Wykład z modelowania matematycznego. Zagadnienie transportowe.
|
|
- Emilia Dudek
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wykład z modelowania matematycznego. Zagadnienie transportowe. 1
2 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana została przez G.B.Dantziga i jest szczególnym przypadkiem algorytmu sympleks. Pierwotnie zagadnienie transportowe było rzeczywiście stosowane do rozwiązywania problemów związanych z transportem, później okazało się, że stosuje się do wielu innych zagadnień praktycznych. Najbardziej znane warianty zagadnienia transportowego to: 1. zagadnienie transportowe (zamknięte i otwarte) 2. zagadnienie transportowo-produkcyjne 3. zagadnienie lokalizacji produkcji 4. zagadnienie minimalizacji pustych przebiegów Pewien produkt dostarczany jest przez m dostawców do n odbiorców. Znane są liczby a i, i N 1,m oznaczające ilość produktu jaką może dostarczyć i-ty dostawca, b j, j N 1,n oznaczające ilość produktu jaką powinien otrzymać j-ty odbiorca oraz c ij, i N 1,m, j N 1,n oznaczające koszt transportu jednostki produktu od i-tego dostawcy do j-tego odbiorcy. Zatem C = [c ij ] M m,n. Macierz C nazywana jest macierzą jednostkowych kosztów transportu. Niech x ij, i N 1,m, j N 1,n oznacza ilość produktu jaka ma być przewieziona od i-tego dostawcy do j-tego odbiorcy. Zatem X = [x ij ] M m,n. Macierz X jest macierzą zmiennych decyzyjnych. Zadanie. Opracować plan przewozu produktu, tak aby łączny koszt transportu był jak najmniejszy. 1 Zagadnienie transportowe zamknięte Przyjmijmy dodatkowe założenie, że m n a i = b j. Warunek ten oznacza, że podaż i popyt się równoważą. Innymi słowy cały zgromadzony towar zostanie wywieziony do odbiorców. Mówimy wtedy, że zadanie jest zamknięte lub zbilansowane. Przy powyższych oznaczeniach i założeniach zagadnienie transportowe zamknięte przyjmuje postać: zminimalizować funkcjonał m n c ij x ij, (1) przy warunkach n x ij = a i (i = 1,..., m), (2) j=1 m x ij = b j (j = 1,..., n), (3) i=1 x ij 0 (i = 1,..., m ; j = 1,..., n). (4) Warunki (2) nazywamy ograniczeniami dla dostawców, a warunki (3) - ograniczeniami dla odbiorców. Funkcjonał (1) nazywamy funkcją kosztu. 2
3 2 Zagadnienie transportowe otwarte Przyjmijmy teraz założenie, że m n a i > b j. Mówimy wtedy, że zadanie jest otwarte lub niezbilansowane. Założenie oznacza, że nie cały towar zostanie rozwieziony do odbiorców. Przy powyższych oznaczeniach i założeniach zagadnienie transportowe otwarte przyjmuje postać: zminimalizować funkcjonał m n c ij x ij, (5) przy warunkach n x ij a i (i = 1,..., m), (6) j=1 m x ij = b j (j = 1,..., n), (7) i=1 x ij 0 (i = 1,..., m ; j = 1,..., n). (8) Zagadnienie transportowe otwarte sprowadzamy do zagadnienia zamkniętego wprowadzając zmienne dodatkowe x in+1, i = 1,..., m interpretowane jako ilości towaru odebranego przez fikcyjnego odbiorcę, faktycznie zaś nie odebranego przez nikogo. Przyjmujemy, że dla każdego i = 1,..., m zachodzi n x i,n+1 = a i x ij. Ostatecznie otrzymujemy zagadnienie postaci: m n+1 j=1 c ij x ij, (9) przy warunkach n+1 j=1 x ij = a i (i = 1,..., m), (10) m x ij = b j (j = 1,..., n + 1), (11) i=1 x ij 0 (i = 1,..., m ; j = 1,..., n + 1). (12) 3 Zagadnienie transportowe a problem programowania liniowego Macierze problemu PL zapiszmy wykorzystując wielkości występujące w zagadnieniu transportowym: x = [ x x 1n x x 2n... x m1... x mn ] T, (13) c = [ c c 1n c c 2n... c m1... c mn ], (14) 3
