Metody Ilościowe w Socjologii
|
|
- Andrzej Stasiak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny
2 AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych IV. Programowanie matematyczne, optymalizacja
3 Wybrana literatura 1. Badania operacyjne, red. K. Kukuła, PWN, Warszawa 2002 (i późn.) 2. Badania operacyjne, red. E. Ignasiak, PWE, Warszawa 1996 (i późn.) 3. Trzaskalik T.: Modelowanie optymalizacyjne, Absolwent, Łódź Trzaskalik T.: Wprowadzenie do badań operacyjnych z komputerem, PWE, Warszawa Kopańska-Bródka D.: Wprowadzenie do badań operacyjnych, Wyd. AE Katowice, Katowice 1998
4 Podstawowe definicje BADANIA OPERACYJNE są nauką zajmującą się analizą celowych działalności (operacji), generowaniem i oceną ilościową różnych decyzji. Jej zadaniem jest wspomaganie procesu podejmowania decyzji.
5
6
7 Metodologia W ramach badań operacyjnych została wypracowana specjalna metodologia, tzw. metodologia badań operacyjnych, która sprowadza się do następujących etapów: 1. Formułowanie problemu decyzyjnego, 2. Budowa modelu matematycznego lub jego analogu w wersji symulacyjnej, 3. Pozyskanie i przetwarzanie informacji wyjściowej niezbędnej do ustalenia parametrów modelu, 4. Procedura obliczeniowa lub postępowanie symulacyjne za pomocą wybranego algorytmu, 5. Analiza jakości rozwiązań modelu, 6. Weryfikacja modelu sprawdzenie jego adekwatności, 7. Wdrożenie rozwiązania.
8 Wybrane zagadnienia 1. Programowanie matematyczne liniowe, całkowitoliczbowe, dynamiczne, kwadratowe 2. Zagadnienia transportowe 3. Problem maksymalnego przepływu 4. Problem komiwojażera 5. Analiza sieciowa przedsięwzięć 6. Teoria kolejek 7. Teoria gier 8. Analiza wielokryterialna
9 Programowanie matematyczne k j b opt f j,..., 1 ) ( ) ( = g j (ma lub min) m k j b k j b j j 1,..., ) ( 1,..., ) ( + = = = j j g g
10 Program matematyczny min
11 Zagadnienia Do najważniejszych zagadnień programowania liniowego można zaliczyć:* Zagadnienie optymalnego wykorzystania urządzeń produkcyjnych Zagadnienie transportowe Zagadnienie optymalnego załadunku Zagadnienie optymalnego rozdziału jednorodnych zasobów Model optymalnego asortymentu produkcji Model optymalnego składu mieszanki (diety) Zagadnienie optymalnego rozdziału czynności Zagadnienie optymalnego rozkroju Wybór optymalnej struktury zasiewów * wszelkie informacje w dalszej części na podstawie niepublikowanego skryptu z programowania matematycznego K. Jakowskiej-Suwalskiej
12 Zagadnienie optymalnego wykorzystania urządzeń produkcyjnych Przedsiębiorstwo może wytwarzać N wyrobów na M urządzeniach. Istnieje K sposobów wytworzenia każdego z n wyrobów ( n = 1,2,...,N ). W czasie a kmn wytwarzana jest jednostka n-tego wyrobu na m-tym urządzeniu, k-tym sposobem ( n=1,2,...,n ; m=1,2,...m ; k=1,2,...,k ). W planowanym okresie T na m-tym urządzeniu można wytwarzać wyroby w ciągu b m jednostek czasu ( m=1,2,...m ). Z jednostki produkcji n-tego wyrobu k-tym sposobem przedsiębiorstwo osiąga zysk w wysokości s kn ( k=1,2,...,k; n=1,2,...,n ) jednostek pieniężnych. Sformułować model optymalnego planu wykorzystania mocy produkcyjnej urządzeń przedsiębiorstwa, przyjmując jako kryterium optymalności wielkość zysku.
