4.3. Przekształcenia automatów skończonych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "4.3. Przekształcenia automatów skończonych"

Transkrypt

1 4.3. Przeksztłceni utomtów skończonych Konstrukcj utomtu skończonego (niedeterministycznego) n podstwie wyrżeni regulrnego (lgorytm Thompson). Wejście: wyrżenie regulrne r nd lfetem T Wyjście : utomt skończony kceptujący język L(r) (język opisny wyrżeniem regulrnym r) Metod: wyodręnić z wyrżeni regulrnego r elementy podstwowe. Dl elementów podstwowych skonstruowć odpowidjące im utomty, nstępnie połączyć je według poniższych zsd:. Dl zudowć A() i 3f 2. Dl T zudowć A() i 3f 3. Gdy A(s) i A(t) są utomtmi dl wyrżeń regulrnych s i t, to () dl wyrżeni s t zuduj A(s t) A(s) i f A(t) () dl wyrżeni st zuduj A(st) i A(s) A(t) f (c) dl wyrżeni s* zuduj A(s*) i A(s) f

2 (d) dl wyrżeni (s) wykorzystj A(s) ez zmin Przykłd : konstrukcj utomtu skończonego dl wyrżeni regulrnego r = ( )* Rozkłd wyrżeni ( )* : r r 9 r r 7 r 8 r 5 r 6 r 4 * ( r 3 ) r r 2 r = : 2 3 r 2 = : 4 35 r 3 = = r r 2 :

3 r 4 = (r 3 ) r 5 = r 4 * : r 6 = ; r 8 = ; r 9 = - konstrukcje identyczne jk dl r i r 2 r x = : 7' r= r 5 r x = ( )* Więc osttecznie otrzymujemy: ( )* Konstrukcj utomtu deterministycznego n podstwie utomtu niedeterministycznego Dl kżdego utomtu skończonego istnieje deterministyczny utomt skończony kceptujący ten sm język. Dl q Q definiuje się ziór -CLOSURE(q) zwierjący te stny r Q, do których możn dojść z q przechodząc tylko przez -przejści, przy czym również q -CLOSURE(q). Dl S Q definiuje się ziór -CLOSURE(S) zwierjący te stny r Q, do których możn dojść ze stnów S przechodząc tylko przez -przejści, przy czym również S -CLOSURE(S).

4 Dl S Q, dl T rozszerz się definicję funkcji przejści: δ(s,) = { r Q r δ(s,), s S } Istot lgorytmu: Wejście: A=< T, Q, F, q, δ > - utomt skończony niedeterministyczny Wyjście: A =< T, Q, F, r, δ > - utomt skończony deterministyczny (ez -przejść) Metod: Q S! r Q podziór zioru stnów utomtu niederminist. pojedynczy stn utomtu determnistycznego r := -CLOSURE({q }); r - nieoznczony; /* r stn początkowy A */ /* r równocześnie podziór zioru stnów Q utomtu A */ Q := {r }; while X Q nd X nieoznczony do /* X = {q,...,q n } Q*/ egin ozncz X; for kżde T do egin U := {q Q q δ(s,) s X } /* U = δ(x,) */ Y := -CLOSURE(U) ; if Y Q then egin Q := Q {Y}; /* dołączenie Y do Q Y nieoznczony jko nieoznczonego */ end; δ (X,) := Y; /* ustlenie funkcji przejści utomtu A */ end; end; F := { r Q r F } /* tutj r trktowne jko (r Q) podziór stnów utomtu A */ Przykłd: ( )* 9 3 r =-CLOSURE({}) = {,,2,4,7 } = r ; Q ={ r } r oznczmy U = δ(r,) = {3,8} r = -CLOSURE({3,8}) = {,2,3,4,6,7,8 }= r ; δ (r,) = r

