Projektowanie rozmieszczenia stanowisk roboczych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Projektowanie rozmieszczenia stanowisk roboczych"

Transkrypt

1 Projektowanie rozmieszczenia stanowisk roboczych

2 Metoda trójkątów Schmigalli

3 Metoda trójkątów Schmigalli Dane wejściowe: - liczba rozmieszczonych stanowisk - macierz powiązań transportowych

4 Metoda trójkątów Schmigalli Obliczenia Polegają na znalezieniu rozwiązania, dającego minimalną wartość sumy powiązań wszystkich rozstawionych obiektów.

5 Metoda trójkątów Schmigalli Efekt Uzyskanie kolejności rozstawienia obiektów i jednocześnie określenie kształtu powierzchni produkcyjnej, na której należy umieścić obiekty w warunkach rzeczywistych.

6 Metoda trójkątów Schmigalli n n Q i 1 j 1 S ij L m( ij) min Q sumaryczna wartość obciążenia rozstawionych stanowisk (funkcja celu), n liczba rozstawianych stanowisk, i,j rozstawiane obiekty, m (i) miejsce rozstawienia i-tego obiektu, m (j) miejsce rozstawienia j-tego obiektu, S ij ij-ty element macierzy obciążenia stanowisk roboczych, L m(ij) odległość pomiędzy dwoma stanowiskami m, w których rozstawiono obiekty i oraz j.

7 Metoda trójkątów Schmigalli

8 Metoda trójkątów Schmigalli Obiekt n Powiązania technologiczne n S 11 S 12 S 13 S 1n S 21 S 22 S 23 S 2n S 31 S 32 S 33 S 3n S n1 S n2 S n3 S nn

9 Metoda trójkątów Schmigalli 1. Spośród wszystkich rozstawionych obiektów wybrać taką parę, która odznacza się największą wartością powiązań technologicznych (S ij = max).

10 Metoda trójkątów Schmigalli 2. Umieścić wybraną parę obiektów w dowolnych sąsiednich węzłach siatki trójkątów równobocznych.

11 Metoda trójkątów Schmigalli

12 Metoda trójkątów Schmigalli 3. Ustalić wartość powiązań technologicznych między obiektami już ustawionymi a obiektami jeszcze nie rozmieszczonymi.

13 Metoda trójkątów Schmigalli 4. Spośród obiektów jeszcze nie ustawionych wybrać ten, który ma największą wartość powiązań z obiektami już rozmieszczonymi.

14 Metoda trójkątów Schmigalli 5. Umieścić wybrany obiekt w takim węźle siatki trójkątów równobocznych, któremu odpowiada najmniejsza wartość funkcji celu (będzie to zawsze węzeł położony najbliżej obiektów już rozlokowanych z uwzględnieniem wielkości przepływu transportowego).

15 Metoda trójkątów Schmigalli 6. Powtarzać kroki 3-5, aż do momentu rozmieszczenia wszystkich obiektów.

16 Metoda trójkątów Schmigalli Przykład 1

17 Metoda trójkątów Schmigalli - przykład W nowo powstającym oddziale produkcyjnym należy określić sposób rozmieszczenia pięciu stanowisk roboczych, przy którym wielkość pracy transportowej (suma iloczynów ciężarów przewożonych materiałów i odległości) jest najmniejsza.

18 Metoda trójkątów Schmigalli - przykład Stanowisko Wielkości przepływu materiałów [t] X X X 6 X X

19 Metoda trójkątów Schmigalli - przykład Stanowisko Iteracje Kolejność Wielkości przepływu materiałów [t] X X X X X

20 Metoda trójkątów Schmigalli - przykład Q=15

21 Metoda trójkątów Schmigalli - przykład Stanowisko Wielkości przepływu materiałów [t] X X X X X Iteracje Kolejność 1 x x

22 Metoda trójkątów Schmigalli - przykład Q= Q=29

23 Metoda trójkątów Schmigalli - przykład Stanowisko Iteracje 1 Wielkości przepływu materiałów [t] X X X X X Kolejność 1 x x x

24 Metoda trójkątów Schmigalli - przykład Stanowisko Iteracje 1 2 Wielkości przepływu materiałów [t] X X X X X Kolejność 1 x x x x