13 Zagadnienie optymalnego wykorzystania urządzeń produkcyjnych Model optymalnego planu wykorzystania urządzeń produkcyjnych przedsiębiorstwa można sformułować następująco: wyznaczyć wartości zmiennych decyzyjnych kn ( k=1,...,k; n=1,...,n ) w taki sposób, aby spełniały warunki: K n = 1k= 1 a kmn kn b m ( m=1,...,m ) kn 0 ( k=1,...,k; n=1,...,n ) i jednocześnie maksymalizowały funkcję celu Z = K n= 1k= 1 c kn kn
14 Zagadnienie transportowe W m punktach dostawy D i ( i=1,2,...,m ) znajduje się jednorodny produkt w ilościach a i (i=1,2,...,m ), który należy dostarczyć do n punktów odbioru O j ( j=1,2,...,n ). Zapotrzebowanie na ten produkt w punktach odbioru O j wynosi odpowiednio b j (j=1,2,...,n ). Znane są koszty c ij przewozu jednostki produktu z i-tego punktu dostawy D i do j-tego punktu odbioru O j. Określić optymalny plan przewozu z danych punktów dostaw do danych punktów odbioru minimalizując koszty przewozów.
15 Zagadnienie transportowe
16 Zagadnienie optymalnego załadunku Na pojazd o nośności Q [ ton ] i pojemności P [ m 3 ] należy załadować N różnych towarów. W magazynie znajduje się D n jednostek n-tego towaru ( n=1,2,...,n ). Czas załadunku nie powinien przekraczać T jednostek. Ciężar, objętość n-tego towaru wynoszą odpowiednio q n [ ton ] i p 3 n [ m ], a czas jego załadunku wynosi t n jednostek czasu. Zysk z przewozu jednostki n-tego towaru wynosi c n jednostek pieniężnych (n=1,2,...,n ). Określić optymalny załadunek pojazdu, przyjmując jako kryterium łączny zysk uzyskany z przewozu towarów.
17 Zagadnienie optymalnego załadunku
18 Zagadnienie optymalnego rozdziału jednorodnych zasobów Istnieje p źródeł wzajemnie zastępowalnych zasobów w ilościach odpowiednio a 1,a 2,..., a p jednostek oraz q możliwych zastosowań tych zasobów, w których można je wykorzystać w ilościach odpowiednio b 1, b 2,..., b q jednostek. Dana jest macierz nakładów c ik wykorzystania jednostki i-tego zasobu w k-tym zastosowaniu ( i=1,2,...,p ; k=1,2,...,q ). Wyznaczyć optymalny rozdział zasobów między możliwe zastosowania, przy którym łączne nakłady osiągną minimum.
19 Zagadnienie optymalnego rozdziału jednorodnych zasobów
20 Model optymalnego asortymentu produkcji Przedsiębiorstwo posiada m środków produkcji S 1, S 2,..., S m w ilościach odpowiednio b 1, b 2,..., b m i wytwarza n różnych produktów. Wiadomo, że potrzeba a ij ( i=1,2,...,m ; j=1,2,...,n ) jednostek i-tego środka produkcji dla wytworzenia jednostki j-tego produktu. Z jednostki j-tego produktu przedsiębiorstwo osiąga zysk w wysokości c j jednostek pieniężnych. Przyjmując jako kryterium optymalności zysk sformułować optymalny plan produkcji.
21 Model optymalnego asortymentu produkcji
22 Model optymalnego składu mieszanki Należy określić jakie ilości produktów P 1, P 2,..., P n powinny zostać zakupione, aby przy racjonalnym zaspokojeniu potrzeb obniżyć do minimum koszty zakupu. Wiadomo, że minimalne zapotrzebowanie na składniki odżywcze w produktach P 1, P 2,..., P n wynosi odpowiednio b 1,b 2,...,b m jednostek. W jednostce produktu P j ( j=1,2,...,n ) znajduje się a ij jednostek składnika S i i=1,2,...,m. Cena jednostki produktu P j wynosi c j ( j=1,2,..,n ).
23 Model optymalnego składu mieszanki
24 Zagadnienie optymalnego rozdziału czynności
25 Zagadnienie optymalnego rozdziału czynności
26 Zagadnienie optymalnego rozkroju Z arkuszy materiału o znormalizowanych wymiarach należy otrzymać m różnych detali. Istnieje możliwość wykrawania tych detali z jednego arkusza materiału n różnymi sposobami. Należy wykroić b i (i=1,2,..., m ) detali i-tego rodzaju. Przy cięciu materiału j-tym sposobem otrzymujemy a ij ( i=1,2,..., m ; j=1,2,..., n ) jednostek. Sformułować model optymalnego programu cięcia arkuszy materiału, który zapewni minimalną ilość odpadków.
