Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
|
|
- Magda Matysiak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
2 OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego rozplanowania wielkości dostaw towaru klasyczne zagadnienie dotyczy m - dostawców i n - odbiorców
3 OPIS ZAGADNIENIA Dane można przedstawić w postaci macierzowej oraz grafowej
4 OPIS ZAGADNIENIA Szukamy rozwiązania dla funkcji celu: celem jest minimalizacja kosztów transportu (co wyraża się przez sumę iloczynów jednostkowych kosztów przewozu i wielkości transportu od poszczególnych punktów odbioru)
5 OPIS ZAGADNIENIA Warunki ograniczające nieujemność przewozów (brak możliwości przewożenia towaru od odbiorcy do dostawcy i pomiędzy dostawcami/odbiorcami) odbiorcy nie przyjmują więcej towaru niż potrzebują (zapotrzebowanie Dj) tzw. warunki bilansowe dostawców dostawcy nie dostarczają więcej towaru niż ich zdolności podażowe (Cj) tzw. warunki bilansowe odbiorców
6 OPIS ZAGADNIENIA Zadanie zbilansowane Zadanie zbilansowane to takie: jeśli nie jest zbilansowane to sprowadzamy je do zbilansowanego poprzez wprowadzenie fikcyjnego odbiorcy: lub dostawcy: Każde zbilansowane zadanie ma rozwiązanie optymalne (skończone). Proces wyznaczania rozwiązania optymalnego jest dwuetapowy (najpierw rozwiązanie wstępne- które może być rozwiązaniem bazowym czyli z m+n-1 zmiennymi)
7 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Trzy magazyny: M1, M2, M3, zaopatrują w kruszywo cztery place budowy: P1, P2, P3, P4. Jednostkowe koszty transportu ( w zł. za tonę), oferowane miesięczne wielkości dostaw Ai ( w tonach) oraz miesięczne zapotrzebowanie placów budowy Bj (w tonach) podano w tabeli poniżej. Magazyny kij Place budowy P1 P2 P3 P4 M M M Ai[t] Bj[t]
8 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Należy opracować plan przewozu kruszywa z magazynów na place budowy, minimalizujący całkowite koszty transportu. Oznacza to, że mamy do czynienia z zagadnieniem transportowym zamkniętym (ZTZ). xij zmienne decyzyjne, które oznaczają ilość ton kruszywa, jaka powinna być dostarczona z i-tego magazynu (i=1,2,3) na j-ty plac budowy (j=1,2,3,4); jest ich 3*4=12.
9 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Należy opracować plan przewozu kruszywa z magazynów na Ograniczenia dla dostawców (Suma wielkości dostaw kruszywa z magazynu M do wszystkich placów budowy powinna być równa podaży magazynu.) Ograniczenia dla odbiorców (Suma dostaw kruszywa otrzymanych na plac budowy P ze wszystkich trzech magazynów powinna być równa całkowitemu jej zapotrzebowaniu.)
10 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Funkcja celu
11 ZAGADNIENIE TRANSPORTOWE WYZNACZANIE ROZWIĄZAŃ WSTĘPNYCH Metoda kąta północno-zachodniego Nazwa metody związana z przyjętą zasadą postępowania numerycznego, według której w każdym kroku wybiera się tę zmienną, która znajduje się w pn-zach rogu macierzy przewozów, redukowanej w trakcie realizacji algorytmu obliczeniowego. Numery (k,l) dla kolejnych zmiennych xkl wybieranych w danym kroku na zmienną bazową ustalane są na podstawie zależności: I - zbiór numerów dostawców, których zasoby w danym kroku nie zostały jeszcze rozdysponowane J - zbiór numerów odbiorców, których zapotrzebowanie w danym kroku nie zostało jeszcze zaspokojone Po wyborze kolejnych bazowych, ich wartości są obliczane z zależności:
12 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Rozwiązanie - Metoda kąta północno-zachodniego kij Place budowy Magazyny P1 P2 P3 P4 Ai[t] M M M Bj[t] Magazyny Place budowy P1 P2 P3 P4 Ai M Rozwiązaniutemu odpowiadają następujące koszty transportu: M M Bj
13 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Metoda minimalnego elementu macierzy (klatek zerowych) Polega na rozmieszczaniu przewozów przede wszystkim po tych trasach, na których koszty są najmniejsze. Magazyny kij Place budowy P1 P2 P3 P4 Ai[t] M /20/0 M /10/0 M /40/ Bj [t] 40/0 60/40/0 50/40 50/0 200