25 Metoda trójkątów Schmigalli - przykład

26 Metoda trójkątów Schmigalli - przykład Wielkość pracy transportowej Stanowisko I II III IV V VI VII VIII IX Węzeł Razem

27 Metoda trójkątów Schmigalli - przykład Wielkość pracy transportowej Stanowisko I II III IV V VI VII VIII IX Węzeł Razem

28 Metoda trójkątów Schmigalli - przykład Q=29+2x4+6+8 Q=51

29 Metoda trójkątów Schmigalli - przykład Stanowisko Iteracje Wielkości przepływu materiałów [t] X X X X X Kolejność 1 x x x x 9 5

30 Metoda trójkątów Schmigalli - przykład

31 Metoda trójkątów Schmigalli - przykład Wielkość pracy transportowej Stanowisko I II III IV V VI VII VIII IX X Węzeł Razem

32 Metoda trójkątów Schmigalli - przykład Q= Q=6

33 Metoda trójkątów Schmigalli Przykład 2

34 Metoda trójkątów Schmigalli przykład 2 Przed rozpoczęciem obliczeń założono, iż wszystkie detale są wykonywane w równej ilości operacji technologicznych. 1 piła 2 tokarka 3 wiertarka 4 frezarka 5 szlifierka 6 stanowisko kontroli technicznej

35 Metoda trójkątów Schmigalli przykład 2 Lp. Kolejność operacji na stanowiskach Program produkcyjny [tys. szt.] Ciężar detalu [kg] , , , ,

36 Zestawienie przepływów pomiędzy stanowiskami x x x x x x

37 Macierz symetryczna powiązań stanowisk x 2 33 x x x x x

38 Ustalenie kolejności rozmieszczania stanowisk x 2 33 x x x x x Iteracje Kolejność

39 Ustalenie kolejności rozmieszczania stanowisk x 2 33 x x x x x Iteracje Kolejność

40 Ustalenie kolejności rozmieszczania stanowisk x 2 33 x x x x x Iteracje Kolejność

41 Ustalenie kolejności rozmieszczania stanowisk x 2 33 x x x x x Iteracje Kolejność

42 x 2 33 x x x x x Iteracje Kolejność

43 Zadanie Rozmieść stanowiska na modułowej siatce trójkątów, zgodnie z określoną wcześniej kolejnością, przy minimalnej funkcji celu.

44 Zadanie 1 Należy rozmieścić 4 stanowiska. Dane dotyczące powiązań technologicznych (wielkości przepływów materiałów w ciągu miesiąca) zawiera poniższa tabela. Skorzystaj z metody Schmigalli. Stanowisko Wielkość przepływu materiałów i j X x x x

45 Zadanie 2 Przed rozpoczęciem obliczeń założono, iż wszystkie detale są wykonywane w równej ilości operacji technologicznych. Należy rozmieścić 6 stanowisk roboczych. Lp. Kolejność operacji na stanowiskach Program produkcyjny [tys. szt.] Ciężar detalu [kg] , , , ,

LOGISTYKA ZAOPATRZENIA I PRODUKCJI ĆWICZENIA 13 ROZMIESZCZENIE STANOWISK (LAYOUT)

LOGISTYKA ZAOPATRZENIA I PRODUKCJI ĆWICZENIA 13 ROZMIESZCZENIE STANOWISK (LAYOUT) 1 LOGISTYKA ZAOPATRZENIA I PRODUKCJI ĆWICZENIA 13 ROZMIESZCZENIE STANOWISK (LAYOUT) Autor: dr inż. Roman DOMAŃSKI 2 LITERATURA Marek Fertsch, Danuta Głowacka-Fertsch Zarządzanie produkcją, WSL Poznań 2004

Bardziej szczegółowo

OPTYMALIZACJA PRZEBIEGU PRODUKCJI Z WYKORZYSTANIEM HARMONOGRAMÓW PRACY ORAZ METODY BLOCHA-SCHMIGALLI

OPTYMALIZACJA PRZEBIEGU PRODUKCJI Z WYKORZYSTANIEM HARMONOGRAMÓW PRACY ORAZ METODY BLOCHA-SCHMIGALLI OPTYMALIZACJA PRZEBIEGU PRODUKCJI Z WYKORZYSTANIEM HARMONOGRAMÓW PRACY ORAZ METODY BLOCHA-SCHMIGALLI Celina BARTNICKA Streszczenie: W dzisiejszych czasach wymogi rynku są coraz większe, aby produkować

