Programowanie liniowe
|
|
- Henryka Sobczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, / 15
2 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal) kotlet schabowy ziemniaki 70 0, kasza gryczana 90 0, sałatka 300 0, zapotrzebowanie ,2 100 Zadanie zminimalizuj 237x k + 60x z + 141x g + 25x s z zachowaniem warunków 500x k + 70x z + 90x g + 300x s x z + 0.5x g + 0.1x s 1.2 x z + 75x s 100 x k, x z, x g, x s 0 Łukasz Kowalik (UW) LP April 8, / 15
3 Co to jest program liniowy? Definicja Program liniowy (w skrócie PL) jest to problem minimalizacji/maksymalizacji liniowej funkcji celu o n argumentach x 1, x 2,..., x n przy zachowaniu pewnej liczby równości lub nierówności liniowych (będziemy je nazywać ograniczeniami) zawierających zmienne x i. Łukasz Kowalik (UW) LP April 8, / 15
4 PL a dyskretne problemy algorytmiczne Wiele problemów algorytmicznych możemy zapisać jako programy liniowe. Np. maksymalny przepływ: zmaksymalizuj v V f sv z zachowaniem warunków f vw c(v, w) v, w V f vw = f wv v, w V w V f vw = 0 v V \ {s, t} Łukasz Kowalik (UW) LP April 8, / 15
5 PL a dyskretne problemy algorytmiczne Wiele problemów algorytmicznych możemy zapisać jako programy liniowe. Np. maksymalny przepływ: zmaksymalizuj v V f sv z zachowaniem warunków f vw c(v, w) v, w V f vw = f wv v, w V w V f vw = 0 v V \ {s, t} Najtańszy przepływ o wartości x? Proszę bardzo: zminimalizuj v,w V a(v, w)f vw z zachowaniem warunków f vw c(v, w) v, w V f vw = f wv v, w V w V f vw = 0 v V \ {s, t} v V f sv = x. Łukasz Kowalik (UW) LP April 8, / 15
6 Notacja Rozważmy PL o n zmiennych x 1,..., x n. Wartościowanie zmiennych: wektor x R n. liniowa funkcja celu ma postać: n c j x j, j=1 dla pewnego wektora c = (c 1,..., c n ) R n. Inny zapis funkcji celu (iloczyn skalarny): cx Czasem piszemy też (jako iloczyn macierzy): c T x Łukasz Kowalik (UW) LP April 8, / 15
7 Definicje x R n jest rozwiązaniem dopuszczalnym PL gdy x spełnia wszystkie ograniczenia. Łukasz Kowalik (UW) LP April 8, / 15
8 Definicje x R n jest rozwiązaniem dopuszczalnym PL gdy x spełnia wszystkie ograniczenia. x jest rozwiązaniem optymalnym PL gdy x jest dopuszczalny i optymalizuje f-cję celu, tzn Dla każdego rozwiązania dopuszczanego y R n, (dla problemu minimalizacyjnego) cx cy Łukasz Kowalik (UW) LP April 8, / 15
9 Definicje x R n jest rozwiązaniem dopuszczalnym PL gdy x spełnia wszystkie ograniczenia. x jest rozwiązaniem optymalnym PL gdy x jest dopuszczalny i optymalizuje f-cję celu, tzn Dla każdego rozwiązania dopuszczanego y R n, (dla problemu minimalizacyjnego) cx cy PL jest dopuszczalny gdy istnieje rozwiązanie dopuszczalne, wpp. jest sprzeczny. Łukasz Kowalik (UW) LP April 8, / 15
10 Definicje x R n jest rozwiązaniem dopuszczalnym PL gdy x spełnia wszystkie ograniczenia. x jest rozwiązaniem optymalnym PL gdy x jest dopuszczalny i optymalizuje f-cję celu, tzn Dla każdego rozwiązania dopuszczanego y R n, (dla problemu minimalizacyjnego) cx cy PL jest dopuszczalny gdy istnieje rozwiązanie dopuszczalne, wpp. jest sprzeczny. PL jest nieograniczony gdy istnieje rozwiązanie dopuszczalne, ale nie ma rozwiązań optymalnych, tzn. λ R rozw. dopuszczalne x R n t.ż. xc < λ Łukasz Kowalik (UW) LP April 8, / 15
11 Postać kanoniczna zmaksymalizuj z zachowaniem warunków n j=1 c jx j n j=1 a ijx j b i i = 1,..., m gdzie {a ij, b i, c j } są dane. Zapis macierzowy: Łukasz Kowalik (UW) LP April 8, / 15
12 Postać kanoniczna zmaksymalizuj z zachowaniem warunków n j=1 c jx j n j=1 a ijx j b i i = 1,..., m gdzie {a ij, b i, c j } są dane. Zapis macierzowy: zmaksymalizuj z zachowaniem warunków c T x Ax b Łukasz Kowalik (UW) LP April 8, / 15
13 Postać kanoniczna zmaksymalizuj z zachowaniem warunków n j=1 c jx j n j=1 a ijx j b i i = 1,..., m gdzie {a ij, b i, c j } są dane. Zapis macierzowy: zmaksymalizuj z zachowaniem warunków c T x Ax b Fakt 1 Każdy program liniowy można sprowadzić do równoważnego programu w postaci kanonicznej. Łukasz Kowalik (UW) LP April 8, / 15
14 Równoważność programów liniowych Rozważmy PL L i L, maksymalizacyjne, z funkcjami celu c i c. L i L są równoważne gdy dla każdego rozw. dopuszczalnego x programu L istnieje rozw. dopuszczalne x programu L tż. cx = c x. dla każdego rozw. dopuszczalnego x programu L istnieje rozw. dopuszczalne x programu L tż. cx = c x. Łukasz Kowalik (UW) LP April 8, / 15
15 Równoważność programów liniowych Rozważmy maksymalizacyjny PL L i minimalizacyjny PL L, z funkcjami celu c i c. L i L są równoważne gdy dla każdego rozw. dopuszczalnego x programu L istnieje rozw. dopuszczalne x programu L tż. cx = c x. dla każdego rozw. dopuszczalnego x programu L istnieje rozw. dopuszczalne x programu L tż. cx = c x. Łukasz Kowalik (UW) LP April 8, / 15
16 Postać standardowa wersja max: zmaksymalizuj z zachowaniem warunków wersja min: zminimalizuj z zachowaniem warunków c T x Ax b x 0 c T x Ax b x 0 Fakt 2 Każdy program liniowy można sprowadzić do równoważnego programu w postaci standardowej. Łukasz Kowalik (UW) LP April 8, / 15
17 Postać dopełnieniowa zmaksymalizuj z zachowaniem warunków c T x Ax = b x 0 Fakt 3 Każdy program liniowy można sprowadzić do równoważnego programu w postaci dopełnieniowej. Łukasz Kowalik (UW) LP April 8, / 15
18 Geometria programów liniowych f (x) 4 x 2 = x max x 1 + 2x 2 x 2 x x 1 + x 2 4 2x 2 + x 1 0 x x 1 + x 2 = 3 1 x x 1 + x 2 = 4 2x 2 + x 1 = 0 Łukasz Kowalik (UW) LP April 8, / 15
19 Wnioski 2 zmienne: ogólnie: ograniczenia półpłaszczyzny zbiór rozwiązań dopuszczalnych wielokąt (wypukły), być może nieograniczony. zbiór punktów spełniających ax = b hiperpłaszczyzna zbiór punktów spełniających ax b półprzestrzeń zbiór rozwiązań dopuszczalnych PL wielościan (wypukły). Łukasz Kowalik (UW) LP April 8, / 15
20 Równoważność pojęć wierzchołka Wierzchołkiem wielościanu P nazywamy dowolny punkt x P, który jest jedynym rozwiązaniem optymalnym dla pewnej funkcji celu c. Łukasz Kowalik (UW) LP April 8, / 15
21 Równoważność pojęć wierzchołka Wierzchołkiem wielościanu P nazywamy dowolny punkt x P, który jest jedynym rozwiązaniem optymalnym dla pewnej funkcji celu c. Punktem ekstremalnym wielościanu P nazywamy dowolny punkt x P, który nie jest wypukłą kombinacją dwóch innych punktów y, z P. (tzn. dowolny punkt postaci λy + (1 λ)z dla pewnego λ [0, 1].) Łukasz Kowalik (UW) LP April 8, / 15
22 Równoważność pojęć wierzchołka Wierzchołkiem wielościanu P nazywamy dowolny punkt x P, który jest jedynym rozwiązaniem optymalnym dla pewnej funkcji celu c. Punktem ekstremalnym wielościanu P nazywamy dowolny punkt x P, który nie jest wypukłą kombinacją dwóch innych punktów y, z P. (tzn. dowolny punkt postaci λy + (1 λ)z dla pewnego λ [0, 1].) Bazowe rozwiązanie dopuszczalne (brd) PL o n zmiennych to rozwiązanie dopuszczalne x R n takie, że istnieje n liniowo niezależnych ograniczeń (w sensie wektorów współczynników przy x i, tzn. x 1 + 2x 2 1 i x 1 + 2x 2 2 są liniowo zależne), które dla x są spełnione z równością. Łukasz Kowalik (UW) LP April 8, / 15
23 Równoważność pojęć wierzchołka Fakt 4 Wierzchołkiem wielościanu P nazywamy dowolny punkt x P, który jest jedynym rozwiązaniem optymalnym dla pewnej funkcji celu c. Punktem ekstremalnym wielościanu P nazywamy dowolny punkt x P, który nie jest wypukłą kombinacją dwóch innych punktów y, z P. (tzn. dowolny punkt postaci λy + (1 λ)z dla pewnego λ [0, 1].) Bazowe rozwiązanie dopuszczalne (brd) PL o n zmiennych to rozwiązanie dopuszczalne x R n takie, że istnieje n liniowo niezależnych ograniczeń (w sensie wektorów współczynników przy x i, tzn. x 1 + 2x 2 1 i x 1 + 2x 2 2 są liniowo zależne), które dla x są spełnione z równością. Powyższe pojęcia są równoważne (dowód tablica) Łukasz Kowalik (UW) LP April 8, / 15
24 Struktura rozwiązań optymalnych Twierdzenie Każdy ograniczony PL w postaci standardowej max c T x, Ax b, x 0 ma rozwiązanie optymalne, które jest punktem ekstremalnym. (dowód tablica) Łukasz Kowalik (UW) LP April 8, / 15
Algorytm simplex i dualność
Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
1 Podstawowe pojęcia. 1.1 Co to jest programowanie liniowe? Łukasz Kowalik, Wstęp do programowania liniowego 1
Łukasz Kowalik, Wstęp do programowania liniowego 1 1 Podstawowe pojęcia 1.1 Co to jest programowanie liniowe? Program liniowy (w skrócie PL 1 ) jest to problem minimalizacji/maksymalizacji liniowej funkcji
TOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
1 Przykładowe klasy zagadnień liniowych
& " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
PROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Wprowadzenie do badań operacyjnych - wykład 2 i 3
Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j
Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12
Elementy modelowania matematycznego
Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Badania Operacyjne Ćwiczenia nr 2 (Materiały)
Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy
Zbiory wypukłe i stożki
Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R
Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a
Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje
Formy kwadratowe. Rozdział 10
Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Wykład z modelowania matematycznego. Algorytm sympleks.
Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
Metody wielokryterialne. Tadeusz Trzaskalik
Metody wielokryterialne Tadeusz Trzaskalik 4.1. Wprowadzenie Słowa kluczowe Zadanie wielokryterialne Zadanie wielokryterialne programowania liniowego Przestrzeń decyzyjna Zbiór rozwiązań za dopuszczalnych
Układy równań liniowych
Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13
Układy równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0
METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 cx MAX Ax < b x > 0 Postać standardowa (kanoniczna): z = 5 x 1 + 6x 2 + 0x 3 + 0x 4 MAX
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2017 Mirosław Sobolewski (UW) Warszawa, 2017 1 / 10 Definicja Funkcja
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Standardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
Laboratorium Metod Optymalizacji
Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena
Metoda Karusha-Kuhna-Tuckera
Badania operacyjne i teoria optymalizacji Poznań, 2015/2016 Plan 1 Sformułowanie problemu 2 3 Warunki ortogonalności 4 Warunki Karusha-Kuhna-Tuckera 5 Twierdzenia Karusha-Kuhna-Tuckera 6 Ograniczenia w
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Wielokryteriowa optymalizacja liniowa
Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia
19 Własności iloczynu skalarnego: norma, kąt i odległość
19 Własności iloczynu skalarnego: norma, kąt i odległość Załóżmy, że V jest przestrzenią liniową z iloczynem skalarnym.,.. Definicja 19.1 Normą (długością) wektora v V nazywamy liczbę v = v, v. Uwaga 1
PROGRAMOWANIE NIELINIOWE
PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Układy liniowo niezależne
Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1
Dualność w programowaniu liniowym
2016-06-12 1 Dualność w programowaniu liniowym Badania operacyjne Wykład 2 2016-06-12 2 Plan wykładu Przykład zadania dualnego Sformułowanie zagadnienia dualnego Symetryczne zagadnienie dualne Niesymetryczne
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy
Przekształcenia liniowe
Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7
Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Programowanie nieliniowe
Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
3 Przestrzenie liniowe
MIMUW 3 Przestrzenie liniowe 8 3 Przestrzenie liniowe 31 Przestrzenie liniowe Dla dowolnego ciała K, analogicznie jak to robiliśmy dla R, wprowadza się operację dodawania wektorów kolumn z K n i mnożenia
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).
Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Zastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.
BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie
ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH
ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Wykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
Wykład 7 Informatyka Stosowana Magdalena Alama-Bućko 16 kwietnia 2018 Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 1 / 23 Programowanie liniowe Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 2 / 23
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 1. Sprawdzić, czy następujące podzbiory są podprzestrzeniami liniowymi przestrzeni R n (dla odpowiednich n) (a) {[u, v, 2u, 4v] ; u, v R} R 4, (b) {[u, v,
Wprowadzenie do badań operacyjnych
Wprowadzenie do badań operacyjnych Hanna Furmańczyk 10 października 2008 Badania operacyjne (ang. operations research) - dyscyplina naukowa związana z teorią decyzji pozwalająca wyznaczyć metodę i rozwiązanie
Lokalna odwracalność odwzorowań, odwzorowania uwikłane
Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Definicja Niech V, W,
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
Programowanie liniowe
Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
14. Przestrzenie liniowe
14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) 1. Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe
Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód.
Metody numeryczne Paweł Zieliński p. 1/19 Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza bazę przestrzeni liniowej Π n. Dowód. Lemat 2. Dowolny wielomian Q j stopnia j niższego od k jest prostopadły
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
Badania operacyjne. 1 Programowanie liniowe. kierunek Informatyka, studia II stopnia ćwiczenia. 1.1 Modelowanie
Badania operacyjne kierunek Informatyka studia II stopnia ćwiczenia Programowanie liniowe Modelowanie Zadanie Producent odzieży powinien określić ile kurtek i płaszczy należy wyprodukować tak aby zysk
Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s.
Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2016/2017) 1 Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko
BADANIA OPERACYJNE pytania kontrolne
DUALNOŚĆ 1. Podać twierdzenie o dualności 2. Jaka jest zależność pomiędzy funkcjami celu w zadaniu pierwotnym i dualnym? 3. Prawe strony ograniczeń zadania pierwotnego, w zadaniu dualnym są 4. Współczynniki
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218