5 U = δ(r,) = {5} r 2 = -CLOSURE({5}) = {,2,4,5,6,7 }= r 2 ; δ (r,) = r 2 Q = { r, r, r 2 } /* stn podkreślony jest oznczony */ r oznczmy U = δ(r,) = {3,8} -CLOSURE({3,8}) = {,2,3,4,6,7,8 }= r ; δ (r,) = r U = δ(r,) = {5,9} -CLOSURE({5,9}) = {,2,4,5,6,7,9 }= r 3 ; δ (r,) = r 3 Q = { r, r, r 2, r 3 } r 2 oznczmy U = δ(r 2,) = {3,8} -CLOSURE({3,8}) = r ; δ (r 2,) = r U = δ(r 2,) = {5} -CLOSURE({5}) = r 2 ; δ (r 2,) = r 2 Q = { r, r, r 2, r 3 } r 3 oznczmy U = δ(r 3,) = {3,8} -CLOSURE({3,8}) = r ; δ (r 3,) = r U = δ(r 3,) = {5,} -CLOSURE({5,}) = {,2,4,5,6,7, } = r 4 ; δ (r 3,) = r 4 Q = { r, r, r 2, r 3, r 4 } r 4 oznczmy U = δ(r 4,) = {3,8} -CLOSURE({3,8}) = r ; δ (r 4,) = r U = δ(r 4,) = {5} -CLOSURE({5,}) = r 2 ; δ (r 3,) = r 2 Q = { r, r, r 2, r 3, r 4 } Osttecznie: δ : Stn r r r r r 2 r 3 r 2 r r 2 r 3 r r 4 r 2 r 4 r r 2 strt r r r 3 r 4 F ={r 4 } ( )* Uzupełnienie utomtu skończonego Wejście: A = < T, Q, F, q, δ > - utomt skończony

6 Wyjście: A = < T, Q, F, q, δ > - utomt skończony zupełny Q := Q { err } for q Q do for T do if δ(s,) = then δ (q,) : ={ err } else δ (q,) := δ(q,); for T do δ ( err, ) := { err } Przykłd: strt 2 3 err Stn pułpki err nie jest stnem końcowym Redukcj utomtu skończonego A = < T, Q, F, q, δ > - deterministyczny, zupełny utomt skończony x T* - słowo nd lfetem T q,q 2 Q (i) x T* rozróżni stny q i q 2 () (q,x) " * A (q 3, ) (2) (q 2,x) " * A (q 4, ) (3) (q 3 F q 4 F ) (q 3 F q 4 F ) (ii) q i q 2 są k nierozróżnilne, co oznczmy q k q 2 ( x T*) tkie że: () x rozróżni q i q 2 (2) x k (iii) q i q 2 są nierozróżnilne, co oznczmy q q 2 ( k ) (q k q 2 ) (iv) q Q {q } jest nieosiąglny ( x T*) ((q,x) " + A (q,y) y T*) Automt skończony ( deterministyczny, zupełny ) nzywmy zredukownym () ( q Q) (q jest nieosiąglny)

7 (2) ( q,q 2 Q) (q i q 2 nie są nierozróżnilne) Usuwnie stnów nieosiąglnych A = < T, Q, F, q, δ > - deterministyczny Niech R ędzie relcją (R Q Q) zdefiniowną nstępująco: q Rq 2 ( T) ( δ(q,) = q 2 ) Trze znleźć utomt A = < T, Q, F, q, δ > ez stnów nieosiąglnych, to znczy trze wyznczyć Q = { q Q q R * q } Zkłdmy, że elementy Q są nieoznczone. L := {q }; while L do egin := pierwszy element z L; ozncz w Q; L := L {}; L := L {c Q Rc c nieoznczone w Q }; end; stop; /* elementy nieoznczone w Q są nieosiąglne */ Przykłd: B C F strt A D E G L = { A }; A ; { A, B, C, D, E, F, G }; L = L = { B, D }; B ; { A, B, C, D, E, F, G }; L = { D }

8 L = { D, C }; C ; { A, B, C, D, E, F, G }; L = { C } L = { C, E}; D ; { A, B, C, D, E, F, G }; L = { E } L = { E }; E ; { A, B, C, D, E, F, G }; L = nieoznczone = nieosiąglne B C strt A D E Łączenie stnów nierozróżnilnych A = < T, Q, F, q, δ > - utomt skończony, ez stnów nieosiąglnych, deterministyczny, zupełny. Tw. Niech n = #Q ( ) ( n-2 ) ( n-3 )... ( ) ( ) przy czym: q q 2 (q F q 2 F) (q F q 2 F) q k q 2 q k- q 2 ( T ) (δ(q,) k- δ(q 2,)) Tw2. Relcj nierozróżnilności ( ) jest zwrotn, symetryczn, przechodni, jest więc relcją równowżności. Algorytm łączeni stnów nierozróżnilnych poleg n wyznczeniu relcji nierozróżnilności ( ) Q Q, nstępnie przypisniu kżdej klsie równowżności relcji ( ) stnu tworzonego utomtu zredukownego. Relcję ( ) wyznczmy zgodnie z tw. poczynjąc od ( ) i dokonując kolejnych podziłów Q n klsy równowżności.