Bardziej szczegółowo

WSPOMAGANIE PROJEKTOWANIA LINII PRODUKCYJNYCH U-KSZTAŁTNYCH METODĄ PROGRAMOWANIA SIECIOWEGO

WSPOMAGANIE PROJEKTOWANIA LINII PRODUKCYJNYCH U-KSZTAŁTNYCH METODĄ PROGRAMOWANIA SIECIOWEGO WSPOMAGANIE PROJEKTOWANIA LINII PRODUKCYJNYCH U-KSZTAŁTNYCH METODĄ PROGRAMOWANIA SIECIOWEGO Władysław ZIELECKI, Jarosław SĘP Streszczenie: W pracy przedstawiono istotę tworzenia linii produkcyjnych U-kształtnych

Bardziej szczegółowo

Zarządzanie produkcją.

Zarządzanie produkcją. Zarządzanie produkcją i usługami Zarządzanie produkcją. mgr inż. Martyna Malak Katedra Systemów Logistycznych martyna.malak@wsl.com.pl Zarządzanie produkcją Ćwiczenia 5 BILANSOWANIE ZADAŃ PRODUKCYJNYCH

Bardziej szczegółowo

Harmonogramowanie produkcji

Harmonogramowanie produkcji Harmonogramowanie produkcji Przedmiot: Zarządzanie zasobami przedsiębiorstwa Moduł: 4/4 Opracował: mgr inż. Paweł Wojakowski Instytut Technologii Maszyn i Automatyzacji Produkcji Zakład Projektowania Procesów

Bardziej szczegółowo

Harmonogramowanie produkcji

Harmonogramowanie produkcji Harmonogramowanie produkcji Przedmiot: Zarządzanie produkcją Moduł: 2/3 Prowadzący: mgr inż. Paweł Wojakowski Instytut Technologii Maszyn i Automatyzacji Produkcji Zakład Projektowania Procesów Wytwarzania

Bardziej szczegółowo

Projektowanie zakładów przemysłowych

Projektowanie zakładów przemysłowych Projektowanie zakładów przemysłowych Wykonali: Spis treści Spis treści... 2 1.Spis oznaczeń przyjętych w projekcie... 4 2 Dane do projektu sytuacja projektowa... 6 2.1 Ogólna charakterystyka zakładu...

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Metody planowania i sterowania produkcją BUDOWA HARMONOGRAMU, CYKL PRODUKCYJNY, DŁUGOTRWAŁOŚĆ CYKLU PRODUKCYJNEGO.

Metody planowania i sterowania produkcją BUDOWA HARMONOGRAMU, CYKL PRODUKCYJNY, DŁUGOTRWAŁOŚĆ CYKLU PRODUKCYJNEGO. Metody planowania i sterowania produkcją BUDOWA HARMONOGRAMU, CYKL PRODUKCYJNY, DŁUGOTRWAŁOŚĆ CYKLU PRODUKCYJNEGO. Proces produkcyjny. Proces produkcyjny wyrobu można zdefiniować jako zbiór operacji produkcyjnych

Bardziej szczegółowo

Klasyczne zagadnienie przydziału

Klasyczne zagadnienie przydziału Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem

Bardziej szczegółowo

Logistyka produkcji i dystrybucji MSP ćwiczenia 4 CRP PLANOWANIE ZAPOTRZEBOWANIA POTENCJAŁU. mgr inż. Roman DOMAŃSKI Katedra Systemów Logistycznych

Logistyka produkcji i dystrybucji MSP ćwiczenia 4 CRP PLANOWANIE ZAPOTRZEBOWANIA POTENCJAŁU. mgr inż. Roman DOMAŃSKI Katedra Systemów Logistycznych Logistyka produkcji i dystrybucji MSP ćwiczenia 4 CRP PLANOWANIE ZAPOTRZEBOWANIA POTENCJAŁU mgr inż. Roman DOMAŃSKI Katedra Systemów Logistycznych 1 Literatura Marek Fertsch Zarządzanie przepływem materiałów

