( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa
|
|
- Urszula Marczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Standardowe zadanie PL () Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny. akład może wytwarzać dwa wyroby: P i P. Ich produkcja jest limitowana dostępnymi zasobami trzech środków S, S oraz S. asoby tych środków wynoszą odpowiednio:, 8 oraz jednostek. Nakład środka S na wytworzenie jednostki produktu P wynosi jednostki, podobnie jak na wytworzenie produktu P. Nakłady środka S wynoszą, odpowiednio, i jednostki, natomiast środek S wykorzystywany jest jedynie na potrzeby produkcji P jego nakłady wynoszą jednostki. ysk osiągnięty z wytworzenia jednostki produktu P wynosi jednostki, a z wytworzenia jednostki produktu P jednostki. [adanie T.Trzaskalika] mienne decyzyjne: x - wielkość produkcji wyrobu P x - wielkość produkcji wyrobu P Funkcja celu [FC] (łączny zysk): ( ) max f xx x + x Ograniczenia [O]: ( ) x + x ( ) x + x 8 ( ) x Warunki brzegowe [WB]: x, x Istota METODY SIMPLEKS Rozwiązując zadanie programowania liniowego metodą Simpleks zakładamy, iż warunki ograniczające przekształcone zostają do postaci układu równań linowych. adanie, w którym wszystkie warunki ograniczające prezentowane są w postaci równości, nazywa się zadaniem w postaci standardowej. METODA SIMPLEKS zmienne bilansujące Ograniczenie związane z wykorzystanie środka S : ( ) x + x przedstawiamy w postaci równania: ' x + x + x ( ) dodając do lewej strony tzw. zmienną bilansującą x, definiowaną jako różnicę wartości obydwu stron nierówności wyjściowej: x x x Prowadzi to do następującej postaci rozwiązywanego zadania: Funkcja celu [FC] f ( x x x x x ) x + x + x + x + x max Ograniczenia [O] x + x Kompletna postać bazowa 5 5 ( ) + x ( ) x + x + x 8 ( ) x + x5 Warunki brzegowe [WB] x, x, x, x, x5 METODA SIMPLEKS ujecie tablicowe mienne charakteryzowane podmacierzą jednostkową w obrębie macierzy współczynników tworzą zestawienie zmiennych bazowych: x, x, oraz. Przypisując zmiennym niebazowym wartość zero, otrzymujemy rozwiązanie: x, x 8 oraz, dla którego wartość [FC] jest równa. Rozwiązanie bazowe przedstawia się w postaci tablicy simpleksowej będącej pewną modyfikacją postaci macierzowej zadania liniowego. x(b) c(b) x x x x x x 8 mienną bilansującą można interpretować jako ilość środka S, która pozostaje niewykorzystana w przypadku realizacji planu obejmującego x oraz x. Podobnie jak w przypadku warunku () przekształceniu podlegają pozostałe ograniczenia, w obrębie których włączone zostają do zadania kolejne zmienne bilansujące x oraz. Trzonem tablicy jest macierz współczynników A oraz wektor wyrazów wolnych b, wraz ze zmiennymi bazowymi x(b) oraz wartościami odpowiadających im współczynników funkcji celu. tablicy simpleksowej można łatwo odczytać wartość funkcji celu obecnego rozwiązania: * + *8 + *.
