Badania operacyjne. Dr Michał Kulej. Pokój 509, budynek B4 Forma zaliczenia wykładu: egzamin pisemny.
|
|
- Agnieszka Sadowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Badania operacyjne Dr Michał Kulej. Pokój 509, budynek B4 Materiały do zajęć będa dostępne na stronie: Forma zaliczenia wykładu: egzamin pisemny.
2 Literatura 1 H. Wagner. Badania operacyjne. PWE, Warszawa T. Trzaskalik. Wprowadzenie do badań operacyjnych z komputerem. PWE, H. A. Taha. Operations Research. An Introduction. Pearson Prentice Hall, New Jersey F. S. Hillier, G.J. Liberman: Introduction to Operations Research. Mc Graw Hill, W. L. Winston. Operations Research: Applications and Algorithms, PWS-KENT Publishing Company, Boston, H.P. Williams. Model Building in Mathematical Programming. Wiley, New York,1990.
3 Badania operacyjne Badania operacyjne sa dyscyplina naukowa zajmujac a się zastosowaniem metod matematycznych do wspomagania podejmowania decyzji. Nazwa jest tłumaczeniem z języka angielskiego terminu Operations Research. Dyscyplina ta została zapoczatkowana podczas II Wojny Światowej.
4 Metodologia badań operacyjnych Rzeczywisty świat Opis problemu Opisz problem słownie. Jakie są cele? Jakie ograniczenia muszą być spełnione? Budowa modelu Zbuduj model matematyczny dla problemu. Określ zmienne decyzyjne, funkcję celu, ograniczenia oraz dane wejściowe. Rozwiązanie modelu Zastosuj odpowiedni algorytm aby rozwiązać model. Analiza rozwiązania Zinterpretuj rozwiązanie, dokonaj jego dalszej analizy. Implementacja Zastosuj otrzymane rozwiązanie w praktyce
5 Przykład [Taha 2007] - opis problemu Przedsiębiorstwo Reddy Mikks produkuje dwa wyroby A i B z dwóch materiałów M1 i M2. W poniższej tabeli znajduja się dane na temat procesu produkcji: Zapotrzebowanie w t. na 1 t. Dostępny zapas A B (w t.) Materiał M Materiał M Zysk ($1000/t.) 5 4 Z badań marketingowych wynika, że popyt na wyrób B jest nie większy niż 2 tony i będzie można sprzedać co najwyżej o jedna tonę więcej wyrobu B niż A. Celem Reddy Mikks jest wyznaczenie wielkości produkcji wyrobów A i B, która maksymalizuje całkowity zysk przedsiębiorstwa.
6 Budowa modelu 1 Zmienne decyzyjne: x 1 - Liczba produkowanych ton wyrobu A x 2 - Liczba produkowanych ton wyrobu B 2 Funkcja celu: max z = 5x 1 + 4x 2 [Całkowity zysk] 3 Ograniczenia 6x 1 + 4x 2 24 [Zużycie M1] x 1 + 2x 2 6 [Zużycie M2] x 2 x 1 1 [Popyt] x 2 2 [Popyt] x 1 0 [Produkcja nieujemna] x 2 0 [Produkcja nieujemna]
7 Rozwiazanie modelu
8 Rozwiazanie modelu Reddy Mikks powinno produkować 3 tony wyrobu A i 1.5 tony wyrobu B, co daje maksymalny zysk w wysokości $ Jest to jedyne optumalne rozwiazanie problemu.
9 Rozwiazanie modelu (AMPL) var x1 >=0; var x2 >=0; maximize zysk: 5*x1+4*x2; M1: 6*x1+4*x2<=24; M2: x1+2*x2<=6; Popyt1: x2-x1<=1; Popyt2: x2<=2; solve; display x1,x2; end;
10 Zadanie programowania liniowego W zadaniu programowania liniowego: 1 funkcja celu jest liniowa; 2 wszystkie ograniczenia maja postać nierówności lub równań liniowych; 3 wszystkie zmienne decyzyjne moga przyjmować wartości rzeczywiste. Wiele praktycznych problemów można sformułować w postaci zadania programowania liniowego. Ponadto zadanie programowania liniowego można efektywnie rozwiazać.