Bardziej szczegółowo

PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI

PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 5 PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI 5.2. Ćwiczenia komputerowe

Bardziej szczegółowo

1. Bilansowanie zdolności produkcyjnych 2. Zapasy

1. Bilansowanie zdolności produkcyjnych 2. Zapasy ZARZĄDZANIE PRODUKCJĄ 1. Bilansowanie zdolności produkcyjnych 2. Zapasy 1. Podstawowe pojęcia dot. Bilansowania zdolności produkcyjnych Zasoby produkcyjne każdy czynnik materialny (powierzchnia, maszyny,

Bardziej szczegółowo

METODY PLANOWANIA I STEROWANIA PRODUKCJĄ OBLICZENIA NA POTRZEBY OPRACOWANI HARMONOGRAMU PRACY GNIAZDA. AUTOR: dr inż.

METODY PLANOWANIA I STEROWANIA PRODUKCJĄ OBLICZENIA NA POTRZEBY OPRACOWANI HARMONOGRAMU PRACY GNIAZDA. AUTOR: dr inż. 1 METODY PLANOWANIA I STEROWANIA PRODUKCJĄ OBLICZENIA NA POTRZEBY OPRACOWANI HARMONOGRAMU PRACY GNIAZDA AUTOR: dr inż. ROMAN DOMAŃSKI 2 1. DANE PROJEKTOWE 1.1. DANE WEJŚCIOWE DO PROJEKTU 3 1.1. Asortyment

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

ZARZĄDZANIE PRODUKCJĄ I USŁUGAMI MODUŁ PRODUKCJA ĆWICZENIA 5 BILANSOWANIE ZADAŃ Z POTENCJAŁEM PRODUKCYJNYM

ZARZĄDZANIE PRODUKCJĄ I USŁUGAMI MODUŁ PRODUKCJA ĆWICZENIA 5 BILANSOWANIE ZADAŃ Z POTENCJAŁEM PRODUKCYJNYM 1 ZARZĄDZANIE PRODUKCJĄ I USŁUGAMI MODUŁ PRODUKCJA ĆWICZENIA 5 BILANSOWANIE ZADAŃ Z POTENCJAŁEM PRODUKCYJNYM LITERATURA: 2 Marek Fertsch, Danuta Głowacka-Fertsch Zarządzanie produkcją, Wyższa Szkoła Logistyki,

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76 . p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - szeregowanie zadań. Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Optymalizacja harmonogramów budowlanych - szeregowanie zadań. Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Optymalizacja harmonogramów budowlanych - szeregowanie zadań Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Opis zagadnienia Zadania dotyczące szeregowania zadań należą do szerokiej

Bardziej szczegółowo

Technologia robót budowlanych ROK III SEM.5 Wykład 2

Technologia robót budowlanych ROK III SEM.5 Wykład 2 ROK III SEM.5 Wykład 2 Procesy budowlane klasyfikacje procesów budowlanych, elementy procesu budowlanego, formy zapisu, technologia i efektywność wznoszenia obiektów budowlanych Definicje procesu W literaturze

Bardziej szczegółowo

Praca Interwencyjna: Redukcja zapotrzebowania na polecenie OSP

Praca Interwencyjna: Redukcja zapotrzebowania na polecenie OSP Część II SIWZ Opis przedmiotu zamówienia PSE Operator S.A. SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA (SIWZ) DLA USŁUGI Praca Interwencyjna: Redukcja zapotrzebowania na polecenie OSP CZĘŚĆ II SIWZ Opis

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

Instrukcja. Laboratorium Metod i Systemów Sterowania Produkcją.