14 Krok 1 ckl = min cij = c14 =20 stąd zmienna bazowa x14 = min{50,70} = 50. Redukujemy zbiór odbiorców usuwając z macierzy kolumnę 4. Krok 2 ckl = min cij = c12 = c21 = c32 = 40. Wybieram w sposób dowolny zmienną bazową. Będzie to x12 = min {60,20}=20. Redukuję zbiór odbiorców usuwając wiersz 1. Krok 3 ckl = min cij = c21=c32 = 40, stąd wybieram zmienną bazową x21 = min {50,40} = 40. Redukujemy zbiór dostawców usuwając kolumnę 1. Krok 4 ckl = min cij = c32 = 40. Wybieram w sposób dowolny jedną zmienną bazową. Będzie to x32 = min {40,80} = 40 Krok 5 ckl = min cij = c23 = c33 = 70, stąd x23 = min {50, 10} = 10 Krok 6 ckl = min cij = c33 = 70 stąd x33= min {40,40} Funkcja celu wynosi 8500 zł ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Metoda minimalnego elementu macierzy Magazy ny Place budowy P1 P2 P3 P4 Ai M M M Bj
15 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Metoda klatek zerowych kij Place budowy Magazyny P1 P2 P3 P4 Ai[t] M M M Bj[t] Magazyny Placebudowy P1 P2 P3 P4 Ai M M M Punktem wyjścia jest przekształcenie macierzy kosztów do takiej postaci, by w każdym wierszu i w każdej kolumnie występowało, co najmniej jedno zero. Można to uzyskać, między innymi odejmując od elementów poszczególnych wierszy macierzy kosztów, najmniejszy element znajdujący się w danym wierszu. Bj
16 Magazyny kij ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Metoda minimalnego elementu macierzy (klatek zerowych) Place budowy P1 P2 P3 P4 M M Ai[t] M Bj[t] Place budowy Magazyny P1 P2 P3 P4 Ai M Następnie od poszczególnych kolumn otrzymanej w ten sposób macierzy, odejmując element najmniejszy, znajdujący się w danej kolumnie. M M Bj
17 ZAGADNIENIE TRANSPORTOWE - PRZYKŁAD Metoda klatek zerowych Mając tak przekształconą macierz kosztów, staramy się rozmieścić przewozy na trasy, gdzie koszty są najniższe, czyli gdzie występują zera. Rozmieszczanie przewozów rozpoczynamy od dowolnej klatki zerowej. Jeżeli uda się rozmieścić przewozy wyłącznie w klatkach, w których występują zera, to otrzymane rozwiązanie jest już optymalnym planem przewozów. Jeżeli nie, należy je poprawić stosując algorytm transportowy. Magazyny Placebudowy P1 P2 P3 P4 M M M Bj Ai
18 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW W tym algorytmie wykorzystujemy rozwiązanie wstępne wyznaczone jedną z dwóch poprzednich metod. Postać algorytmu jest następująca: 1. Wyznaczenie rozwiązania bazowego wstępnego dla zadania zbilansowanego (wg. Jednej z poprzednio przedstawionych metod) 2. Rozwiązanie układu równań:,, są niewiadomymi układu równań (tzw. potencjały) o indeksach odpowiadających dotychczasowym wierzchołkom grafu rozwiązań, B - zbiór par (i,j) takich, że xij jest zmienną bazową. Powyższy układ równań jest układem nieoznaczonym, gdyż składa się z m+n-1 równań i m+n niewiadomych. Aby rozwiązać układ należy przyjąć w jednym z równań dowolną wartość dla jednej z niewiadomych. 3. Wyznaczenie tzw. równoważną macierz zerową rozwiązania bazowego, której elementy wynoszą:
19 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW 4. Sprawdzić,czy. Jeśli warunek jest spełniony to uzyskaliśmy rozwiązanie optymalne, jeśli nie to szukamy dalej. 5. Ustalić indeksy (k,l) nowej zmiennej bazowej!" przy wykorzystaniu kryterium wejścia według formuły:!" #$% & (). 6. Wyznaczyć cykl Ł(k,l) oraz podzbiory Łn(k,l) i Łp(k,l) łuki, cykl, po dołączeniu nowego wierzchołka (bazowego) CYKL TO TAKI ZBIÓR WĘZŁÓW, DLA KTÓREGO W KAŻDEJ LINII (WIERSZU LUB KOLUMNIE) ZNAJDUJĄ SIĘ 0 LUB 2 WĘZŁY TEGO ZBIORU. Ł(k,l) to graf tworzący cykl w rozwiązaniu bazowym przez dołączenie wierzchołka (k,l). Chcąc wyodrębnić wierzchołki parzyste i nieparzyste w grafie oznacza się je indeksami n i p.
20 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW 7. Ustalić za pomocą kryterium wyjścia numer (r,s) zmiennej +, usuwanej z części bazowej rozwiązania. Kryterium ma postać: +, $, Ł. /,0 & :, ) 8. Wyznaczyć nowe rozwiązanie bazowe przy zastosowaniu tzw. wzór przejścia 4", 5 Ł!," 2 3 +, 4", Ł!," +, 4", Ł.!," Nowo wprowadzonej zmiennej!" można nadać wartość zmiennej +,, określoną wzorem: +, $, Ł. /,0 & :, ) W celu dotrzymania przy tym warunków ograniczających, należy zmniejszyć o +,, przewozy na trasach przechodzących przez węzły ze zbioru Łp(k,l) i zwiększyć o +, przewozy na trasach przebiegających przez węzły Łn(k,l). Tak uzasadniona jest ostatnia zależność.
21 Układ dla naszego przykładu (metoda minimalnego elementu macierzy): (1) =0 (2) 6 +7 : +9 : =0 (3) =0 (4) ; +9 8; =0 (5) 6 ; +7 ; +9 ;; =0 (6) 6 ; ;8 =0 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW Jest to układ nieoznaczony, dlatego też należy przyjąć np. w pierwszym równaniu. Wtedy podstawiając znane wartości pozostałe niewiadome można wyznaczyć jednoznacznie. Oblicza się: v2 = -c12 - u1 = = -40 v4 = -c14 - u1 = = -20 u3 = -c32 - v2 = =0 u2 = -c23 - v3 = = 0 v3 = -c33 -u3 = = -70 v1 = -c21 - u2 = = -40 Dla, którego obliczona funkcja celu wynosi 8500 zł. Tak wyznaczone zostały potencjały łącznie z danymi wstępnymi.
22 Wyznaczamy równoważną macierz C 0 odpowiadającą rozwiązaniu wstępnemu. Poszczególne elementy tej macierzy wynoszą: = (-40) = 10 = (-40) = 0 c 0 13 = 50+0+(-70)=-20 c 0 14 = (-20) = 10 c 0 21 = (-40) = 0 c 0 22 = (-40) = 40 c 0 23 = (-70) = 0 c 0 24 = (-20) = 10 c 0 31 = (-40) = 20 c 0 32 = (-40) = 0 c 0 33 = (-70) = 0 = (-20) = 60 c 0 11 c 0 12 c 0 34 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW Wpisane w tabelce powyżej w prawym rogu. Sprawdzamy czy C 0 jest większa od zera. Widzimy, że ma 1 element mniejszych od zera. Widzimy, że rozwiązanie wstępne nie jest rozwiązaniem optymalnym.
23 Dane widoczne są w tabeli: WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW <=>ś9@a<b CAD<@ąDFG@B FDA<B 6D=HIFGB D JJKJ kij Magazyny Place budowy P1 P2 P3 P4 Ai [t] ui 9 ; 6 ; +7 M M M Bj [t] vj
24 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW Ustalamy więc numer (k,l) nowej zmiennej bazowej x kl przy zastosowaniu kryterium wejścia. Zgodnie z nim (!" #$% & (). ) mamy: c 0 kl= c Czyli w celu poprawienia rozwiązanianależy do części bazowej wprowadzić zmienną x 13. Wyznaczamy cykl Ł(k,l) oraz podzbiory Łn i Łp. Widzimy, że po dołączeniu wierzchołka (1,3) powstał cykl. Wprowadzając przewóz na trasie (1,3) należy, w celu zachowania bilansów, powiększyć przewozy w węzłach oznaczonych "+" oraz 2 zmniejszyć w węzłach oznaczonych"-". 3 4", 5 Ł!," +, 4", Ł!," +, 4", Ł.!," Ustalamy za pomocą kryterium wyjścia numer (r,s) zmiennej x rs, która zostanie teraz usunięta z części bazowej rozwiązania. Mamy więc: x rs = x 12 =20. Czyli ją usuwamy.