2 METODA SIMPLEKS rozwiązania bazowe Metoda Simpleks polega na rozpatrzeniu ciągu sąsiadujących rozwiązań bazowych, tj. rozwiązań, w których dwie kolejno rozpatrywane bazy różnią się między sobą dokładnie jedną zmienną. Doboru bazy sąsiedniej dokonujemy tak, aby poprawić wartość funkcji celu. Przejście pomiędzy bazami odbywa się przy wykorzystaniu przekształceń elementarnych układu warunków ograniczających w postaci standardowej. Do przekształceń elementarnych zalicza się: podzielenie określonego warunku ograniczającego przez dowolną liczbę różną od zera dodanie do określonego warunku, pomnożonego przez wybraną liczbę różną od zera, innego warunku, który również może być pomnożony przez dowolną liczbę różną od zera METODA SIMPLEKS iteracje Wykonując przekształcenia elementarne układu warunków ograniczających zadania PL, otrzymujemy równoważny mu układ warunków, generujących ten sam zbiór rozwiązań dopuszczalnych. Aby wykonać kolejny krok (iterację) algorytmu simpleks, należy: () potwierdzić nieoptymalność bieżącego rozwiązania bazowego () wyznaczyć nową bazę sąsiednią dla rozwiązania nieoptymalnego () przekształcić za pomocą przekształceń elementarnych macierz warunków ograniczających do postaci bazowej względem bazy sąsiedniej x(b) c(b) x x x x x x 8 Wyliczamy wartości dla zmiennych bazowych, jako sumę iloczynów związanych z nimi współczynników [FC] i zmiennych modelu. Następnie wyliczamy tzw. wskaźniki optymalności, jako różnicę:. x(b) c(b) x x x x x x 8 to tzw. wskaźniki optymalności dla zmiennych bazowych wskaźniki zawsze wynoszą dane rozwiązanie bazowe należy uznać za optymalne jedynie w wypadku, kiedy wartości wszystkich wskaźników są niedodatnie (dla MAX) lub nieujemne (dla MIN) w przeciwnym wypadku należy zmienić rozwiązanie bazowe do nowego rozwiązania angażowana jest zmienna, która ma największą (dla MAX) lub najmniejszą (dla MIN) wartość wskaźnika optymalności (w przypadku kilku zmiennych o tym samym wskaźniku, wybierana jest zmienna o najniższym indeksie) wybrawszy zmienną wchodzącą do bazy, oblicza się ilorazy kolejnych wyrazów wolnych ( ) przez odpowiadające im dodatnie (jedynie) współczynniki kolumny charakteryzującej zmienną wchodzącą, związane ze zmiennymi bazowymi najmniejsza wartość ilorazu wskazuje na zmienną, którą należy usunąć z bazy (dla jednakowych wartości, wybierana jest zmienna o najniższym indeksie) Kryteria wejścia i wyjścia z bazy x(b) c(b) x x x x x x 8 x : / 7 x : 8/
3 x(b) c(b) x x x x x x 8 x //: x(b) c(b) x x x x x : : : : SIMPLEX nowa baza : 8 8: / / x(b) x c(b) x (-)+ x x x x / / x x x(b) c(b) x x x x x - x / / / / / -/ x(b) c(b) x x x x x - x / / / / / -/ x : / x : /,5 8 : / SIMPLEX kolejna baza x(b) c(b) x x x x x - -/ x / -/8 x / / /8 -/ -/8 Rozwiązanie optymalne: x, x, x METODA SIMPLEX problemy Punktem wyjścia metody simpleks jest wyznaczenie pierwszej dopuszczalnej postaci bazowej zadania PL. W poprzednim przykładzie otrzymano ją wprowadzając zmienne bilansujące. Kolejny przykład ilustruje niewystarczalność takiego podejścia i wskazuje na zmienne sztuczne, jako elementy pomocne w określeniu postaci wyjściowej zadania.
4 Standardowe zadanie PL () Pewien rolnik postanowił rozpocząć eksperymentalną uprawę ziół leczniczych. Po wstępnej ocenie przydatności, pozytywna decyzja objęła dwa zioła: oraz, których produkcja gwarantowała bezpieczny zbyt. Produkcja jednego kg zioła w postaci gotowej do sprzedaży wymagała zaangażowania 9 kg specjalnych nawozów mineralnych oraz 8 kg środków ochrony roślin, natomiast produkcja jednego kg wymagała wykorzystania 7 kg nawozów i 8 kg środków ochrony za jeden z głównych problemów dla hodowli uznano limitowany rozmiar tych środków, wynoszący odpowiednio kg oraz kg. Dodatkowym problemem okazała się konieczność zakupu specjalnego pestycydu, w ilości kg na kilogram sprzedawanego zioła oraz kg na kilogram sprzedawanego koszt takiej dodatkowej ochrony dla uprawy w planowanej wielkości, wstępnie został wyceniony jako równowartość łącznej sprzedaży kg ziół. Wiedząc, że cena sprzedaży kilograma zioła będzie wynosić tys. zł, natomiast cenę ustalono na 5 tys. zł, określ wielkość koszyka produkcji uprawianych ziół, maksymalizującego zysk. Modyfikacja zadania R.Kotowskiego [] Ponieważ istotne jest założenie, iż w każdym ograniczeniu po wyzerowaniu pozostałych zmiennych występuje przynajmniej jedna zmienna nieujemna, ograniczenie () wymaga doprecyzowania: ( ) x + x x + x 5 Wprowadzona zmienna sztuczna nieco komplikuje rozwiązanie zadania początkowego. Rozwiązanie postaci ze zmienną sztuczną będzie równoważne rozwiązaniu zadania w postaci początkowej wówczas, gdy w ujęciu optymalnym zmienna sztuczna będzie miała wartość. uwagi na to, wszystkie zmienne sztuczne wprowadza się do funkcji celu. Jednocześnie jednak współczynnik dobiera się wówczas tak wysoko, aby niezerowa wartość zmiennej istotnie pogarszała wartość funkcji celu. mienne decyzyjne: x - wielkość uprawy zioła x - wielkość uprawy zioła Funkcja celu [FC]: ( ) max x x x + 5x Ograniczenia [O]: ( ) 9x + 7x ( ) 8x + 8x ( ) x + x Warunki brzegowe [WB]: x, x [] Przekształcamy ograniczenia tak, aby było możliwe ich zapisanie w postaci równań. W tym celu dodaje się każdorazowo dla [O] dodatkowe zmienne bilansujące, uzyskując ostatecznie: ( ) 9x + 7x + x ( ) 8x + 8x + x ( ) x + x x Sprowadzanie do postaci bazowej 5 [] Powyższe nakazuje modyfikację funkcji celu do postaci: ( x x x ) x + 5x + Mx M max Ostateczna jej postać uwzględnia jednak również zmienne bilansujące, chociaż zostają one włączone ze współczynnikami równymi : ( x x x x x x ) x + 5x + x + x + x x max 5 5 Funkcja celu [FC]: Ograniczenia [O]: Warunki brzegowe [WB]: Kompletna postać bazowa ( x x x x x x ) x + 5x + x + x + x x max 5 5 ( ) 9x + 7x + x ( ) 8x + 8x + x ( ) x + x x + x x, x, x, x, x5, x 5
5 Postać bazowa podsumowanie Wszystkie ograniczenia prezentowane są w postaci równań W każdym ograniczeniu znajduje się zmienna, która po wyzerowaniu pozostałych ma wartość nieujemną ze współczynnikiem wynoszącym mienne bilansujące uzupełniają funkcję celu z wyzerowanymi współczynnikami Ewentualne zmienne sztuczne uwzględnia się w funkcji celu ze współczynnikami istotnie pogarszającymi jej wartość 5 - x(b) c(b) x x x x x x - 5 x / / -/ x / -/ / x(b) c(b) x x x x x x 9 7 x 8 x c z - ( ) x(b) c(b) //: x : 5 x : x : : : - -: 5 5: / / - 5 x x x - x 5 - x(b) c(b) x x x x x x 9 7 x 8 x x : /9 7 x : 8/ 8 x : / 5 - x(b) c(b) x x x x x / / - 5 x x / / -/ :(-)+ x + / -/ / :+ x /9+/ /9+ /-/ -/+/ + -/9+/ -/9+ /9 -/ /+/ /-/ 7/9 /
6 5 - x(b) c(b) x x x x x / / - 5 x /9 -/9 x 7/9 /9 7 /9 /9 / -/ - x(b) c(b) x / / - 5 x :(-)+ 5 - x x x x x + 7/9 /9 7 x (-7/9)+ x + -/+/ /+/ -/+ -7/9+7/9 7/8+/9-7/ /+5 / -/ - 7/ x 5 -/ 9/ 9/ -7/+7 / -7/ 7/ 5 - x(b) c(b) x x x x x / -/ - 7/ x 5 -/ 9/ 9/ x / -7/ 7/ 5 / / -/ -/ - adania (rozwiązanie metodą geometryczną) [modyfikacja zadań autorstwa B.Guzika] adanie Przedsiębiorstwo wytwarza dwa wyroby P oraz P, używając surowców S oraz S. Wiedząc o następujących ograniczeniach: Wyroby P P S 8 Surowiec S Ceny Limit 5 9 przedstaw zadanie PL w postaci klasycznej oraz zoptymalizuj funkcję celu maksymalizującą zysk z produkcji. adanie akład krawiecki szyje spodnie i spódnice wykorzystując materiał oraz umiejętności zatrudnionych pracowników. Na wykonanie pary spodni potrzeba m materiału oraz 8 roboczogodzin, natomiast uszycie spódnicy wymaga zużycia m materiału