Instrukcja. Laboratorium Metod i Systemów Sterowania Produkcją. Instrukcja do Laboratorium Metod i Systemów Sterowania Produkcją. 2010 1 Cel laboratorium Celem laboratorium jest poznanie metod umożliwiających rozdział zadań na linii produkcyjnej oraz sposobu balansowania

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 217 Nazwa kwalifikacji: Organizacja i nadzorowanie procesów produkcji maszyn i urządzeń Oznaczenie kwalifikacji:

Bardziej szczegółowo

1. Projekt techniczny Podciągu

1. Projekt techniczny Podciągu 1. Projekt techniczny Podciągu Podciąg jako belka teowa stanowi bezpośrednie podparcie dla żeber. Jest to główny element stropu najczęściej ślinie bądź średnio obciążony ciężarem własnym oraz reakcjami

Bardziej szczegółowo

Sieci Kohonena Grupowanie

Sieci Kohonena Grupowanie Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie

Bardziej szczegółowo

Rozwiązanie problemu transportowego metodą VAM. dr inż. Władysław Wornalkiewicz

Rozwiązanie problemu transportowego metodą VAM. dr inż. Władysław Wornalkiewicz Rozwiązanie problemu transportowego metodą VAM dr inż. Władysław Wornalkiewicz Występuje wiele metod rozwiązywania optymalizacyjnego zagadnienia transportowego. Jedną z nich jest VAM (Vogel s approximation

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność

Bardziej szczegółowo

Ą Ń Ę Ę Ą Ę Ć ź Ż Ż Ą ń Ź Ż Ż ń ń Ź Ą Ń Ą Ą Ę ń ź Ę Ę Ż Ć Ą ź Ą Ę ń ź Ę ń ń Ą Ż Ę ń Ą ń ń Ę Ę Ę Ź ń Ę ń ń ń ń Ź Ę Ś ź Ą Ń ń Ż Ź Ę Ź ń ń ń Ę Ę ń Ż Ą ń ńń Ś ń ń Ż Ż Ę Ż Ń Ę Ą Ń Ł ń ń ń ń ń ń ń ń Ś Ź Ę Ś

Bardziej szczegółowo

Ł ŚĆ ń Ś Ł Ź Ć Ł Ą ńń ć Ż Ą Ł Ś ń Ł ć Ś ń ć ć ć Ó Ż ć ć Ą Ś ć Ś ć Ń Ś ć Ś ć Ś Ć Ś Ż Ś Ś Ż Ś Ó ń ć ć Ź Ł ć ć ć ń ń ć ć Ą ć ć ć Ź ć ć ć ć ć ć Ó Ź Ó Ł Ł Ń ć ć Ź Ą ć ć ń ć Ą ć ć ć Ł Ź Ź Ź Ż Ł Ż Ł Ż ć ń ć Ą

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

Lista 1 PL metoda geometryczna

Lista 1 PL metoda geometryczna Lista 1 PL metoda geometryczna 1.1. Znajdź maksimum funkcji celuf(x 1,x 2 )=5x 1 +7x 2 przy ograniczeniach: 2x 1 +2x 2 600, 2x 1 +4x 2 1000, x i 0 dlai=1,2 1.2. Znajdź maksimum funkcji celuf(x 1,x 2 )=2x

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

1. Projekt techniczny żebra

1. Projekt techniczny żebra 1. Projekt techniczny żebra Żebro stropowe jako belka teowa stanowi bezpośrednie podparcie dla płyty. Jest to element słabo bądź średnio obciążony siłą równomiernie obciążoną składającą się z obciążenia

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Park maszynowy, klasy dokładności i możliwości techniczne firmy:

Park maszynowy, klasy dokładności i możliwości techniczne firmy: Park maszynowy, klasy dokładności i możliwości techniczne firmy: Lp. 1. Centrum CNC szt. 3 powierzchnia stołu mm 1320x460 zakres obróbki XxYxZ mm 1020x500x635 dokładność pozycjonowania mm +/-0,002 powtarzalność

Bardziej szczegółowo

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012 Finał 20 kwietnia 2012 roku Zestaw dla uczniów klas III Uczeń Liczba zdobytych punktów Drogi Uczniu, witaj na finale konkursu Omnibus Matematyczny. Przeczytaj

Bardziej szczegółowo

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1 Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie

Bardziej szczegółowo

Rozwiązywanie problemów z użyciem Solvera programu Excel

Rozwiązywanie problemów z użyciem Solvera programu Excel Rozwiązywanie problemów z użyciem Solvera programu Excel Podstawowe czynności: aktywować dodatek Solver oraz ustawić w jego opcjach maksymalny czas trwania algorytmów na sensowną wartość (np. 30 sekund).