25 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW Wyznaczamy nowe rozwiązanie bazowe przy zastosowaniu wzorów przejścia. Dla wierzchołków (i,j) należących do Łn. x' 13 = =20 x' 23 = =10 // nie dodaje w nieparzystym wierzchołku x' 32 = =60 A dla wierzchołków (i,j) należących do Łp x' 12 = = 0 x' 33 = =20 Reszta bez zmian.
26 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW Rozwiązanie po drugiej iteracji: kij Magazyny Place budowy P1 P2 P3 P4 Ai [t] ui M1 M M Bj [t] vj
27 WYZNACZANIE ROZWIĄZAŃ OPTYMALNYCH METODA POTENCJAŁÓW Rozwiązanie optymalne: kij Magazyny Place budowy P1 P2 P3 P4 Ai [t] ui M M2 M Bj [t] vj
28 Dziękuję za uwagę
Rozwiązanie Ad 1. Model zadania jest następujący:
Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Zagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
ZAGADNIENIA TRANSPORTOWE
ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych
ZAGADNIENIE TRANSPORTOWE (część 1)
ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu
BADANIA OPERACYJNE Zagadnienie transportowe
BADANIA OPERACYJNE Zagadnienie transportowe Zadanie zbilansowane Zadanie zbilansowane Przykład 1 Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
ZAGADNIENIE TRANSPORTOWE
ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania
ZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
Zadanie niezbilansowane. Gliwice 1
Zadanie niezbilansowane 1 Zadanie niezbilansowane Przykład 11 5 3 8 2 A 4 6 4 2 B 9 2 3 11 C D E F G dostawcy odbiorcy DOSTAWCY: A: 15 B: 2 C: 6 ODBIORCY: D: 8 E: 3 F: 4 G: 5 2 Zadanie niezbilansowane
Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe
BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda
BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy
ZAGADNIENIE TRANSPORTOWE (część 2)
ZAGADNIENIE TRANSPORTOWE (część ) Zadanie niezbilansowane Zadanie niezbilansowane Przykład 11. 5 3 8 A 4 6 4 B 9 3 11 C D E F G dostawcy odbiorcy Dostawcy: A :15 B : C :6 Odbiorcy: D :8 E :3 F :4 G :5
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b
BADANIA OPERACYJNE pytania kontrolne
DUALNOŚĆ 1. Podać twierdzenie o dualności 2. Jaka jest zależność pomiędzy funkcjami celu w zadaniu pierwotnym i dualnym? 3. Prawe strony ograniczeń zadania pierwotnego, w zadaniu dualnym są 4. Współczynniki
Zagadnienie transportowe
Zagadnienie transportowe Firma X zawarła kontrakt na dostarczenie trawnika do wykończenia terenów wokół trzech zakładów U, V i W. Trawnik ma być dostarczony z trzech farm A, B i C. Zapotrzebowanie zakładów
KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT).
KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT). Przez klasyczne zagadnienie transportowe rozumiemy problem znajdowania najtańszego programu przewozowego jednorodnego dobra pomiędzy punktami nadania (m liczba
Badania Operacyjne Ćwiczenia nr 5 (Materiały)
ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga
Zadanie transportowe
Zadanie transportowe Opracowanie planu przewozu jednorodnego produktu z różnych źródeł zaopatrzenia do punktów, które zgłaszają zapotrzebowanie na ten produkt. Wykład ARo Metody optymalizacji w ekonomii
Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe
Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Metoda simpleks. Gliwice
Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2
Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że
Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli
Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
Rozwiązanie zadania 1. Krok Tym razem naszym celem jest, nie tak, jak w przypadku typowego zadania transportowego
Zadanie 1 Pośrednik kupuje towar u dwóch dostawców (podaż: 2 i, jednostkowe koszty zakupu 1 i 12), przewozi go i sprzedaje trzem odbiorcom (popyt: 1, 28 i 27, ceny sprzedaży:, 25 i ). Jednostkowe koszty
Wieloetapowe zagadnienia transportowe
Przykład 1 Wieloetapowe zagadnienia transportowe Dwóch dostawców o podaży 40 i 45 dostarcza towar do trzech odbiorców o popycie 18, 17 i 26 za pośrednictwem dwóch punktów pośrednich o pojemnościach równych
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Badania Operacyjne Ćwiczenia nr 6 (Materiały)
Otwarte zagadnienie transportowe Jeżeli łączna podaż dostawców jest większa niż łączne zapotrzebowanie odbiorców to mamy do czynienia z otwartym zagadnieniem transportowym. Warunki dla dostawców (i-ty
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego
Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego część III Analiza rozwiązania uzyskanego metodą simpleksową
Klasyczne zagadnienie przydziału
Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko
Rozwiązanie problemu transportowego metodą VAM. dr inż. Władysław Wornalkiewicz
Rozwiązanie problemu transportowego metodą VAM dr inż. Władysław Wornalkiewicz Występuje wiele metod rozwiązywania optymalizacyjnego zagadnienia transportowego. Jedną z nich jest VAM (Vogel s approximation
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
- modele liniowe. - modele nieliniowe.