oraz roboczogodzin. akład dysponuje obecnie zapasami materiału w ilości m. akładając, iż do rozdysponowania jest 8 roboczogodzin, wyznaczyć plan produkcji maksymalizujący dochód (spódnica kosztuje 8 zł, a spodnie zł). adanie Pasza dostarczana zwierzętom na fermie zawierać powinna co najmniej 7g białka, 9g węglowodanów oraz g tłuszczu. Ferma dysponuje obecnie sianokiszonką, o parametrach: g białka, g węglowodanów i g tłuszczu w kg sianokiszonki. Dostarczono również okazyjnie zakupioną kiszonkę z kukurydzy, której kg zawiera: g białka, 5g węglowodanów oraz,5g tłuszczu. Koszt uzyskania kg sianokiszonki wynosi, zł, natomiast koszt zakupu kg kiszonki z kukurydzy wynosi, zł. Wyznaczyć dawkę pokarmową dla bydła minimalizującą koszt pożywienia Wskaźniki dla zmiennych bazowych: 7/ x 9/ x 7/ Wskaźniki dla zmiennych niebazowych: x x x Rozwiązanie końcowe: x,5 x,5 x x x5,5 x Funkcja celu [FC]: ( x x x x x x ) *,5 + 5*,5, 5 5
Metoda simpleks. Gliwice
Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania
Standardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
PROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie
Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
ALGORYTM SIMPLEX. B.Gładysz Badania operacyjne 2007
ALGORYTM SIMPLEX 7 Zagadnienie asortymentu produkcji Firma produkuje dwa wyroby P, P. Ograniczeniem dla produkcji są trzy surowce S, S i S.Nakłady jednostkowe surowców są następujące: S S S Zysk jednostkowy
METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
Wprowadzenie do badań operacyjnych - wykład 2 i 3
Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j
Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.
BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie
Rozwiązanie Ad 1. Model zadania jest następujący:
Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Wykład z modelowania matematycznego. Algorytm sympleks.
Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
1 Przykładowe klasy zagadnień liniowych
& " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia
Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]
Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Programowanie liniowe
Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
PROGRAMOWANIE WIELOKRYTERIALNE (CELOWE)
PROGRAMOWANIE WIELOKRYTERIALNE (CELOWE) Przykład 14. Zakład zamierza rozpocząć produkcję wyrobów W 1 i W 2. Wśród środków produkcyjnych, które zostaną użyte w produkcji dwa są limitowane. Limity te wynoszą:
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
BADANIA OPERACYJNE pytania kontrolne
DUALNOŚĆ 1. Podać twierdzenie o dualności 2. Jaka jest zależność pomiędzy funkcjami celu w zadaniu pierwotnym i dualnym? 3. Prawe strony ograniczeń zadania pierwotnego, w zadaniu dualnym są 4. Współczynniki
ZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
(Dantzig G. B. (1963))
(Dantzig G.. (1963)) Uniwersalna metoda numeryczna dla rozwiązywania zadań PL. Ideą metody est uporządkowany przegląd skończone ilości rozwiązań bazowych układu ograniczeń, które możemy utożsamiać, w przypadku
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
Badania Operacyjne Ćwiczenia nr 2 (Materiały)
Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy
Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego
Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego część III Analiza rozwiązania uzyskanego metodą simpleksową
Programowanie nieliniowe
Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą
Układy równań liniowych. Ax = b (1)
Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m
Badania Operacyjne Ćwiczenia nr 4 (Materiały)
Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów
Programowanie dynamiczne. Tadeusz Trzaskalik
Programowanie dynamiczne Tadeusz Trzaskalik 9.. Wprowadzenie Słowa kluczowe Wieloetapowe procesy decyzyjne Zmienne stanu Zmienne decyzyjne Funkcje przejścia Korzyści (straty etapowe) Funkcja kryterium
Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:
Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b
Wybrane elementy badań operacyjnych
Wybrane elementy badań operacyjnych 1 Przykład 1. GWOŹDZIE. Pewna fabryczka może produkować dwa gatunki gwoździ II i I. Do wyprodukowania tony gwoździ II gatunku potrzeba 1,2 tony stali oraz 1 roboczogodzinę