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 8 MARCA 2014 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) ( Liczba 9 3 6 4 27) jest

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

Planowanie zagregowane SOP

Planowanie zagregowane SOP Planowanie zagregowane SOP Przedmiot: Zarządzanie zasobami przedsiębiorstwa Moduł: 1/4 Opracował: mgr inż. Paweł Wojakowski Instytut Technologii Maszyn i Automatyzacji Produkcji Zakład Projektowania Procesów

Bardziej szczegółowo

Praca Interwencyjna: Redukcja zapotrzebowania na polecenie OSP

Praca Interwencyjna: Redukcja zapotrzebowania na polecenie OSP PSE S.A. SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA (SIWZ) DLA USŁUGI Praca Interwencyjna: Redukcja zapotrzebowania na polecenie OSP CZĘŚĆ II SIWZ Opis Przedmiotu Zamówienia Strona 1 z 13 1 Opis ogólny

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Materiały dla finalistów

Materiały dla finalistów Materiały dla finalistów Malachoviacus Informaticus 2016 11 kwietnia 2016 Wprowadzenie Poniższy dokument zawiera opisy zagadnień, które będą niezbędne do rozwiązania zadań w drugim etapie konkursu. Polecamy

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYALIZACJA W LOGISTYCE Zagadnienie transportowe 2 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie transportowe z kryterium czasu I rodzaju () Jeżeli w modelu klasycznego zagadnienia transportowego

Bardziej szczegółowo

Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa

Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Spotkanie olimpijskie nr 5 16 lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka Jadwiga Słowik Reguła mnożenia Jeśli wybór polega na podjęciu k decyzji, przy czym pierwszą decyzję możemy

Bardziej szczegółowo

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda

Bardziej szczegółowo

Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5.

Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5. Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5. Schemat Hornera. Wyjaśnienie: Zadanie 1. Pozycyjne reprezentacje

Bardziej szczegółowo

MEODY GRUPOWANIA DANYCH

MEODY GRUPOWANIA DANYCH Sztuczna inteligencja 9999 pages 17 MEODY GRUPOWANIA DANYCH PB 1 CWICZENIE I 1. Ze zbioru danych iris.tab wybra nastepuj ce obiekty: ID SL SW PL PW C 1 5.1 3.5 1.4 0.2 Iris-setosa 2 4.9 3.0 1.4 0.2 Iris-setosa

Bardziej szczegółowo

węzeł konstrukcyjny: belka z jednym podestem (regał przyścienny) podest 400mm podest 400mm podest 500mm podest 500mm podest 600mm podest 600mm

węzeł konstrukcyjny: belka z jednym podestem (regał przyścienny) podest 400mm podest 400mm podest 500mm podest 500mm podest 600mm podest 600mm SYSTEM REGAŁÓW U5 Przy projektowaniu powierzchniowego i przestrzennego układu poszczególnych modułów zestawów regałów za punkt wyjścia należy przyjąć wymiary podstawowych węzłów konstrukcyjnych. (przyścienny,

Bardziej szczegółowo

Sterowanie wykonaniem produkcji

Sterowanie wykonaniem produkcji STEROWANIE WYKONANIEM PRODUKCJI (Production Activity Control - PAC) Sterowanie wykonaniem produkcji (SWP) stanowi najniŝszy, wykonawczy poziom systemu zarządzania produkcją, łączący wyŝsze poziomy operatywnego

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2013 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2013 CZĘŚĆ PRAKTYCZNA Nazwa kwalifikacji: Organizacja i nadzorowanie procesów produkcji maszyn i urządzeń Oznaczenie kwalifikacji: M.44 Numer zadania: 01 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA. Metoda Elementów Skończonych

POLITECHNIKA POZNAŃSKA. Metoda Elementów Skończonych POLITECHNIKA POZNAŃSKA Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Łukasz Żurowski Michał Dolata Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn

Bardziej szczegółowo

Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA

Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe

Bardziej szczegółowo

Klasa 6. Liczby dodatnie i liczby ujemne

Klasa 6. Liczby dodatnie i liczby ujemne Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie

Bardziej szczegółowo

LOGISTYKA HALI PRODUKCYJNEJ

LOGISTYKA HALI PRODUKCYJNEJ 1 LOGISTYKA HALI PRODUKCYJNEJ ZAŁOŻENIA Na potrzebę realizacji projektu przyjęto następujące założenia: Wydział produkcyjny pracuje 5 dni w tygodniu, Części wykonywane są z gotowych półfabrykatów nabywanych