11 Zadanie programowania liniowego max (min) z = c 1 x 1 + c 2 x 2 + +c nx n [Funkcja celu] a 11 x 1 + a 12 x 2 + +a 1n x n (,=)b 1 [Ograniczenie 1] a 21 x 1 + a 22 x 2 + +a 2n x n (,=)b 2 [Ograniczenie 2] a m1 x 1 + a m2 x 2 + +a mnx n (,=)b m [Ograniczenie m] x i 0, i I [Nieujemność] x 1,...,x n nazywamy zmiennymi decyzyjnymi. Współczynniki c i, b j i a ij nazywamy parametrami (danymi wejściowymi, stałymi). I {1,...,n} określa podzbiór zmiennych, które musza przyjać wartości nieujemne.
12 Zadanie programowania liniowego Rozwiazanie (x 1,...,x n ), które spełnia wszystkie ograniczenia nazywamy rozwiazaniem dopuszczalnym. Rozwiazanie dopuszczalne(x1,...,x n) dla którego wartość funkcji celu jest największa (najmniejsza) nazywamy rozwiazaniem optymalnym.
13 Problem diety Dieta ma być zestawiona z czterech produktów: chleba, mleka, sera i jogurtu. Koszty jednostkowe oraz zawartości składników odżywczych w jednostce produktu podane sa w poniższej tabeli: Chleb Mleko Ser Jogurt Koszt jedn Cukier, g./jedn Tłuszcz, g./jedn Białko, g./jedn Kalorie, cal./jedn Celem jest ustalenie najtańszej diety zawierajaej co najmniej 300 kalorii, 10 g. cukru, 6 g. tłuszczu i 30 g. białka.
14 Problem diety 1 Zmienne decyzyjne: x 1,...,x 4 - liczba jednostek chleba, mleka, sera i jogurtu w diecie. 2 Funkcja celu: 3 Ograniczenia: min z = Całkowity koszt= x x 2 + 3x 3 + 4x 4 90x x x x [Kalorie] 0.5x 1 + x x 3 + 4x 4 10 [Cukier] 5x 2 + 9x 3 + 7x 4 6 [Tłuszcz] 4x x x x 4 30 [Białko] x 1, x 2, x 3, x 4 0 Optymalna dieta składa się z 0.33 jednostek chleba i 2.46 jednostek jogurtu. Jej koszt wynosi 10.16
15 Modelowanie procesów produkcyjnych Korporacja Rylon produkuje cztery rodzaje perfum: Brute, Super Brute, Chanelle and Super Chanelle. Zyski jednostkowe z tych perfum wynosza odpowienio 7, 14, 6 i 10 dolarów. Z jednostki materiału wejściowego, którego cena wynosi 3 dolary za jednostę, można w ciagu 1 godziny wyprodukować 3 jednostki Brute i 4 jednostki Chanelle. Następnie w ciagu 3 godzin, jednostka Brute może być ulepszona do jednostki Super Brute a w ciagu 2 godzin jednostka Chanelle może być ulepszona do jednostki Super Chanelle. Korporacja może zakupić do 4000 jednostek materiału wejściowego i wykorzystać do 6000 godzin w procesie produkcji. Wyznacz optymalny plan produkcji.
16 Modelowanie procesów produkcyjnych 1 Zmienne decyzyjne: x 1,...,x 4 - liczba wytwarzanych jednostek Brute, Super Brute, Chanelle i Super Chanelle y - liczba jednostek zużytego materiału wejściowego 2 Funkcja celu: 3 Ograniczenia: max z = Całkowity zysk= 7x x 2 + 6x x 4 3y x 1 + x 2 3y [Brute i Super Brute] x 3 + x 4 4y [Chanelle i Super Chanelle] y 4000 [Dostępność materiału] y + 3x 2 + 2x [Dostępność godzin] x 1, x 2, x 3, x 4, y 0
17 Modelowanie procesów produkcyjnych Firma powinna zakupić 4000 jednostek materiału i wyprodukować jednostek Brute, jednostek Super Brute i jednostek Chanelle. Nie powinna produkować Super Chanelle. Daje to łaczny zysk w wysokości $.
18 Wieloetapowy model produkcji i zapasów Fabryka wytwarza pewien wyrób w ciagu kolejnych czterech kwartałów. Zdolność produkcyjna w każdym kwartale wynosi 60 jednostek. Popyt na wyrób jest inny w każdym kwartale i musi być w całości zaspokojony. Wszystkie dane znajduja się w poniższej tabeli. Fabryka chce zminimalizować całkowity koszt. I II III IV Popyt Koszt produkcji ($/jedn.) Koszt magazynowania ($/jedn.)
19 Wieloetapowy model produkcji i zapasów 1 Zmienne decyzyjne: x 1, x 2, x 3, x 4 - wielkość produkcji w kwartałach 1,2,3,4; m 1, m 2, m 3 - stan magazynu na koniec kwartałów 1,2,3. 2 Funkcja celu: min z = Całkowity koszt = 55x x x x 4 + 2m 1 + 2m 2 + 3m 3 3 Ograniczenia: x 1 = 30+m 1 [Bilans w kwartale 1] m 1 + x 2 = 60+m 2 [Bilans w kwartale 2] m 2 + x 3 = 70+m 3 [Bilans w kwartale 3] m 3 + x 4 = 25 [Bilans w kwartale 4] x i 60, i = 1,...,4 [Zdolność produkcyjna] x 1, x 2, x 3, x 4, m 1, m 2, m 3 0
20 Wieloetapowy model produkcji i zapasów Optymalny plan produkcji/magazynowania: Minimalny koszt wynosi
21 Model inwestycyjny Finco Invest. Corp. chce określić optymalna strategię inwestowania w ciagu najbliższych trzech lat. Obecnie dysponuje gotówka w wysokości $. Dostępne sa inwestycje A, B, C, D i E. Przepływy pieniężne z każdego zainwestowanego dolara w każda inwestycję sa podane w poniższej tabeli: A -1$ +0.5$ +1$ - B - -1$ +0.5$ 1$ C -1$ +1.2$ - - D -1$ $ E $ +1.5$ Aby zapewnić dywersyfikację portfela, Finco chce aby co nawyżej $ było zainwestowane w każda inwestycję. Finco może trzymać niezainwestowana gotówkę w banku na rocznych lokatach oprocentowanych w wysokości 8%.
22 Model inwestycyjny 1 Zmienne decyzyjne: x A, x B, x C, x D, x E - gotówka zainwestowana w A,B,C,D, i E; y 0, y 1, y 2 - gotówka ulokowana na lokacie bankowej w chwilach 0, 1 and 2. 2 Funkcja celu: 3 Ograniczenia: max z = Gotówka w chwili 3= x B +1.9x D +1.5x E +1.08y 2 x A + x C + x D + y 0 = [Bilans w chwili 0] 0.5x A + 1.2x C y 0 x B y 1 = 0 [Bilans w chwili 1] x A + 0.5x B y 1 x E y 2 = 0 [Bilans w chwili 2] x A, x B, x C, x D, x E [Limit inwestycyjny] x A, x B, x C, x D, x E, y 0, y 1, y 2 0
23 Model inwestycyjny Optymalne przepływy pieniężne (firma nie powinna trzymać żadnych pieniędzy w banku): A $ $ $ - B $ $ $ C 0$ +0$ - - D $ $ E $ $ Gotówka na końcu wynosi $.
Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:
Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
Bardziej szczegółowoBadania operacyjne. Michał Kulej. semestr letni, Michał Kulej () Badania operacyjne semestr letni, / 13
Badania operacyjne Michał Kulej semestr letni, 2012 Michał Kulej () Badania operacyjne semestr letni, 2012 1/ 13 Literatura podstawowa Wykłady na stronie: www.ioz.pwr.wroc.pl/pracownicy/kulej Trzaskalik
Bardziej szczegółowoMetody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych
Bardziej szczegółowoDefinicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Bardziej szczegółowoModelowanie całkowitoliczbowe
1 Modelowanie całkowitoliczbowe Zmienne binarne P 1 Firma CMC rozważa budowę nowej fabryki w miejscowości A lub B lub w obu tych miejscowościach. Bierze również pod uwagę budowę co najwyżej jednej hurtowni
Bardziej szczegółowoProgramowanie liniowe
Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania
Bardziej szczegółowoProgramowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
Bardziej szczegółowo4. PROGRAMOWANIE LINIOWE
4. PROGRAMOWANIE LINIOWE Programowanie liniowe jest jednym z działów badań operacyjnych. Celem badań operacyjnych jest pomoc w podejmowaniu optymalnych z pewnego punktu widzenia decyzji. Etapy rozwiązywania
Bardziej szczegółowoElementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Bardziej szczegółowoBadania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.
BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE
ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia
Bardziej szczegółowoWprowadzenie do badań operacyjnych
Wprowadzenie do badań operacyjnych Hanna Furmańczyk 10 października 2008 Badania operacyjne (ang. operations research) - dyscyplina naukowa związana z teorią decyzji pozwalająca wyznaczyć metodę i rozwiązanie
Bardziej szczegółowoWykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
Wykład 7 Informatyka Stosowana Magdalena Alama-Bućko 16 kwietnia 2018 Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 1 / 23 Programowanie liniowe Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 2 / 23
Bardziej szczegółowoWykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Bardziej szczegółowoc j x x
ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony
Bardziej szczegółowoProgramowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
Bardziej szczegółowoProgramowanie dynamiczne. Tadeusz Trzaskalik
Programowanie dynamiczne Tadeusz Trzaskalik 9.. Wprowadzenie Słowa kluczowe Wieloetapowe procesy decyzyjne Zmienne stanu Zmienne decyzyjne Funkcje przejścia Korzyści (straty etapowe) Funkcja kryterium
Bardziej szczegółowoProgramowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
Bardziej szczegółowoBadania Operacyjne Ćwiczenia nr 5 (Materiały)
ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga
Bardziej szczegółowoStandardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Bardziej szczegółowoRozwiązanie Ad 1. Model zadania jest następujący:
Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych
Bardziej szczegółowodoc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Bardziej szczegółowoZagadnienie transportowe i zagadnienie przydziału
Temat: Zagadnienie transportowe i zagadnienie przydziału Zadanie 1 Trzy piekarnie zlokalizowane na terenie miasta są zaopatrywane w mąkę z trzech magazynów znajdujących się na peryferiach. Zasoby mąki
Bardziej szczegółowoProgramowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Bardziej szczegółowoProgramowanie nieliniowe
Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą
Bardziej szczegółowoProgramowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Bardziej szczegółowoModele i narzędzia optymalizacji w systemach informatycznych zarządzania
Przedmiot: Nr ćwiczenia: 3 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie dynamiczne Cel ćwiczenia: Formułowanie i rozwiązywanie problemów optymalizacyjnych
Bardziej szczegółowoZadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych"
Zadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych" 1. Zbudować model optymalizacyjny problemu opisanego w zadaniu z tabeli poniżej. 2. Rozwiązać zadanie jak w tabeli poniżej z wykorzystaniem
Bardziej szczegółowoALGORYTM SIMPLEX. B.Gładysz Badania operacyjne 2007
ALGORYTM SIMPLEX 7 Zagadnienie asortymentu produkcji Firma produkuje dwa wyroby P, P. Ograniczeniem dla produkcji są trzy surowce S, S i S.Nakłady jednostkowe surowców są następujące: S S S Zysk jednostkowy
Bardziej szczegółowoMetoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,
Bardziej szczegółowoModele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Bardziej szczegółowoWspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02
Optymalizacja całkowitoliczbowa Przykład. Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02 Firma stolarska produkuje dwa rodzaje stołów Modern i Classic, cieszących się na rynku dużym zainteresowaniem,
Bardziej szczegółowoBadania Operacyjne Ćwiczenia nr 1 (Materiały)
Wprowadzenie Badania operacyjne (BO) to stosunkowo młoda dyscyplina naukowa, która powstała w czasie II Wojny Światowej, w związku z utworzeniem przy niektórych sztabach sił zbrojnych specjalnych grup
Bardziej szczegółowoElementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w zagadnieniach finansowych i logistycznych Linear programming in financial and logistics problems Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności
Bardziej szczegółowoĆwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7
Ćwiczenia laboratoryjne - 7 Problem (diety) mieszanek w hutnictwie programowanie liniowe Ćw. L. 7 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym zapisem
Bardziej szczegółowoPlan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoEkonometria Programowanie Liniowe. Robert Pietrzykowski
Ekonometria Programowanie Liniowe Robert Pietrzykowski ZADANIE: Przedsiębiorstwo produkuje dwa wyroby: W1 i W2. Ograniczeniem w procesie produkcji jest czas pracy trzech maszyn: M1, M2 i M3. W tablicy
Bardziej szczegółowoEkonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Bardziej szczegółowoDodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?
Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak
Bardziej szczegółowo1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że
Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli
Bardziej szczegółowoProgramowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
Bardziej szczegółowoLista 1 PL metoda geometryczna
Lista 1 PL metoda geometryczna 1.1. Znajdź maksimum funkcji celuf(x 1,x 2 )=5x 1 +7x 2 przy ograniczeniach: 2x 1 +2x 2 600, 2x 1 +4x 2 1000, x i 0 dlai=1,2 1.2. Znajdź maksimum funkcji celuf(x 1,x 2 )=2x
Bardziej szczegółowoMetody Optymalizacji. Wstęp. Programowanie matematyczne. Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt
Metody Optymalizacji Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt Wstęp W ogólności optymalizacja związana jest z maksymalizowaniem lub minimalizowaniem pewnej wielkości np. maksymalizacja zysku
Bardziej szczegółowoSieć (graf skierowany)
Sieci Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B), (A, D), (A, C), (B, C),..., } Ścieżki i cykle
Bardziej szczegółowoOPTYMALIZACJA DYSKRETNA
Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi
Bardziej szczegółowoZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Bardziej szczegółowoZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
Bardziej szczegółowoZbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ).
PROGRAMOWANIE LINIOWE Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). Problem. Przedsiębiorstwo przewozowe STAR zajmuje się dostarczaniem lodów do sklepów. Dane dotyczące
Bardziej szczegółowoModele i narzędzia optymalizacji w systemach informatycznych zarządzania
Przedmiot: Nr ćwiczenia: 1 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie liniowe Cel ćwiczenia: Opanowanie umiejętności modelowania i rozwiązywania problemów
Bardziej szczegółowoZadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby
Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany
Bardziej szczegółowoProgramowanie liniowe
Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki
Bardziej szczegółowoIwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ
1 Iwona Konarzewska Programowanie celowe - wprowadzenie Katedra Badań Operacyjnych UŁ 2 Programowanie celowe W praktycznych sytuacjach podejmowania decyzji często występuje kilka celów. Problem pojawia
Bardziej szczegółowoPROGRAMOWANIE WIELOKRYTERIALNE (CELOWE)
PROGRAMOWANIE WIELOKRYTERIALNE (CELOWE) Przykład 14. Zakład zamierza rozpocząć produkcję wyrobów W 1 i W 2. Wśród środków produkcyjnych, które zostaną użyte w produkcji dwa są limitowane. Limity te wynoszą:
Bardziej szczegółowoRozwiązywanie programów matematycznych
Rozwiązywanie programów matematycznych Program matematyczny składa się z następujących elementów: 1. Zmiennych decyzyjnych:,,, 2. Funkcji celu, funkcji-kryterium, która informuje o jakości rozwiązania
Bardziej szczegółowoBadania Operacyjne Ćwiczenia nr 2 (Materiały)
Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy
Bardziej szczegółowo1 Przykładowe klasy zagadnień liniowych
& " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia
Bardziej szczegółowo=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)
Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję
Bardziej szczegółowoProgramowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
Bardziej szczegółowoRozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
Bardziej szczegółowoAlgorytmy Genetyczne w środowisku R
B.Nachyla@ii.pw.edu.pl Warszawa,14 grudnia, 2014 Materiały do zajęć http://ii.pw.edu.pl/~bnachyla/mtw/exercises/ zadania-genetyczne.html Zadanie Farma Piorta produkuje 2 tony jabłek dziennie, Farma Sławka
Bardziej szczegółowoOpis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK405 Nazwa przedmiotu Badania operacyjne Wersja przedmiotu 2015/2016 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Bardziej szczegółowoĆwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe
Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym
Bardziej szczegółowoTOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
Bardziej szczegółowoZad.1. Microsoft Excel - Raport wyników Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto
Zad.1. Przedsiębiorstwo może wytwarzać trzy typy maszyn: tokarki, piły, frezarki zużywając dwa ograniczone zasoby: energię elektryczną i siłę roboczą w następujących proporcjach: energia (KWH / jedn.)
Bardziej szczegółowoD. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1]
D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1] Co to są badania operacyjne? Termin "badanie operacji" (Operations' Research) powstał podczas II wojny światowej i przetrwał do dzisiaj. W terminologii
Bardziej szczegółowoOpis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.SIK306 Nazwa przedmiotu Badania operacyjne Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Programowanie Dynamiczne dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 14 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.
Bardziej szczegółowoOpis przedmiotu: Badania operacyjne
Opis : Badania operacyjne Kod Nazwa Wersja TR.SIK306 Badania operacyjne 2013/14 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka
Bardziej szczegółowob) PLN/szt. Jednostkowa marża na pokrycie kosztów stałych wynosi 6PLN na każdą sprzedają sztukę.
Poniżej znajdują się przykłady rozwiązań tylko niektórych, spośród prezentowanych na zajęciach, zadań. Wszystkie pochodzą z podręcznika autorstwa Kotowskiej, Sitko i Uziębło. Kolokwium swoim zakresem obejmuje
Bardziej szczegółowoLaboratorium Metod Optymalizacji. Sprawozdanie nr 2
PAWEŁ OSTASZEWSKI PIŁA, dn. 15.04.2003 nr indeksu: 55566 Laboratorium Metod Optymalizacji Sprawozdanie nr 2 1. TREŚĆ ZADANIA: Firma produkująca sok jabłkowy przewiduje następujące zapotrzebowanie na ten
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE (część 1)
ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
Bardziej szczegółowoRozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
Bardziej szczegółowoProgramowanie liniowe
Badania operacyjne Ćwiczenia 2 Programowanie liniowe Metoda geometryczna Plan zajęć Programowanie liniowe metoda geometryczna Przykład 1 Zbiór rozwiązań dopuszczalnych Zamknięty zbiór rozwiązań dopuszczalnych
Bardziej szczegółowozadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w
Sformułowanie problemu Zastosowania Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie
Bardziej szczegółowoAnaliza korelacji i regresji dwóch zmiennych losowych
Analiza korelacji i regresji dwóch zmiennych losowych 1. Badano zależność między ilością godzin przebywania samolotu w powietrzu ( nalot lotniczy) a ilością wypadków. Na podstawie zebranych danych z pewnego
Bardziej szczegółowoBADANIA OPERACYJNE Zagadnienie transportowe
BADANIA OPERACYJNE Zagadnienie transportowe Zadanie zbilansowane Zadanie zbilansowane Przykład 1 Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
Bardziej szczegółowoZagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoOPTYMALIZACJA W LOGISTYCE
OPTYALIZACJA W LOGISTYCE Zagadnienie transportowe 2 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie transportowe z kryterium czasu I rodzaju () Jeżeli w modelu klasycznego zagadnienia transportowego
Bardziej szczegółowoZagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700
Zagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700 jednostek, przy czym dla mikroelementu M1 maksymalna dzienna
Bardziej szczegółowoInstrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet
Bardziej szczegółowoOPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko
Bardziej szczegółowoRozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.3. ZADANIA W zadaniach 2.1 2.20
Bardziej szczegółowoA. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1
A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe ZAGADNIENIE DUALNE Z każdym zagadnieniem liniowym związane jest inne zagadnienie nazywane dualnym. Podamy teraz teraz jak budować zagadnienie
Bardziej szczegółowoProgramowanie matematyczne
dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
Bardziej szczegółowoProblem zarządzania produkcją i zapasami
Problem zarządzania produkcją i zapasami Wykorzystamy zasadę optymalności Bellmana do poradzenia sobie z zarządzaniem zapasami i produkcją w określonym czasie z punktu widzenia istniejącego i mogącego
Bardziej szczegółowoĆwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy
Bardziej szczegółowoZadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba
Bardziej szczegółowoAlgebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Bardziej szczegółowoRachunkowość. Decyzje zarządcze 1/58
Rachunkowość zarządcza Decyzje zarządcze 1/58 Decyzje zarządcze Spis treści Rodzaje decyzji zarządczych Decyzje podjąć / odrzucić działanie Ogólny opis Koszty relewantne opis i przykłady Przykłady decyzji
Bardziej szczegółowoMETODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
Bardziej szczegółowo1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną
binarną są określane mianem zadania programowania binarnego. W stosunku do dyskretnych modeli decyzyjnych stosuje się odrębną klasę metod ich rozwiązywania. W dalszych częściach niniejszego rozdziału zostaną
Bardziej szczegółowoWykład z modelowania matematycznego. Algorytm sympleks.
Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej
Bardziej szczegółowoPROGRAM OPTYMALIZACJI PLANU PRODUKCJI
Strona 1 PROGRAM OPTYMALIZACJI PLANU PRODUKCJI Program autorski opracowany przez Sławomir Dąbrowski ul. SIENKIEWICZA 3 m. 18 26-220 STĄPORKÓW tel: 691-961-051 email: petra.art@onet.eu, sla.dabrowscy@onet.eu
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Bardziej szczegółowoInstytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.
Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania
Bardziej szczegółowoFinanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych
dr inż. Ryszard Rębowski 1 OPIS ZJAWISKA Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych 8 listopada 2015 1 Opis zjawiska Będziemy obserwowali proces tworzenia
Bardziej szczegółowo