
Bardziej szczegółowoMetody Optymalizacji. Wstęp. Programowanie matematyczne. Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt
Metody Optymalizacji Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt Wstęp W ogólności optymalizacja związana jest z maksymalizowaniem lub minimalizowaniem pewnej wielkości np. maksymalizacja zysku
Bardziej szczegółowoPROGRAMOWANIE CAŁKOWITOLICZBOWE
PROGRAMOWANIE CAŁKOWITOLICZBOWE METODA PODZIAŁU I OGRANICZEŃ Przykład 6. Metoda podziału i ograniczeń Rozwiązać zadanie z Przykładu 1. metodą podziału i ograniczeń, przy czym wielkość produkcji wyrobu
Bardziej szczegółowoLista 7 i 8 Zysk księgowy i alternatywny Koszty alternatywne Koszty i utargi krańcowe Koszty produkcji w krótkim i długim okresie czasu
Zadanie 1. Pan Smith prowadzi prywatny biznes. W ubiegłym roku jego utarg wyniósł 55000, a koszty bezpośrednie 27000. Kapitał finansowy włożony w działalność zakładu wynosił przez cały rok 25000. Stopa
Bardziej szczegółowoProgramowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Bardziej szczegółowoc j x x
ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony
Bardziej szczegółowodoc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Bardziej szczegółowoWYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji
Bardziej szczegółowoCHARAKTERYSTYKA PRZEDSIĘBIORSTWA OMEGA
Edward Radosiński 1. SYSTEM WYTWARZANIA CHARAKTERYSTYKA PRZEDSIĘBIORSTWA OMEGA 1.1. Produkcja: a) przedsiębiorstwo - zaliczane do branży przemysłu spożywczego - może jednocześnie wytwarzać trzy asortymenty
Bardziej szczegółowoNauka o finansach. Prowadzący: Dr Jarosław Hermaszewski
Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski ANALIZA PROJEKTÓW INWESTYCYJNYCH Wykład 6 Trzy elementy budżetowania kapitałowego Proces analizy decyzji inwestycyjnych nazywamy budżetowaniem kapitałowym.
Bardziej szczegółowoEkonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Bardziej szczegółowoRozdział 1 PROGRAMOWANIE LINIOWE
1.3. ZADANIA Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE W zadaniach 1.1 1.40 zakłada się, że
Bardziej szczegółowoBADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania
Bardziej szczegółowo) a j x j b; x j binarne (j N) całkowitoliczbowe; przyjmujemy (bez straty ogólności): c j > 0, 0 <a j b (j N), P n
PDczęść4 8. Zagadnienia załadunku 8.1 Klasyczne zagadnienia załadunku (ozn. N = {1, 2,..., n} Binarny problem ( (Z v(z =max c j x j : a j x j b; x j binarne (j N zakładamy, że wszystkie dane sa całkowitoliczbowe;
Bardziej szczegółowoAlgebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE (część 1)
ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
Bardziej szczegółowoZagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowo13. Teoriogrowe Modele Konkurencji Gospodarczej
13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca
Bardziej szczegółowoProgramowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Bardziej szczegółowoWYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji
Bardziej szczegółowoWykład 3 - model produkcji i cen input-output (Model 2)
Wykład 3 - model produkcji i cen input-output (Model 2) 1 Wprowadzenie W ramach niniejszego wykładu opisujemy model 2, będący rozszerzeniem znanego z poprzedniego wykładu modelu 1. Rozszerzenie polega
Bardziej szczegółowoEkonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego
Ekonometria Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER 22 maja 2016 Karolina Konopczak Instytut Rozwoju Gospodarczego Problem diety Aby ±niadanie byªo peªnowarto±ciowe powinno dostarczy
Bardziej szczegółowoZADANIE KONKURSOWE I etap
Katowice, 26.04.2016 r. ZADANIE KONKURSOWE I etap Założenia Przedsiębiorstwo produkuje trzy rodzaje przetworów owocowych: konfiturę wiśniową (250 g), powidła śliwkowe (320 g), mus jabłkowy (1000 g). Produkcja
Bardziej szczegółowoOPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu
Bardziej szczegółowoMETODY WIELOKRYTERIALNE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 4 METODY WIELOKRYTERIALNE 4.3. ZADANIA Zadanie 4.1 Wykorzystując tryb konwersacyjny
Bardziej szczegółowoLABORATORIUM Z INŻYNIERII ZARZĄDZANIA- MRP II
LABORATORIUM Z INŻYNIERII ZARZĄDZANIA- MRP II Ćwiczenie 4 Temat: Wprowadzanie struktury produkcyjnej i marszrut technologicznych. Opracowali: Sitek Paweł Jarosław Wikarek Kielce 2004 Wydziały produkcyjne
Bardziej szczegółowo