4 b = [ ] T a 1... a m b 1... b n, (15) A = (16) Zatem x M mn,1, c M 1,mn, b M m+n,1, A M m+n,mn. Zauważmy, że m n cx = c ij x ij oznacza wartość funkcji kosztu. Z kolei równanie macierzowe Ax = b generuje m + n równań skalarnych postaci: oraz x x 1n = a 1... (17) x m x mn = a m x x m1 = b 1... (18) x 1n x mn = b n. Oznacza to, że zagadnienie transportowe można sprowadzić do problemu programowania liniowego. Na podstawie informacji dotyczących tego problemu wiadomo, że do jego rozwiązania można użyć algorytmu sympleks. Zachowują ważność wszystkie teoretyczne faktu leżące u podstaw tego algorytmu. Warto zwrócić uwagę na fakt, że nawet niezbyt rozbudowany problem transportowy prowadzi do dużych macierzy występujących w algorytmie sympleks. I tak na przykład, jeśli jest 3 odbiorców i 4 dostawców, to macierz A ma wymiar Co za tym idzie wielościany wypukłe (sympleksy) mają bardzo dużą ilość wierzchołków. Opracowano więc na podstawie algorytmu sympleks bardzo efektywny algorytm rozwiązywania zagadnień transportowych, zwany algorytmem transportowym. Zauważmy ponadto, że sumując równania (17)-(18) otrzymamy, przy wykorzystaniu założenia m i=1 a i = n j=1 b j, tożsamość 0 = 0. Oznacza to, że rząd macierzy A nie przekracza n + m 1. Mozna wykazać, że jest dokładnie równy tej liczbie. 4 Algorytm transportowy Przed podaniem dokładnego algorytmu transportowego potrzebne będą pewne pojęcia pomocnicze. 4
5 Niech dana będzie macierz M M mn. Parę (i, j), i N 1,m, j N 1,n nazywamy węzłem. Dowolny wiersz lub dowolną kolumnę macierzy M nazywamy linią. Cyklem nazywamy niepusty zbiór węzłów taki, że w każdej linii znajduje się 0 lub 2 węzły tego zbioru. Przykład. Niech M M 34. Przykładowymi cyklami w tej macierzy są zbiory: {(1, 1), (1, 2), (2, 1), (2, 2)} oraz {(1, 1), (1, 3), (2, 3), (2, 4), (3, 4), (3, 1)}. Półcyklem danego cyklu nazywamy podzbiór węzłów cyklu składający się z połowy węzłów tego cyklu taki, że w każdej linii znajduje się co najwyżej jeden węzeł tego podzbioru. Każdy cykl Γ można podzielić na dwa półcykle Γ 1 i Γ 2 w ten sposób, że dowolny jeden węzeł zaliczamy do Γ 1 a następny węzeł cyklu Γ znajdujący się w tej samej linii co węzeł zaliczony do Γ 1 zaliczamy do Γ 2. Procedurę powtarzamy do wyczerpania nieprzypisanych węzłów. Przykład. Dla M M 34 i cyklu {(1, 1), (1, 3), (2, 3), (2, 4), (3, 4), (3, 1)} mamy dwa półcykle: {(1, 1), (2, 3), (3, 4)} oraz {(1, 3), (2, 4), (3, 1)}. Rolę wskaźnika optymalności w algorytmie transportowym pełni zerowa macierz równoważna macierzy kosztów c. Zerową macierzą równoważną macierzy kosztów c względem zbioru bazowego B nazywamy macierz c B = [(c B ) ij ] określoną wzorami (c B ) ij = c ij + u i + v j (i = 1,..., m ; j = 1,..., n + 1) (c B ) ij = c ij + u i + v j = 0 dla (i, j) B, gdzie u 1,..., u m, v 1,..., v n oznaczają odpowiednie stałe. Schemat algorytmu transportowego 1. Wyznaczamy zbiór bazowy B oraz początkowe rozwiązanie dopuszczalne X[B]. 