ZAGADNIENIE TRANSPORTOWE (część 1)
ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
Metoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1
A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe ZAGADNIENIE DUALNE Z każdym zagadnieniem liniowym związane jest inne zagadnienie nazywane dualnym. Podamy teraz teraz jak budować zagadnienie
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
BADANIA OPERACYJNE Zagadnienie transportowe
BADANIA OPERACYJNE Zagadnienie transportowe Zadanie zbilansowane Zadanie zbilansowane Przykład 1 Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
Układy równań liniowych
Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1
Programowanie liniowe
Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki
Zagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Metody wielokryterialne. Tadeusz Trzaskalik
Metody wielokryterialne Tadeusz Trzaskalik 4.1. Wprowadzenie Słowa kluczowe Zadanie wielokryterialne Zadanie wielokryterialne programowania liniowego Przestrzeń decyzyjna Zbiór rozwiązań za dopuszczalnych
Laboratorium Metod Optymalizacji
Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena
Wykład 6. Programowanie liniowe
Wykład 6. Programowanie liniowe Zakład może wytwarzać dwa produkty: P 1 i P 2. Ich produkcja jest limitowana dostępnymi zasobami trzech środków: S 1, S 2, S 3. Zasoby tych środków wynoszą odpowiednio,
Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe
BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda
BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji
Programowanie matematyczne
dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
Układy równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby
Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany
wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów
KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją
A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1
A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1 ALGORYTM SYMPLEKS Model liniowy nazywamy modelem w postaci standardowej jeżeli wszystkie ograniczenia s a w postaci równości i wszystkie zmienne
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Przedmiot: Nr ćwiczenia: 1 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie liniowe Cel ćwiczenia: Opanowanie umiejętności modelowania i rozwiązywania problemów
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet
Algorytm simplex i dualność
Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w zagadnieniach finansowych i logistycznych Linear programming in financial and logistics problems Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności
Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne
Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Piotr Kaczyński Badania Operacyjne Notatki do ćwiczeń wersja 0. Warszawa, 7 stycznia 007 Spis treści Programowanie
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
UKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
1 Układy równań liniowych
II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu
KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT).
KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT). Przez klasyczne zagadnienie transportowe rozumiemy problem znajdowania najtańszego programu przewozowego jednorodnego dobra pomiędzy punktami nadania (m liczba
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
TOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
4. PROGRAMOWANIE LINIOWE
4. PROGRAMOWANIE LINIOWE Programowanie liniowe jest jednym z działów badań operacyjnych. Celem badań operacyjnych jest pomoc w podejmowaniu optymalnych z pewnego punktu widzenia decyzji. Etapy rozwiązywania
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
BADANIA OPERACYJNE ANALITYKA GOSPODARCZA
BADANIA OPERACYJNE ANALITYKA GOSPODARCZA Egzamin pisemny 8.4.7 piątek, salae-6, godz. 8:-9:3 OBECNOŚĆ OBOWIĄZKOWA!!! Układ egzaminu. TEST z teorii: minut (test wielostronnego wyboru; próg 75%). ZADANIA:
Przykład: frytki i puree Analiza wrażliwości współczynników funkcji celu
Analiza wrażliwości: współczynników funkcji celu analiza wrażliwości pozwala odpowiedzieć na pytanie, w jakich granicach mogą się zmieniać te parametry, aby dotychczasowe rozwiązanie było optymalne, wyrazów