27 Zagadnienie optymalnego rozkroju
28 Wybór optymalnej struktury zasiewów Gospodarstwo rolne posiada M pól o różnej urodzajności i powierzchni pod zasiew N rodzajów płodów rolnych. Powierzchnia poszczególnych pól różnych pod względem urodzajności wynosi odpowiednio A 1, A 2,..., A M hektarów. Średnia wielkość zbiorów n-tego ( n=1,2,...,n ) płodu na m-tym ( m=1,2,...,m ) polu wynosi a mn kwintali z hektara. Przewiduje się, że zbiory n-tego płodu będą wynosiły co najmniej b n kwintali. Cena sprzedaży 1 kwintala n-tego płodu wynosi c n jednostek pieniężnych. Określić optymalną strukturę zasiewów, przyjmując za kryterium optymalności dochód ze sprzedaży wszystkich rodzajów płodów z całej powierzchni zasiewów.
29 Wybór optymalnej struktury zasiewów
30 Program matematyczny min
31 Przykład: zagadnienie diety Gospodarstwo rolne prowadzi hodowlę bydła rogatego. Zwierzętom należy w pożywieniu dostarczyć m.in. składnika odżywczego A w ilości co najmniej 60 jedn., zawartego w produktach P1 i P2 służących jako pasza. Produkty P1 i P2 zawierają także pewne ilości składników B i C. Ze względu na szkodliwe działanie tych składników zwierzęta powinny je otrzymywać w ograniczonych ilościach: składnika B co najwyżej 40 jedn., a składnika C co najwyżej 36 jedn. Zawartość interesujących nas składników w poszczególnych produktach oraz ceny produktów podano w poniższej tablicy. Składnik Zawartość składnika w jedn. produktu W diecie powinno się znaleźć przynajmniej 10 jedn. produktu P1. Określ plan zakupu realizujący wymagania oraz minimalizujący koszt zakupu. (Kukuła [1] s. 35) P1 A 3 3 B 10 4 C 6 9 Ceny produktów (zł) 9 18 P2
32 Budowa modelu 1 ilość zakupionego produktu P1 2 ilość zakupionego produktu P2 Program matematyczny f. celu: ograniczenia:
33 Narzędzie SOLVER MS Ecel
34 Narzędzie SOLVER MS Ecel
35 Narzędzie SOLVER MS Ecel
36 Narzędzie SOLVER MS Ecel
37 Narzędzie SOLVER MS Ecel
38 Narzędzie SOLVER MS Ecel Okazało się, że nieprawidłowo odczytano normy dot. maksymalnych dawek składników B i C. Dopuszczalne dawki mogą być dziesięciokrotnie większe.
39 Narzędzie SOLVER MS Ecel
40 WNIOSKI KOŃCOWE - Model musi mieć sens funkcja celu ma interpretację (jej wartość możemy zinterpretować), każde ograniczenie ma sens (wartość jest interpretowalna) - Narzędzie do rozwiązywania problemów programowania matematycznego - SOLVER
41 DZIĘKUJĘ
Opis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK405 Nazwa przedmiotu Badania operacyjne Wersja przedmiotu 2015/2016 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Opis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.SIK306 Nazwa przedmiotu Badania operacyjne Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Opis przedmiotu: Badania operacyjne
Opis : Badania operacyjne Kod Nazwa Wersja TR.SIK306 Badania operacyjne 2013/14 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka
Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:
Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
Badania operacyjne Operation research. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Badania
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych
Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.
Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,
BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych
BADANIA OPERACYJNE i teoria optymalizacji Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych e-mail: tpisula@prz.edu.pl 1 Literatura podstawowa wykorzystywana podczas zajęć wykładowych: 1. Gajda J.,
1-2. Formułowanie zadań decyzyjnych. Metoda geometryczna
-. Formułowanie zadań decyzyjnych. Metoda geometryczna Zagadnienie wyznaczania optymalnego asortymentu produkcji Firma zamierza uruchomić produkcję dwóch wyrobów A i B. Cenę zbytu oszacowano na zł/kg dla
Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe
Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym
Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
PRZEWODNIK PO PRZEDMIOCIE
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Badania Operacyjne Ćwiczenia nr 5 (Materiały)
ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga
K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz
K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie
ZAGADNIENIE TRANSPORTOWE
ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia
PRZEWODNIK PO PRZEDMIOCIE. stacjonarne. II stopnia. ogólnoakademicki. podstawowy WYKŁAD ĆWICZENIA LABORATORIUM PROJEKT SEMINARIUM
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Badania operacyjne. Ćwiczenia 1. Wprowadzenie. Filip Tużnik, Warszawa 2017
Badania operacyjne Ćwiczenia 1 Wprowadzenie Plan zajęć Sprawy organizacyjne (zaliczenie, nieobecności) Literatura przedmiotu Proces podejmowania decyzji Problemy decyzyjne w zarządzaniu Badania operacyjne
KARTA PRZEDMIOTU. Język polski. Badania operacyjne Nazwa przedmiotu Język angielski operational research USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW
KARTA PRZEDMIOTU Kod przedmiotu E/FIRP/BOP Język polski Badania operacyjne Nazwa przedmiotu Język angielski operational research USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma studiów
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w zagadnieniach finansowych i logistycznych Linear programming in financial and logistics problems Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Przedmiot: Nr ćwiczenia: 1 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie liniowe Cel ćwiczenia: Opanowanie umiejętności modelowania i rozwiązywania problemów
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Opis modułu kształcenia Programowanie liniowe
Opis modułu kształcenia Programowanie liniowe Nazwa podyplomowych Nazwa obszaru kształcenia, w zakresie którego są prowadzone studia podyplomowe Nazwa kierunku, z którym jest związany zakres podyplomowych
Z-LOG-120I Badania Operacyjne Operations Research
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/013 Z-LOG-10I Badania Operacyjne Operations Research A. USYTUOWANIE MODUŁU W
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że
Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem.
Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I, Kierunek Oceanotechnika, Spec. Okrętowe Podstawy teorii optymalizacji Wykład 1 M. H. Ghaemi Marzec 2016 Podstawy teorii
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: SYSTEMY WSPOMAGANIA DECYZJI. Kod przedmiotu: Ecs 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny. Kierunek: Mechatronika 5. Specjalność: Techniki Komputerowe
Badania operacyjne. Dr Michał Kulej. Pokój 509, budynek B4 Forma zaliczenia wykładu: egzamin pisemny.
Badania operacyjne Dr Michał Kulej. Pokój 509, budynek B4 michal.kulej@pwr.wroc.pl Materiały do zajęć będa dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia wykładu: egzamin
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Z-ZIP-120z Badania Operacyjne Operations Research. Stacjonarne Wszystkie Katedra Matematyki dr Monika Skóra
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-120z Badania Operacyjne Operations Research A. USYTUOWANIE MODUŁU
Badania Operacyjne Ćwiczenia nr 1 (Materiały)
Wprowadzenie Badania operacyjne (BO) to stosunkowo młoda dyscyplina naukowa, która powstała w czasie II Wojny Światowej, w związku z utworzeniem przy niektórych sztabach sił zbrojnych specjalnych grup
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2017/2018
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2017/2018 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Wykład 6. Programowanie liniowe
Wykład 6. Programowanie liniowe Zakład może wytwarzać dwa produkty: P 1 i P 2. Ich produkcja jest limitowana dostępnymi zasobami trzech środków: S 1, S 2, S 3. Zasoby tych środków wynoszą odpowiednio,
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Lista 1 PL metoda geometryczna
Lista 1 PL metoda geometryczna 1.1. Znajdź maksimum funkcji celuf(x 1,x 2 )=5x 1 +7x 2 przy ograniczeniach: 2x 1 +2x 2 600, 2x 1 +4x 2 1000, x i 0 dlai=1,2 1.2. Znajdź maksimum funkcji celuf(x 1,x 2 )=2x
ZAGADNIENIE TRANSPORTOWE (część 1)
ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Badania operacyjne Operational research Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia I stopnia
Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu
Sylabus przedmiotu: Specjalność: Badania operacyjne Wszystkie specjalności Data wydruku: 21.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny
Zad.1. Microsoft Excel - Raport wyników Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto
Zad.1. Przedsiębiorstwo może wytwarzać trzy typy maszyn: tokarki, piły, frezarki zużywając dwa ograniczone zasoby: energię elektryczną i siłę roboczą w następujących proporcjach: energia (KWH / jedn.)
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu
BADANIA OPERACYJNE Zagadnienie transportowe
BADANIA OPERACYJNE Zagadnienie transportowe Zadanie zbilansowane Zadanie zbilansowane Przykład 1 Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
TOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Literatura Literatura
Systemy wspomagania decyzji Kod przedmiotu
Systemy wspomagania decyzji - opis przedmiotu Informacje ogólne Nazwa przedmiotu Systemy wspomagania decyzji Kod przedmiotu 06.9-WM-ZIP-D-06_15W_pNadGenG0LFU Wydział Kierunek Wydział Mechaniczny Zarządzanie
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania
Programowanie liniowe
Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania
Wykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
Wykład 7 Informatyka Stosowana Magdalena Alama-Bućko 16 kwietnia 2018 Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 1 / 23 Programowanie liniowe Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 2 / 23
Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7
Ćwiczenia laboratoryjne - 7 Problem (diety) mieszanek w hutnictwie programowanie liniowe Ćw. L. 7 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym zapisem
Metody ilościowe w badaniach ekonomicznych
prof. dr hab. Tadeusz Trzaskalik dr hab. Maciej Nowak, prof. UE Wybór portfela projektów z wykorzystaniem wielokryterialnego programowania dynamicznego Metody ilościowe w badaniach ekonomicznych 19-06-2017
Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.