2. Wyznaczamy zerową macierz c B = [(c B ) ij ] równoważną macierzy kosztów c względem zbioru bazowego B: dla jednej z niewiadomych u 1,..., u m, v 1,..., v n przyjmujemy dowolną wartość (np 0), pozostałe niewiadome wyznaczamy z układu równań wyznaczamy c ij + u i + v j = 0 dla (i, j) B, (c B ) ij = c ij + u i + v j (i = 1,..., m ; j = 1,..., n + 1). 3. Jeśli c B 0, to rozwiązanie X[B] jest optymalne. koniec działania algorytmu! 4. Wyznaczamy nowy zbiór bazowy i odpowiadające mu rozwiązanie dopuszczalne: wyznaczamy węzeł (k, l) spełniający kryterium wejścia (c B ) kl = min{(c B ) ij : (i, j) B}, znajdujemy cykl Γ zawarty w zbiorze B {(k, l)} i dzielimy go na dwa półcykle Γ 1 i Γ 2, zaliczając (k, l) do Γ 1, wyznaczamy węzeł (p, q) półcyklu Γ 2 spełniający kryterium wyjścia x[b] pq = min{x[b] ij : (i, j) Γ 2 }, 5
6 tworzymy zbiór B = (B \ {(p, q)}) {(k, l)}, wyznaczamy x[b ] ze wzoru x[b] ij + x[b] pq dla (ij) Γ 1 x[b ] ij = x[b] ij x[b] pq dla (ij) Γ 2 x[b] ij dla (ij) / Γ. 5. Przechodzimy do punktu 2. Uwaga. Do wyznaczenia rozwiązania początkowego można zastosować jedną z metod: 1. metoda kąta północno-zachodniego, 2. metoda elementu minimalnego macierzy. W obu metodach wybieramy do bazy B węzły (i, j) i przypisujemy elementom x ij macierzy X maksymalną dopuszczalną, dodatnią ilość transportowanego produktu, tak by przy tym spełnione były ograniczenia zarówno dla dostawców jak i odbiorców. W metodzie kąta północno-zachodniego wybieramy węzeł o najmniejszych indeksach i oraz j. W metodzie elementu minimalnego macierzy wybieramy węzeł (i, j), dla którego koszt transportu jest najmniejszy. Uwaga. Przypomnijmy, że w niezdegenerowanym problemie programowania liniowego metoda sympleks kończy się w skończonej liczbie iteracji. Zatem to samo dotyczy algorytmu transportowego. Mówimy, że zagadnienie transportowe jest niezdegenerowane, jeśli każde jego bazowe rozwiązanie dopuszczalne jest niezdegenerowane, tzn. x[b] ij > 0 dla każdego (i, j) B. 5 Przykłady zastosowań algorytmu transportowego Zadanie 1 Trzy magazyny M 1, M 2, M 3 zaopatrują w mąkę cztery piekarnie P 1, P 2, P 3, P 4. Koszty transportu (w zł za tonę) a ij oraz ilość oferowanej mąki przez poszczególne magazyny A i i zapotrzebowanie poszczególnych piekarń B j podaje tabela: M M M B j Opracować plan przewozu mąki z magazynów do piekarń, tak aby łączny koszt transportu był jak najmniejszy. Rozwiązanie 3 4 A i = B j zagadnienie transportowe zamknięte zmienne decyzyjne x ij - ilość ton mąki, którą trzeba przewieźć z i-tego magazynu do j-tej piekarni ograniczenia dla dostawców: x 11 + x 12 + x 13 + x 14 = 70 x 21 + x 22 + x 23 + x 24 = 50 x 31 + x 32 + x 33 + x 34 = 80 6
7 ograniczenia dla odbiorców: x 11 + x 21 + x 31 = 40 x 12 + x 22 + x 32 = 60 x 13 + x 23 + x 33 = 50 x 14 + x 24 + x 34 = 50 warunki brzegowe: x ij 0 funkcja celu: 3 4 K(x ij ) = a ij x ij min Wyznaczenie rozwiązania początkowego metodą kąta północno-zachodniego M M M B j M M M B j K(x ij ) = = Wyznaczenie rozwiązania początkowego metodą elementu minimalnego macierzy M M M B j M M M B j K(x ij ) = = 8500 Wyznaczenie rozwiązania optymalnego - algorytm transportowy I. Wyznaczamy zbiór bazowy B oraz początkowe rozwiązanie dopuszczalne X[B]: B = {(1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3)} X[B] =
8 Wyznaczamy zerową macierz c B równoważną macierzy kosztów c względem zbioru bazowego B: Z układu równań 40 + u 1 + v 2 = u 1 + v 4 = u 2 + v 1 = u 2 + v 3 = u 3 + v 2 = u 3 + v 3 = 0 przyjmując u 1 = 0, otrzymujemy Stąd u 1 = 0, u 2 = 0, u 3 = 0, v 1 = 40, v 2 = 40, v 3 = 70, v 4 = c[b] = Ponieważ niespełniony jest warunek c[b] 0, więc rozwiązanie nie jest optymalne. Z kryterium wejścia do bazy wchodzi (k, l) = (1, 3). W zbiorze B {(k, l)} tworzymy cykl Γ i półcykle Γ 1 oraz Γ 2 : Ponieważ więc z bazy wychodzi węzeł Γ = {(1, 2), (1, 3), (3, 2), (3, 3)}, Γ 1 = {(1, 3), (3, 2)}, Γ 2 = {(1, 2), (3, 3)}. min{x[b] ij : (i, j) Γ 2 } = 20 = x[b] 12 (p, q) = (1, 2). II. Wyznaczamy nowy zbiór bazowy B oraz początkowe rozwiązanie dopuszczalne X[B ]: B = {(1, 3), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3)} X[B ] = Wyznaczamy zerową macierz c B równoważną macierzy kosztów c względem zbioru bazowego B : Z układu równań 50 + u 1 + v 3 = u 1 + v 4 = u 2 + v 1 = u 2 + v 3 = u 3 + v 2 = u 3 + v 3 = 0 8
9 przyjmując u 1 = 0, otrzymujemy Stąd u 1 = 0, u 2 = 20, u 3 = 20, v 1 = 20, v 2 = 20, v 3 = 50, v 4 = c[b ] = Ponieważ niespełniony jest warunek c[b ] 0, więc rozwiązanie nie jest optymalne. Z kryterium wejścia do bazy wchodzi (k, l) = (2, 4). W zbiorze B {(k, l)} tworzymy cykl Γ i półcykle Γ 1 oraz Γ 2 : Ponieważ więc z bazy wychodzi węzeł Γ = {(1, 3), (1, 4), (2, 3), (2, 4)}, Γ 1 = {(2, 4), (1, 3)}, Γ 2 = {(1, 4), (2, 3)}. min{x[b ] ij : (i, j) Γ 2 } = 10 = x[b ] 23 (p, q) = (2, 3). III. Wyznaczamy nowy zbiór bazowy B oraz początkowe rozwiązanie dopuszczalne X[B ]: B = {(1, 3), (1, 4), (2, 1), (2, 4), (3, 2), (3, 3)} X[B ] = Wyznaczamy zerową macierz c B równoważną macierzy kosztów c względem zbioru bazowego B : Z układu równań 50 + u 1 + v 3 = u 1 + v 4 = u 2 + v 1 = u 2 + v 4 = u 3 + v 2 = u 3 + v 3 = 0 przyjmując u 1 = 0, otrzymujemy Stąd u 1 = 0, u 2 = 10, u 3 = 20, v 1 = 20, v 2 = 20, v 3 = 50, v 4 = c[b ] = Ponieważ spełniony jest warunek c[b ] 0, więc rozwiązanie jest optymalne. 9
10 M M M B j M M M B j K(x ij ) = = 8000 Zadanie 2 Trzy magazyny M 1, M 2, M 3 zaopatrują w mąkę cztery piekarnie P 1, P 2, P 3, P 4. Koszty transportu (w zł za tonę) a ij oraz ilość oferowanej mąki przez poszczególne magazyny A i i zapotrzebowanie poszczególnych piekarń B j podaje tabela: M M M B j Przyjmijmy ponadto, że koszty magazynowania wynoszą odpowiednio dla poszczególnych magazynów: 5 zł, 5 zł, 6 zł za tonę. Opracować plan przewozu mąki z magazynów do piekarń, tak aby łączny koszt transportu był jak najmniejszy. Uwaga. Jest to modyfikacja zadania 1 polegająca na tym, że magazyn M 1 posiada nie 70, a 100 ton mąki. Jest więc nadwyżka podaży w stosunku do popytu. Rozwiązanie 3 4 A i = 230 > B j = 200 zagadnienie transportowe otwarte i=1 j=1 Ponieważ jest nadwyżka podaży w stosunku do popytu, to pewna ilość towaru zostanie w magazynie. W celu zrównoważenia zadania wprowadzamy fikcyjnego odbiorcę F. Fikcyjny odbiorca otrzyma nadwyżkę mąki, czyli = 30 ton. Po wprowadzeniu dodatkowego odbiorcy zadanie staje się zamkniętym zagadnieniem transportowym. zmienne decyzyjne x ij - ilość ton mąki, którą trzeba przewieźć z i-tego magazynu do j-tej piekarni dla j = 1, 2, 3, 4, a dla j = 5 ilość ton mąki, która zostanie w magazynie ograniczenia dla dostawców: ograniczenia dla odbiorców: x 11 + x 12 + x 13 + x 14 + x 15 = 100 x 21 + x 22 + x 23 + x 24 + x 25 = 50 x 31 + x 32 + x 33 + x 34 + x 35 = 80 x 11 + x 21 + x 31 = 40 x 12 + x 22 + x 32 = 60 x 13 + x 23 + x 33 = 50 x 14 + x 24 + x 34 = 50 x 15 + x 25 + x 35 = 30 10
11 warunki brzegowe: x ij 0 funkcja celu: 3 5 K(x ij ) = a ij x ij min Wyznaczenie rozwiązania metodą elementu minimalnego macierzy Magazyny P 1 P 2 P 3 P 4 F A i M M M B j Magazyny P 1 P 2 P 3 P 4 F A i M M M B j K(x ij ) = = 8650 Wyznaczenie rozwiązania optymalnego - algorytm transportowy Magazyny P 1 P 2 P 3 P 4 F A i M M M B j Magazyny P 1 P 2 P 3 P 4 F A i M M M B j K(x ij ) = = 7670 Koszty łączne 7670, w tym koszty transportu 7500 a koszty magazynowania 170. Zadanie 3 Trzy młyny M 1, M 2, M 3 produkują mąkę i zaopatrują w nią cztery piekarnie P 1, P 2, P 3, P 4. Koszty transportu (w zł za tonę) a ij oraz ilość oferowanej mąki przez poszczególne młyny A i, koszty produkcji 1 tony mąki C i oraz zapotrzebowanie poszczególnych piekarń B j podaje tabela: Młyny P 1 P 2 P 3 P 4 A i C i M M M B j Opracować optymalny plan produkcji i przewozu mąki z młynów do piekarń, tak aby łączny koszt był jak najmniejszy. Zakładamy, że nadwyżka produkcji mąki będzie zmagazynowana, a koszty magazynowania wynoszą odpowiednio dla poszczególnych młynów: 5 zł, 5 zł, 6 zł za tonę. Rozwiązanie Jest to przykład zagadnienia transportowo-produkcyjnego, czyli wariant zagadnienia transportowego otwartego ( 3 i=1 A i = 230 > 4 j=1 B j = 200). W celu zrównoważenia zadania wprowadzamy fikcyjnego odbiorcę F. Fikcyjny odbiorca otrzyma nadwyżkę mąki, czyli 30 ton. zmienne decyzyjne x ij - wielkość produkcji i-tego młyna bądź dostarczona do j-tej piekarni dla j = 1, 2, 3, 4, bądź pozostawiona w magazynie dla j = 5 Zestawienie łącznych kosztów produkcji i transportu 11
12 ograniczenia dla producentów: ograniczenia dla odbiorców: Młyny P 1 P 2 P 3 P 4 F A i M M M B j x 11 + x 12 + x 13 + x 14 + x 15 = 100 x 21 + x 22 + x 23 + x 24 + x 25 = 50 x 31 + x 32 + x 33 + x 34 + x 35 = 80 x 11 + x 21 + x 31 = 40 x 12 + x 22 + x 32 = 60 x 13 + x 23 + x 33 = 50 x 14 + x 24 + x 34 = 50 x 15 + x 25 + x 35 = 30 warunki brzegowe: x ij 0 funkcja celu: 3 5 K(x ij ) = a ij x ij min Wyznaczenie rozwiązania optymalnego - algorytm transportowy Młyny P 1 P 2 P 3 P 4 F A i M M M B j Młyny P 1 P 2 P 3 P 4 F A i M M M B j K(x ij ) = = Zadanie 4 Projektowana jest budowa maksymalnie 3 zakładów mleczarskich mających zaopatrywać w masło cztery miejscowości: P, R, S, T. Zakłady mogą powstać w miejsowościach P, R, S. Koszty transportu (w zł za kg) a ij oraz dzienne zdolności produkcyjne zakładów A i, koszty produkcji C i (w zł za kg) oraz zapotrzebowanie poszczególnych miast na masło B j podaje tabela: Odbiorcy Zakłady P R S T A i C i P 0 0,4 0, R 1 0 0,8 0, ,5 S 0,5 0,5 0 0, ,2 B j
13 Opracować optymalny plan lokalizacji zakładów tak, aby łączny koszt produkcji i transportu był jak najmniejszy. Rozwiązanie Jest to przykład zagadnienia lokalizacji produkcji, czyli wariant zagadnienia transportowego otwartego ( 3 i=1 A i = 7500 > 4 j=1 B j = 5000). W celu zrównoważenia zadania wprowadzamy fikcyjnego odbiorcę F oznaczającego niewykorzystaną zdolność produkcyjną. Zatem łączne koszty produkcji i transportu dla tego odbiorcy wynoszą 0 zł. Fikcyjny odbiorca otrzyma nadwyżkę masła, czyli 2500 ton. zmienne decyzyjne x ij - wielkość produkcji masła w i-tej miejscowości bądź dostarczona do j-tej miejscowości dla j = 1, 2, 3, 4, bądź niewykorzystana zdolność produkcyjna zakłądu w i-tej miejscowości dla j = 5 Zestawienie łącznych kosztów produkcji i transportu ograniczenia dla producentów: ograniczenia dla odbiorców: Odbiorcy Zakłady P R S T F A i P 4 4,4 4, R 5,5 4,5 5,3 5, S 4,7 4,7 4, B j x 11 + x 12 + x 13 + x 14 + x 15 = 3000 x 21 + x 22 + x 23 + x 24 + x 25 = 2000 x 31 + x 32 + x 33 + x 34 + x 35 = 2500 x 11 + x 21 + x 31 = 1000 x 12 + x 22 + x 32 = 2000 x 13 + x 23 + x 33 = 1000 x 14 + x 24 + x 34 = 1000 x 15 + x 25 + x 35 = 2500 warunki brzegowe: x ij 0 funkcja celu: 3 5 K(x ij ) = a ij x ij min Wyznaczenie rozwiązania metodą elementu minimalnego macierzy Odbiorcy Zakłady P R S T F A i P 4 4,4 4, R 5,5 4,5 5,3 5, S 4,7 4,7 4, B j
14 Odbiorcy Zakłady P R S T F A i P R S B j K(x ij ) = , , , = Zauważmy, że baza jest złożona z 6 elementów, podczas gdy rząd macierzy A wynosi 7. Oznacza to, że to rozwiązanie bazowe, a co za tym idzie całe zagadnienie, jest zdegenerowane. W tym przypadku algorytm transportowy nie jest skuteczny. Problem można ewentualne rozwiązać przy pomocy przetworzonej macierzy kosztów. Macierz kosztów przekształcamy tak, aby w każdej kolumnie i każdym wierszu było przynajmniej jedno zero. Uzyskamy taki efekt odejmując od elementów poszczególnych wierszy macierzy kosztów element najmniejszy danego wiersza, a następnie odejmując od poszczególnych kolumn tak uzyskanej macierzy zmodyfikowanej element najmniejszy danej kolumny. Jeśli uda się rozmieścić przewozy wyłącznie na trasach, którym odpowiadają zera w przetworzonej macierzy kosztów, to rozwiązanie jest optymalne. Wyznaczenie rozwiązania metodą elementu minimalnego macierzy przy wykorzystaniu przetworzonej macierzy kosztów Odbiorcy Zakłady P R S T F A i P 4 4,4 4, R 5,5 4,5 5,3 5, S 4,7 4,7 4, B j Odbiorcy Zakłady P R S T F A i P 0 0 0, R 1,5 0,1 1,1 0, S 0,7 0, B j Odbiorcy Zakłady P R S T F A i P R S B j K(x ij ) = , , = Uwaga Rozwiązanie zadania oznacza, że należy zakłady ulokować w miejscowościach P i S. Możliwości zakładu w P będą wykorzystane w pełni, zakład w S będzie miał pewną rezerwę możliwości produkcyjnych (500 kg). Zakład w R jest niepotrzebny. 14
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Rozwiązanie Ad 1. Model zadania jest następujący:
Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego
BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda
BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy
Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe
Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu
ZAGADNIENIE TRANSPORTOWE
ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia
Zagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Badania Operacyjne Ćwiczenia nr 5 (Materiały)
ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga
ZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
BADANIA OPERACYJNE pytania kontrolne
DUALNOŚĆ 1. Podać twierdzenie o dualności 2. Jaka jest zależność pomiędzy funkcjami celu w zadaniu pierwotnym i dualnym? 3. Prawe strony ograniczeń zadania pierwotnego, w zadaniu dualnym są 4. Współczynniki
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania
BADANIA OPERACYJNE Zagadnienie transportowe
BADANIA OPERACYJNE Zagadnienie transportowe Zadanie zbilansowane Zadanie zbilansowane Przykład 1 Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b
ZAGADNIENIA TRANSPORTOWE
ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych
ZAGADNIENIE TRANSPORTOWE (część 1)
ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
Zadanie niezbilansowane. Gliwice 1
Zadanie niezbilansowane 1 Zadanie niezbilansowane Przykład 11 5 3 8 2 A 4 6 4 2 B 9 2 3 11 C D E F G dostawcy odbiorcy DOSTAWCY: A: 15 B: 2 C: 6 ODBIORCY: D: 8 E: 3 F: 4 G: 5 2 Zadanie niezbilansowane
ZAGADNIENIE TRANSPORTOWE (część 2)
ZAGADNIENIE TRANSPORTOWE (część ) Zadanie niezbilansowane Zadanie niezbilansowane Przykład 11. 5 3 8 A 4 6 4 B 9 3 11 C D E F G dostawcy odbiorcy Dostawcy: A :15 B : C :6 Odbiorcy: D :8 E :3 F :4 G :5
Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe
Zagadnienie transportowe i zagadnienie przydziału
Temat: Zagadnienie transportowe i zagadnienie przydziału Zadanie 1 Trzy piekarnie zlokalizowane na terenie miasta są zaopatrywane w mąkę z trzech magazynów znajdujących się na peryferiach. Zasoby mąki
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
Zadanie transportowe
Zadanie transportowe Opracowanie planu przewozu jednorodnego produktu z różnych źródeł zaopatrzenia do punktów, które zgłaszają zapotrzebowanie na ten produkt. Wykład ARo Metody optymalizacji w ekonomii
Wykład z modelowania matematycznego. Algorytm sympleks.
Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
1 Przykładowe klasy zagadnień liniowych
& " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia
PROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Programowanie nieliniowe
Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
OPTYMALIZACJA DYSKRETNA
Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko
Metoda simpleks. Gliwice
Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
TOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych
Wykład 6. Programowanie liniowe
Wykład 6. Programowanie liniowe Zakład może wytwarzać dwa produkty: P 1 i P 2. Ich produkcja jest limitowana dostępnymi zasobami trzech środków: S 1, S 2, S 3. Zasoby tych środków wynoszą odpowiednio,
Zagadnienie transportowe
Zagadnienie transportowe Firma X zawarła kontrakt na dostarczenie trawnika do wykończenia terenów wokół trzech zakładów U, V i W. Trawnik ma być dostarczony z trzech farm A, B i C. Zapotrzebowanie zakładów
KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT).
KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT). Przez klasyczne zagadnienie transportowe rozumiemy problem znajdowania najtańszego programu przewozowego jednorodnego dobra pomiędzy punktami nadania (m liczba
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda
Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe dr Adam Sojda Literatura o Kukuła K. (red.): Badania operacyjne w przykładach i zadaniach.
Klasyczne zagadnienie przydziału
Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem
Standardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Rozwiązywanie problemów z użyciem Solvera programu Excel
Rozwiązywanie problemów z użyciem Solvera programu Excel Podstawowe czynności: aktywować dodatek Solver oraz ustawić w jego opcjach maksymalny czas trwania algorytmów na sensowną wartość (np. 30 sekund).
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:
Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /
Badania Operacyjne Ćwiczenia nr 6 (Materiały)
Otwarte zagadnienie transportowe Jeżeli łączna podaż dostawców jest większa niż łączne zapotrzebowanie odbiorców to mamy do czynienia z otwartym zagadnieniem transportowym. Warunki dla dostawców (i-ty
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że
Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
c j x x
ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Wieloetapowe zagadnienia transportowe
Przykład 1 Wieloetapowe zagadnienia transportowe Dwóch dostawców o podaży 40 i 45 dostarcza towar do trzech odbiorców o popycie 18, 17 i 26 za pośrednictwem dwóch punktów pośrednich o pojemnościach równych
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
Zagadnienie transportowe. Hurtownia Zapotrzebowanie (w tonach) 1 100 2 160 3 350 4 100 5 220
Zagadnienie transportowe Firma produkująca papier kserograficzny posiada 4 wytwórnie i 5 hurtowni, do których dostarczany jest papier. Każda z fabryk wytwarza określoną liczbę ton papieru na miesiąc, i
celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n
123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki
Wprowadzenie do badań operacyjnych - wykład 2 i 3
Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,
Badania operacyjne. Lista zadań projektowych nr 2
Badania operacyjne Lista zadań projektowych nr 2 1. Trzy PGR-y mają odstawić do czterech punktów skupu pszenicę w następujących ilościach: PGR I - 100 ton, PGR II - 250 ton, PGR III - 100 ton. Punkty skupu
1 Układy równań liniowych
II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie
1 Problem transportowy... 2 1.1 Wstęp... 2 1.2 Metoda górnego-lewego rogu... 3 1.3 Metoda najmniejszego elementu... 11
Spis treści 1 Problem transportowy... 2 1.1 Wstęp... 2 1.2 Metoda górnego-lewego rogu... 3 1.3 Metoda najmniejszego elementu... 11 1.4 Metoda VAM... 18 1.5 Metoda e-perturbacji... 28 1.6 Metoda potencjałów...
07 Model planowania sieci dostaw 2Po_1Pr_KT Zastosowanie programowania liniowego
r Tytuł: Autor: 07 Model planowania sieci dostaw 2o_1r_T Zastosowanie programowania liniowego iotr SAWC Zakład Systemów Transportowych WT piotr.sawicki@put.poznan.pl piotr.sawicki.pracownik.put.poznan.pl
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu
Tytuł: 06 Model: 2o1r_T Zastosowanie programowania liniowego Autor: iotr SAWC Zakład Systemów Transportowych WMRiT piotr.sawicki@put.poznan.pl www.put.poznan.pl/~piotr.sawicki www.facebook.com/iotr.sawicki.ut
Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego
Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego część III Analiza rozwiązania uzyskanego metodą simpleksową
Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0
METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 cx MAX Ax < b x > 0 Postać standardowa (kanoniczna): z = 5 x 1 + 6x 2 + 0x 3 + 0x 4 MAX
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego.
Firma produkująca płatki śniadaniowe rozważa wypuszczenie na rynek nowego produktu. Ma to być mieszanka pszenicy, ryżu i kukurydzy. Normy zawartości przedstawia tabela: Dane Pszenica Ryż Kukurydza Zawartość
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
Problem zarządzania produkcją i zapasami
Problem zarządzania produkcją i zapasami Wykorzystamy zasadę optymalności Bellmana do poradzenia sobie z zarządzaniem zapasami i produkcją w określonym czasie z punktu widzenia istniejącego i mogącego
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w zagadnieniach finansowych i logistycznych Linear programming in financial and logistics problems Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności
4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że
4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio
Programowanie liniowe
Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)