Bardziej szczegółowo

PROJEKT KONSTRUKCYJNO - BUDOWLANY

PROJEKT KONSTRUKCYJNO - BUDOWLANY PROJEKT KONSTRUKCYJNO - BUDOWLANY Nazwa i adres obiektu budowlanego: Instalacja fotowoltaiczna na terenie SUW Krzemienica (gmina Czarna, powiat łańcucki). Działki nr 842/104, 842/22 Inwestor: Gmina Czarna

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.

Bardziej szczegółowo

Nazwa obrabiarki. 1 Centrum poziome 4-osiowe H6B ze stołem obrotowym, sterowanie Fanuc 0iMC (Mitsui Seiki Japonia)... 2

Nazwa obrabiarki. 1 Centrum poziome 4-osiowe H6B ze stołem obrotowym, sterowanie Fanuc 0iMC (Mitsui Seiki Japonia)... 2 Nazwa obrabiarki Strona 1 Centrum poziome 4-osiowe H6B ze stołem obrotowym, sterowanie Fanuc 0iMC (Mitsui Seiki Japonia)... 2 2 Frezarka CNC pionowa FYJ-40RN, stół 400 x 2000 mm, sterowanie Pronum 640FC

Bardziej szczegółowo

PROJEKTOWANIE PROCESU TECHNOLOGICZNEGO WAŁKA STOPNIOWEGO.

PROJEKTOWANIE PROCESU TECHNOLOGICZNEGO WAŁKA STOPNIOWEGO. TEMAT: PROJEKTOWANIE PROCESU TECHNOLOGICZNEGO WAŁKA STOPNIOWEGO. Przebieg projektowania procesu technologicznego: 1. Analiza danych wejściowych 2. Dobór metod i sposobów obróbki 3. Ustalenie postaci i

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

Nazwa kwalifikacji: Organizacja i kontrolowanie robót budowlanych Oznaczenie kwalifikacji: B.33 Numer zadania: 01

Nazwa kwalifikacji: Organizacja i kontrolowanie robót budowlanych Oznaczenie kwalifikacji: B.33 Numer zadania: 01 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2019 Nazwa kwalifikacji: Organizacja i kontrolowanie robót budowlanych Oznaczenie kwalifikacji: B.33 Numer

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Katalog zbędnych środków produkcji 2012

Katalog zbędnych środków produkcji 2012 Katalog zbędnych środków produkcji 2012 WIERTARKA KADŁUBOWA WKA-40 Zakres prędkości obrotowych wrzeciona:...25-1250 obr/min Zakres posuwów wrzeciona:.0,1-0,9 mm/obr Liczba prędkości obrotowych wrzeciona:...6

Bardziej szczegółowo

PROJEKT KONSTRUKCYJNO - BUDOWLANY

PROJEKT KONSTRUKCYJNO - BUDOWLANY PROJEKT KONSTRUKCYJNO - BUDOWLANY Nazwa i adres obiektu budowlanego: Instalacja fotowoltaiczna na terenie SUW w Czarnej (powiat łańcucki). Działka nr 1948/2 Inwestor: Gmina Czarna z siedzibą w Czarnej

Bardziej szczegółowo

WHILE (wyrażenie) instrukcja;

WHILE (wyrażenie) instrukcja; INSTRUKCJE ITERACYJNE WHILE, DO WHILE, FOR Instrukcje iteracyjne pozwalają powtarzać daną instrukcję programu określoną liczbę razy lub do momentu osiągnięcia określonego skutku. Pętla iteracyjna while

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Liczby całkowite. 1. Liczbą przeciwną do 4 jest liczba: A. 1 4 B. 4 C. 4 D Odczytaj, jakie liczby zaznaczono na osi liczbowej.

Liczby całkowite. 1. Liczbą przeciwną do 4 jest liczba: A. 1 4 B. 4 C. 4 D Odczytaj, jakie liczby zaznaczono na osi liczbowej. Liczby całkowite gr. A str. 1/4... imię i nazwisko...... klasa data 1. Liczbą przeciwną do 4 jest liczba: A. 1 4 B. 4 C. 4 D. 1 4 2. Odczytaj, jakie liczby zaznaczono na osi liczbowej. a =........ b =........

Bardziej szczegółowo

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa

Bardziej szczegółowo

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa TECHNOLOGIA MASZYN Wykład dr inż. A. Kampa Technologia - nauka o procesach wytwarzania lub przetwarzania, półwyrobów i wyrobów. - technologia maszyn, obejmuje metody kształtowania materiałów, połączone

Bardziej szczegółowo

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

Praca Interwencyjna: Redukcja zapotrzebowania na polecenie OSP

Praca Interwencyjna: Redukcja zapotrzebowania na polecenie OSP PSE Operator S.A. SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA (SIWZ) DLA USŁUGI Praca Interwencyjna: Redukcja zapotrzebowania na polecenie OSP CZĘŚĆ II SIWZ Opis Przedmiotu Zamówienia Strona 1 z 16 1 Opis

Bardziej szczegółowo

1 Wersja testu A 18 września 2014 r.

1 Wersja testu A 18 września 2014 r. 1 Wersja testu A 18 września 2014 r. 1. Zapisać w postaci przedziału lub uporządkowanej sumy przedziałów zbiór liczb rzeczywstych x, dla których podana implikacja jest prawdziwa. a) x 2 < 4 x < 3, (, +

Bardziej szczegółowo

Planowanie i organizacja produkcji Zarządzanie produkcją

Planowanie i organizacja produkcji Zarządzanie produkcją Planowanie i organizacja produkcji Zarządzanie produkcją Materiały szkoleniowe. Część 2 Zagadnienia Część 1. Parametry procesu produkcyjnego niezbędne dla logistyki Część 2. Produkcja na zapas i zamówienie

Bardziej szczegółowo

~ A ~ 1. Dany jest trójkąt prostokątny o bokach długości 12, 16 i 20. Zmniejszamy długość każdego boku o 8. Wtedy:

~ A ~ 1. Dany jest trójkąt prostokątny o bokach długości 12, 16 i 20. Zmniejszamy długość każdego boku o 8. Wtedy: GIM-. Dany jest trójkąt prostokątny o bokach długości 2, 6 i 20. Zmniejszamy długość każdego boku o 8. Wtedy: I. Powstanie trójkąt o polu równym połowie pola trójkąta pierwotnego II. Pole nowego trójkąta

Bardziej szczegółowo

KOMBINATORYKA. Problem przydziału prac

KOMBINATORYKA. Problem przydziału prac KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty

Bardziej szczegółowo

Egzamin wstępny z Matematyki 1 lipca 2011 r.

Egzamin wstępny z Matematyki 1 lipca 2011 r. Egzamin wstępny z Matematyki 1 lipca 011 r. 1. Mamy 6 elementów. Ile jest możliwych permutacji tych elementów jeśli: a) wszystkie elementy są różne, b) dwa elementy wśród nich są identyczne, a wszystkie

Bardziej szczegółowo

TEMAT: TECHNOLOGIA MODUŁÓW FOTOWOLTAICZNYCH WYMAGANE PARAMETRY TECHNICZNE

TEMAT: TECHNOLOGIA MODUŁÓW FOTOWOLTAICZNYCH WYMAGANE PARAMETRY TECHNICZNE TEMAT: TECHNOLOGIA MODUŁÓW FOTOWOLTAICZNYCH WYMAGANE PARAMETRY TECHNICZNE 1. PODSTAWA OPRACOWANIA Przedmiotem niniejszego opracowania jest opis wymagań dot. parametrów technicznych technologii modułów

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 MARCA 2019 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Poniższa tabela przedstawia temperaturę odczytywana

Bardziej szczegółowo

x+h=10 zatem h=10-x gdzie x>0 i h>0

x+h=10 zatem h=10-x gdzie x>0 i h>0 Zadania optymalizacyjne. Jaka jest największa możliwa wartość iloczynu dwóch liczb, których suma jest równa 60? Rozwiązanie: KROK USTALENIE WZORU Liczby oznaczamy przez a i b więc x+y=60 Następnie wyznaczamy

Bardziej szczegółowo