Tytuł: 01 Budowa portfela produktowego. Zastosowanie programowania liniowego Autor: Piotr SAWICKI Zakład Systemów Transportowych WMRiT PP piotr.sawicki@put.poznan.pl www.put.poznan.pl/~piotr.sawicki www.facebook.com/piotr.sawicki.put
Badania operacyjne SYLABUS
Badania operacyjne nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe sylabusu Opis Nazwa przedmiotu Badania operacyjne Kod przedmiotu 0600-FS1-2BOP Nazwa jednostki prowadzącej Wydział
Logistyka I stopień Ogólnoakademicki. Niestacjonarne. Zarządzanie logistyczne Katedra Inżynierii Produkcji Dr Sławomir Luściński
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOGN1-1071 Techniki komputerowe we wspomaganiu decyzji logistycznych
Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?
Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Agenda. Optymalizacja w transporcie. Piotr Sawicki WIT PP ZST 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.
Tytuł: 02 Określenie kompozycji taboru. Zastosowanie programowania całkowitoliczbowego Autor: Piotr SAWICKI Zakład Systemów Transportowych WIT PP piotr.sawicki@put.poznan.pl piotr.sawicki.pracownik.put.poznan.pl
Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W, 2L, 1C PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, laboratorium Metody optymalizacji w ekonomii
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
07 Model planowania sieci dostaw 2Po_1Pr_KT Zastosowanie programowania liniowego
r Tytuł: Autor: 07 Model planowania sieci dostaw 2o_1r_T Zastosowanie programowania liniowego iotr SAWC Zakład Systemów Transportowych WT piotr.sawicki@put.poznan.pl piotr.sawicki.pracownik.put.poznan.pl
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji
Modelowanie całkowitoliczbowe
1 Modelowanie całkowitoliczbowe Zmienne binarne P 1 Firma CMC rozważa budowę nowej fabryki w miejscowości A lub B lub w obu tych miejscowościach. Bierze również pod uwagę budowę co najwyżej jednej hurtowni
Badania operacyjne 2015/2016
Badania operacyjne 2015/2016 nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe Opis sylabusu Nazwa przedmiotu Badania operacyjne Kod przedmiotu 0600-FS1-2BOP Nazwa jednostki Wydział
Programowanie liniowe
Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Modelowanie przy uŝyciu arkusza kalkulacyjnego
Wydział Odlewnictwa Wirtualizacja technologii odlewniczych Modelowanie przy uŝyciu Projektowanie informatycznych systemów zarządzania 2Modelowanie przy uŝyciu Modelowania przy uŝyciu Wprowadzenie Zasady
Egzamin / zaliczenie na ocenę*
Zał. nr do ZW 33/01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Optymalizacja systemów Nazwa w języku angielskim System optimization Kierunek studiów (jeśli dotyczy): Inżynieria Systemów
Ekonometria Programowanie Liniowe. Robert Pietrzykowski
Ekonometria Programowanie Liniowe Robert Pietrzykowski ZADANIE: Przedsiębiorstwo produkuje dwa wyroby: W1 i W2. Ograniczeniem w procesie produkcji jest czas pracy trzech maszyn: M1, M2 i M3. W tablicy
Wykład z modelowania matematycznego. Algorytm sympleks.
Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej
Rozwiązanie Ad 1. Model zadania jest następujący:
Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych
Programowanie dynamiczne Zarządzanie produkcją i zapasami
Badania operacyjne Ćwiczenia 12 Programowanie dynamiczne Zarządzanie produkcją i zapasami Filip Tużnik, Warszawa 2017 Plan zajęć Zarządzanie produkcją i zapasami Filip Tużnik, Warszawa 2017 2 Literatura
MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH
MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.
Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.