9 Algorytm łączeni stnów nierozróżnilnych: Wejście : A = < T, Q, F, q, δ > - deterministyczny, zupełny, ez stnów nieosiąglnych Wyjście : A = < T, Q, F, q, δ > - utomt posidjący njmniejszą liczę stnów spośród wszystkich utomtów deterministycznych i zupełnych kceptujących język L(A) () Podzielić Q n klsy równowżności dl relcji ( ), ( ),.... Postępowć tk długo, ż podziły : dl ( k ) i dl ( k+ ) ędą identyczne. Jko podził względem relcji ( ) przyjąć ten dl ( k ) (2) Oznczmy [q] klsę równowżności relcji ( ) w Q, do której nleży q Q Q := { [p] : p Q } (3) δ ( [p], ) := [q] δ(p,) = q (4) q := [q ] (5) F := { [q] q F } Przykłd: 2 ( )* strt 3 4 Relcj Kls równowżności Przejści {4} {,,2,3 } δ(,)= δ(,)=2 δ(,)= δ(,)=3 2 3 δ(2,)= δ(2,)=2 δ(3,)= δ(3,)=4 {4} {,,2, } {3} δ(,)=2 δ(2,)=2 2 3 δ(,)=3 2 {4} {,2, } {} {3} δ(,)=2 δ(2,)=2 3 {4} {,2 } {} {3} końcowy początkowy

10 Wynik końcowy: strt,2 3 4

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Mtemtyczne Podstwy Informtyki dr inż. Andrzej Grosser Instytut Informtyki Teoretycznej i Stosownej Politechnik Częstochowsk Rok kdemicki 2013/2014 Podstwowe pojęci teorii utomtów I Alfetem jest nzywny

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, utomty i oliczeni Wykłd 5: Wricje n temt utomtów skończonych Słwomir Lsot Uniwersytet Wrszwski 25 mrc 2015 Pln Automty dwukierunkowe (Niedeterministyczny) utomt dwukierunkowy A = (A,,, Q, I, F,

Bardziej szczegółowo

ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE

ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE DAS Deterministyczny Automt Skończony Zdnie Niech M ędzie DAS tkim że funkcj przejści: Q F ) podj digrm stnów dl M ) które ze słów nleżą do język kceptownego

Bardziej szczegółowo

bezkontekstowa generujac X 010 0X0.

bezkontekstowa generujac X 010 0X0. 1. Npisz grmtyke ezkontekstow generujc jezyk : L 1 = { 0 i 10 j 10 p : i, j, p > 0, i + j = p } Odpowiedź. Grmtyk wygląd tk: Nieterminlem strtowym jest S. S 01X0 0S0 X 010 0X0. Nieterminl X generuje słow

Bardziej szczegółowo

Lista 4 Deterministyczne i niedeterministyczne automaty

Lista 4 Deterministyczne i niedeterministyczne automaty Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu.

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu. Osob prowdząc wykłd i ćwiczeni: dr inż. Mrek werwin Instytut terowni i ystemów Informtycznych Uniwersytet Zielonogórski e-mil : M.werwin@issi.uz.zgor.pl tel. (prc) : 68 328 2321, pok. 328 A-2, ul. prof.

Bardziej szczegółowo

Modele abstrakcyjne w weryfikacji

Modele abstrakcyjne w weryfikacji Modele strkyjne w weryfikji Krzysztof Nozderko kn201076@students.mimuw.edu.pl 16 mj 2006 Modele strkyjne w weryfikji Bisymulj jko gr Weżmy dw modele. Żey rozstrzygnć, zy s one z punktu widzeni oserwtor

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 2 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy bz dnych" 1 Pojęcie krotki - definicj Definicj. Niech dny będzie skończony zbiór U := { A 1, A 2,..., A n }, którego

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową

Bardziej szczegółowo

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b, WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz

Bardziej szczegółowo

Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA

Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA Część 2 7. METODA MIESZANA 7. 7. METODA MIESZANA Metod mieszn poleg n jednoczesnym wykorzystniu metody sił i metody przemieszczeń przy rozwiązywniu ukłdów sttycznie niewyznczlnych. Nwiązuje on do twierdzeni

Bardziej szczegółowo

Analiza Matematyczna (część II)

Analiza Matematyczna (część II) Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI. Temat: Do czego służą wyrażenia algebraiczne?

KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI. Temat: Do czego służą wyrażenia algebraiczne? KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI Temt: Do czego służą wyrżeni lgebriczne? Prowdzący: Agnieszk Smborowicz Liczb jednostek lekcyjnych: 1 2 (w zleżności od zespołu) Cele ogólne Utrwlenie widomości

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych

Bardziej szczegółowo

Rozbiór wstępujący gramatyki z pierwszeństwem. Rozbiór wstępujący gramatyki z pierwszeństwem

Rozbiór wstępujący gramatyki z pierwszeństwem. Rozbiór wstępujący gramatyki z pierwszeństwem Rozbiór wstępujący grmtyki z pierwszeństwem Rozbiór wstępujący budujemy drzewo rozbioru od liści W ciągu symboli wejściowych musimy znleźć podstwę czyli uchwyt njbliższej redukcji, czyli podciąg który

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

Prosta metoda sprawdzania fundamentów ze względu na przebicie

Prosta metoda sprawdzania fundamentów ze względu na przebicie Konstrkcje Elementy Mteriły Prost metod sprwdzni fndmentów ze względ n przebicie Prof dr b inż Micł Knff, Szkoł Główn Gospodrstw Wiejskiego w Wrszwie, dr inż Piotr Knyzik, Politecnik Wrszwsk 1 Wprowdzenie

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Minimalizacja automatu

Minimalizacja automatu Minimlizj utomtu Minimlizj utomtu to minimlizj lizy stnów. Jest to trnsformj utomtu o nej tliy przejśćwyjść n równowżny mu (po wzglęem przetwrzni sygnłów yfrowyh) utomt o mniejszej lizie stnów wewnętrznyh.

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Systemy Wyszukiwania Informacji

Systemy Wyszukiwania Informacji Uniersytet Śląski Systemy Wyszkini Informcji Agnieszk Nok Brzezińsk gnieszk.nok@s.ed.pl Instytt Informtyki Zkłd Systemó Informtycznych Uniersytet Śląski Wrnki zliczeni przedmiot Ooiązko oecność n ykłdch

Bardziej szczegółowo

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

Częściowo przemienne grafy bezkontekstowe

Częściowo przemienne grafy bezkontekstowe Częściowo przemienne grfy ezkontekstowe Wojciech Czerwiński utorefert rozprwy doktorskiej Temtem rozprwy jest kls częściowo przemiennych grfów ezkontekstowych. Jest to model oliczeń odzwierciedljący zrówno

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Podstawy programowania obiektowego

Podstawy programowania obiektowego 1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty

Bardziej szczegółowo

ezyki Automaty i Obliczenia (nieformalne notatki)

ezyki Automaty i Obliczenia (nieformalne notatki) J ezyki Automty i Oliczeni (nieformlne nottki) W. Rytter J ezyki formlne i podsttwowe opercje, wyrżeni regulrne stndrdowe i rozeszerzone (z opercjmi dope lnieni i przeci eci), przyk ldy. N ćwiczenich stndrdowe

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

ezyki Automaty i Obliczenia (nieformalne notatki)

ezyki Automaty i Obliczenia (nieformalne notatki) J ezyki Automty i Oliczeni (nieformlne nottki) W. Rytter J ezyki formlne - ziory s lów nd lfetem skończonym.podsttwowe opercje to, orz konktencj. Wyrżeni regulrne stndrdowe - tylko te opercje, st le to

Bardziej szczegółowo

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny Dr Glin Criow Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne.

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2014)

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2014) Prce Koł Mt. Uniw. Ped. w Krk. 1 014), 1-5 edgogicznego w Krkowie PKoło Mtemtyków Uniwersytetu Prce Koł Mtemtyków Uniwersytetu Pedgogicznego w Krkowie 014) Bet Gwron 1 Kwdrtury Newton Cotes Streszczenie.

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

Wszystkim życzę Wesołych Świąt :-)

Wszystkim życzę Wesołych Świąt :-) Poniższe zdni pochodzą ze zbiorów: ) J. Rutkowski, Algebr bstrkcyjn w zdnich b) M. Bryński, J. Jurkiewicz, Zbiór zdń z lgebry Do kolokwium proszę też przejrzeć zdni z ćwiczeń. Wszystkim życzę Wesołych

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

Pochodne i całki, macierze i wyznaczniki

Pochodne i całki, macierze i wyznaczniki Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

Podstawy układów logicznych

Podstawy układów logicznych Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Jaki język zrozumie automat?

Jaki język zrozumie automat? Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Akdemi órniczo-hutnicz im. Stnisłw Stszic w Krkowie Wydził Elektrotechniki, Automtyki, Informtyki i Inżynierii Biomedycznej Ktedr Elektrotechniki i Elektroenergetyki Rozprw Doktorsk Numeryczne lgorytmy

Bardziej szczegółowo

Równania nieliniowe. x i 1

Równania nieliniowe. x i 1 MN 08 Równni nieliniowe Wprowdzenie Podstwowe pytni 1. Pytnie: Czy komputer umie rozwiązywć równni nieliniowe f(x) = 0? Odpowiedź (uczciw): nie. 2. P: To jk on to robi? O: Dokłdnie tk, jk przy cłkowniu

Bardziej szczegółowo

Wyk lad 1 Podstawowe wiadomości o macierzach

Wyk lad 1 Podstawowe wiadomości o macierzach Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale Trójkąt Pscl od kuchni Kls 1 Gimnzjum nr 1 z Oddziłmi Integrcyjnym i Sportowymi im. Bł. Slomei w Skle ul. Ks.St.Połetk 32 32-043 Skł Gimnzjum nr 1 z Oddziłmi Integrcyjnymi i Sportowymi im. Bł. Slomei w

Bardziej szczegółowo

Algebra WYKŁAD 6 ALGEBRA 1

Algebra WYKŁAD 6 ALGEBRA 1 Algebr WYKŁAD 6 ALGEBRA Ogóln postć ukłdu równń liniowych Rozwżmy ukłd m równń liniowych z n niewidomymi m m n n mn n n n b b b m o współczynnikch ik orz b i. Mcierz ukłdu równń wymiru m n m postć A m

Bardziej szczegółowo

JAO - Języki, Automaty i Obliczenia - Wykład 2. JAO - Języki, Automaty i Obliczenia - Wykład 2

JAO - Języki, Automaty i Obliczenia - Wykład 2. JAO - Języki, Automaty i Obliczenia - Wykład 2 Dowodzenie nieregularności języka [lemat o pompowaniu] Jeśli L regularny to istnieje stała c spełniająca : jeżeli z L, z c to istnieje dekompozycja w = u v x tak, że uv i x L dla każdego i 0 [lemat o skończonej

Bardziej szczegółowo

Metody określania macierzy przemieszczeń w modelowaniu przewozów pasażerskich. mgr inż. Szymon Klemba Warszawa, r.

Metody określania macierzy przemieszczeń w modelowaniu przewozów pasażerskich. mgr inż. Szymon Klemba Warszawa, r. Metody określni mcierzy przemieszczeń w modelowniu przewozów psżerskich mgr inż. Szymon Klemb Wrszw, 2.07.2013r. SPIS TREŚCI 1 Podstwy teoretyczne 2 Rol mcierzy przemieszczeń 3 Metody wyznczni mcierzy

Bardziej szczegółowo

symbol dodatkowy element graficzny kolorystyka typografia

symbol dodatkowy element graficzny kolorystyka typografia Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 14

Obliczenia naukowe Wykład nr 14 Obliczeni nuowe Wyłd nr 14 Pweł Zielińsi Ktedr Informtyi, Wydził Podstwowych Problemów Technii, Politechni Wrocłws Litertur Litertur podstwow [1] D. Kincid, W. Cheney, Anliz numeryczn, WNT, 2005. [2] A.

Bardziej szczegółowo

1 Ułamki zwykłe i dziesiętne

1 Ułamki zwykłe i dziesiętne Liczby wymierne i niewymierne Liczby wymierne i niewymierne - powtórzenie Ułmki zwykłe i dziesiętne. Rozszerznie ułmków Rozszerz ułmki b c b c 6 8. Skrcnie ułmków c b c b 8 0 Liczby wymierne i niewymierne

Bardziej szczegółowo

INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane?

INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane? INSTRUKCJA - Jk rozwiązywć zdni wysoko punktowne? Mturzysto! Zdni wysoko punktowne to tkie, z które możesz zdobyć 4 lub więcej punktów. Zdni z dużą ilość punktów nie zwsze są trudniejsze, często ich punktcj

Bardziej szczegółowo

Topologia i podzbiory,

Topologia i podzbiory, Jest to tekst związny z odczytem wygłoszonym n XLV Szkole Mtemtyki Poglądowej, Co mi się podo, Jchrnk, sierpień 2010, z który utor otrzymł Medl Filc. Topologi i podziory, czyli histori jednego twierdzeni

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1) Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 006/7 3. Liczby nturlne i rzeczywiste; funkcje elementrne.. Funkcje. Niech X i Y będą zbiormi. Definicj.. Funkcją (inczej: odwzorowniem) z X do Y nzyw się przyporządkownie

Bardziej szczegółowo

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r.

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r. złącznik nr 3 do uchwły nr V-38-11 Rdy Miejskiej w Andrychowie z dni 24 lutego 2011 r. ROZSTRZYGNIĘCIE O SPOSOBIE ROZPATRZENIA UWAG WNIESIONYCH DO WYŁOŻONEGO DO PUBLICZNEGO WGLĄDU PROJEKTU ZMIANY MIEJSCOWEGO

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej

Bardziej szczegółowo

III. Rachunek całkowy funkcji jednej zmiennej.

III. Rachunek całkowy funkcji jednej zmiennej. III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia:

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia: XI. Rhunek łkowy funkji wielu zmiennyh. 1. Cłk podwójn. 1.1. Cłk podwójn po prostokąie. Oznzeni: P = {(x, y) R 2 : x b, y d} = [, b] [, d] - prostokąt n płszzyźnie, f(x, y) - funkj określon i ogrnizon

Bardziej szczegółowo

Wybrane zagadnienia z geometrii płaszczyzny. Danuta Zaremba

Wybrane zagadnienia z geometrii płaszczyzny. Danuta Zaremba Wybrne zgdnieni z geometrii płszczyzny Dnut Zremb Wstęp Publikcj t powstł z myślą o studentch, którzy chcą zdobyć uprwnieni do nuczni mtemtyki w szkole. Zwier on nieco podstwowych widomości z geometrii

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Bardzo krótki wstęp do elektroniki cyfrowej

Bardzo krótki wstęp do elektroniki cyfrowej Brdzo krótki wstęp do elektroniki cyfrowej Słwomir Mmic http://min5.mu.edu.pl/~zfp/sm/home.html Pln ) Ukłdy logiczne b) Algebr Boole i jej relizcj sprzętow c) Brmki są dwie? d) Prosty przykłd sumtor e)

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy

Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy http://wwwiiuniwrocpl/ sle/teching/n-wdrpdf Anliz numeryczn Stnisłw Lewnowicz Styczeń 008 r Cłownie numeryczne Definicje, twierdzeni, lgorytmy 1 Pojęci wstępne Niech IF IF [, b] ozncz zbiór wszystich funcji

Bardziej szczegółowo

Skrypt edukacyjny do zajęć wyrównawczych z matematyki dla klas II Bożena Kuczera

Skrypt edukacyjny do zajęć wyrównawczych z matematyki dla klas II Bożena Kuczera Projekt Wiedz, kompetencje i prktyk to pewn przyszłość zwodow technik Kompleksowy Progrm Rozwojowy dl Technikum nr w Zespole Szkół Technicznych im Stnisłw Stszic w Ryniku, współfinnsowny przez Unię Europejską

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy Wymgni edukcyjne z mtemtyki Kls IIB. Rok szkolny 2013/2014 Poziom podstwowy FUNKCJA KWADRATOWA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: 2 rysuje wykres funkcji f ( ) i podje jej włsności

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

W. Guzicki Zadanie 19 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 19 z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zdnie 19 z Informtor turlnego poziom rozszerzony 1 Zdnie 19. Rmię D trpezu D (w którym D) przedłużono do punktu E tkiego, że E 3 D. unkt leży n podstwie orz 4. Odcinek E przecin przekątną D

Bardziej szczegółowo

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu. ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

R O Z D Z I A Ł I I I

R O Z D Z I A Ł I I I R O Z D Z I A Ł I I I Grmtyki regulrne Przypomnijmy, Ŝe grmtykmi regulrnymi nzywmy wszystkie te grmtyki genertywne, których wszystkie reguły produkcji mją postć A P lu A PB, gdzie A, B V N, P V T *.. Postć

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

METODY KOMPUTEROWE 11

METODY KOMPUTEROWE 11 METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy

Bardziej szczegółowo

ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł

Bardziej szczegółowo