Model decyzyjny sformalizowane ujęcie działania związanego z podejmowaniem decyzji. Decyzje dopuszczalne decyzje uwzględniające warunki ograniczające, jest ich wiele. Decyzja optymalna decyzja dopuszczalna
METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
Układy równań liniowych. Ax = b (1)
Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m
OPTYMALIZACJA DYSKRETNA
Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi
METODY OBLICZENIOWE OPTYMALIZACJI zadania
METODY OBLICZENIOWE OPTYMALIZACJI zadania Przedstawione dalej zadania rozwiąż wykorzystując Excel/Solver. Zadania 8 są zadaniami optymalizacji liniowej, zadania 9, dotyczą optymalizacji nieliniowej. Przed
1 Problem transportowy... 2 1.1 Wstęp... 2 1.2 Metoda górnego-lewego rogu... 3 1.3 Metoda najmniejszego elementu... 11
Spis treści 1 Problem transportowy... 2 1.1 Wstęp... 2 1.2 Metoda górnego-lewego rogu... 3 1.3 Metoda najmniejszego elementu... 11 1.4 Metoda VAM... 18 1.5 Metoda e-perturbacji... 28 1.6 Metoda potencjałów...
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 26-83-95-04, p.225/00 Zakład
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Wprowadzenie do badań operacyjnych - wykład 2 i 3
Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Zagadnienie transportowe i zagadnienie przydziału
Temat: Zagadnienie transportowe i zagadnienie przydziału Zadanie 1 Trzy piekarnie zlokalizowane na terenie miasta są zaopatrywane w mąkę z trzech magazynów znajdujących się na peryferiach. Zasoby mąki
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]
Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna
Optymalizacja kosztów transportu w sferze logistyki zaopatrzenia
SZKUTNIK Joanna 1 ZIÓŁKOWSKI Jarosław 2 Optymalizacja kosztów transportu w sferze logistyki zaopatrzenia WSTĘP Zagadnienie transportowe jest szczególnym rodzajem zadania programowania liniowego. Polega
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda
Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe dr Adam Sojda Literatura o Kukuła K. (red.): Badania operacyjne w przykładach i zadaniach.
celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n
123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Rozwiązywanie problemów z użyciem Solvera programu Excel
Rozwiązywanie problemów z użyciem Solvera programu Excel Podstawowe czynności: aktywować dodatek Solver oraz ustawić w jego opcjach maksymalny czas trwania algorytmów na sensowną wartość (np. 30 sekund).
Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]
Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 3 Problem transportowy... 16 3.1 Wstęp... 16 3.2 Metoda
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Przykładowe zadania rozwiązywane na ćwiczeniach
Przykładowe zadania rozwiązywane na ćwiczeniach Zad.. Określić ilość kursów poszczególnych środków transportu, przy których koszty przewozu gotowych wyrobów z przedsiębiorstwa do hurtowni będą najniższe.
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który
4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału Problem przydziału Przykład Firma KARMA zamierza w okresie letnim przeprowadzić konserwację swoich urządzeń; mieszalników,
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
[1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985.
Metody optymalizacji, wykład nr 10 Paweł Zieliński 1 Literatura [1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985. [2] R.S. Garfinkel, G.L. Nemhauser Programowanie całkowitoliczbowe
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Obliczenia naukowe Wykład nr 8
Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,
; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
Zagadnienie transportowe. Hurtownia Zapotrzebowanie (w tonach) 1 100 2 160 3 350 4 100 5 220
Zagadnienie transportowe Firma produkująca papier kserograficzny posiada 4 wytwórnie i 5 hurtowni, do których dostarczany jest papier. Każda z fabryk wytwarza określoną liczbę ton papieru na miesiąc, i
Przekształcanie równań stanu do postaci kanonicznej diagonalnej
Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego
Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO
D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne
Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Piotr Kaczyński Badania Operacyjne Notatki do ćwiczeń wersja 0. Warszawa, 7 stycznia 007 Spis treści Programowanie
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Układy równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można