Tytuł: 03. Zastosowanie programowania binarnego i całkowitoliczbowego Autor: Piotr SAWICKI Zakład Systemów Transportowych WMRiT PP piotr.sawicki@put.poznan.pl www.put.poznan.pl/~piotr.sawicki www.facebook.com/piotr.sawicki.put
4. PROGRAMOWANIE LINIOWE
4. PROGRAMOWANIE LINIOWE Programowanie liniowe jest jednym z działów badań operacyjnych. Celem badań operacyjnych jest pomoc w podejmowaniu optymalnych z pewnego punktu widzenia decyzji. Etapy rozwiązywania
Zagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700
Zagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700 jednostek, przy czym dla mikroelementu M1 maksymalna dzienna
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA. 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji 2.Problem niesferyczności składnika losowego w modelach ekonometrycznych.
Zadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych"
Zadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych" 1. Zbudować model optymalizacyjny problemu opisanego w zadaniu z tabeli poniżej. 2. Rozwiązać zadanie jak w tabeli poniżej z wykorzystaniem
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Wydział Matematyki Programowanie liniowe Ćwiczenia. Zestaw 1. Modelowanie zadań programowania liniowego.
Wydział Matematyki Programowanie liniowe Ćwiczenia Zestaw. Modelowanie zadań programowania liniowego. Zadania dotyczące zagadnienia planowania produkcji Zadanie.. Zapisać następujące zadanie w postaci
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Przedmiot: Nr ćwiczenia: 3 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie dynamiczne Cel ćwiczenia: Formułowanie i rozwiązywanie problemów optymalizacyjnych
KARTA PRZEDMIOTU. Badania operacyjne kod: C14. Operational research
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Agenda. Optymalizacja w transporcie. Piotr Sawicki WIT PP, ZST 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.
Tytuł: 01 Budowa portfela produktowego. Zastosowanie programowania liniowego Autor: Piotr SAWICKI, dr hab. inż. Zakład Systemów Transportowych WIT PP piotr.sawicki@put.poznan.pl piotr.sawicki.pracownik.put.poznan.pl
Badania Operacyjne Ćwiczenia nr 6 (Materiały)
Otwarte zagadnienie transportowe Jeżeli łączna podaż dostawców jest większa niż łączne zapotrzebowanie odbiorców to mamy do czynienia z otwartym zagadnieniem transportowym. Warunki dla dostawców (i-ty
Zagadnienie transportowe i zagadnienie przydziału
Temat: Zagadnienie transportowe i zagadnienie przydziału Zadanie 1 Trzy piekarnie zlokalizowane na terenie miasta są zaopatrywane w mąkę z trzech magazynów znajdujących się na peryferiach. Zasoby mąki
Ekonometria_FIRJK Arkusz1
Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)
Badania operacyjne. Michał Kulej. semestr letni, Michał Kulej () Badania operacyjne semestr letni, / 13
Badania operacyjne Michał Kulej semestr letni, 2012 Michał Kulej () Badania operacyjne semestr letni, 2012 1/ 13 Literatura podstawowa Wykłady na stronie: www.ioz.pwr.wroc.pl/pracownicy/kulej Trzaskalik
Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba
Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu
Tytuł: 06 Model: 2o1r_T Zastosowanie programowania liniowego Autor: iotr SAWC Zakład Systemów Transportowych WMRiT piotr.sawicki@put.poznan.pl www.put.poznan.pl/~piotr.sawicki www.facebook.com/iotr.sawicki.ut
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Wprowadzenie do badań operacyjnych
Wprowadzenie do badań operacyjnych Hanna Furmańczyk 10 października 2008 Badania operacyjne (ang. operations research) - dyscyplina naukowa związana z teorią decyzji pozwalająca wyznaczyć metodę i rozwiązanie
Dr Andrzej Podleśny Poznań, dnia r. MODUŁ KSZTAŁCENIA (SYLABUS)
Dr Andrzej Podleśny Poznań, dnia 1.10.2017 r. MODUŁ KSZTAŁCENIA (SYLABUS) dla przedmiotu Informatyka w zarządzaniu na kierunku Zarządzanie i prawo w biznesie I. Informacje ogólne 1. Nazwa modułu : Informatyka
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim BADANIA OPERACYJNE Nazwa w języku angielskim Operational research Kierunek studiów (jeśli dotyczy): Matematyka
METODY OBLICZENIOWE OPTYMALIZACJI zadania
METODY OBLICZENIOWE OPTYMALIZACJI zadania Przedstawione dalej zadania rozwiąż wykorzystując Excel/Solver. Zadania 8 są zadaniami optymalizacji liniowej, zadania 9, dotyczą optymalizacji nieliniowej. Przed
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko