PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

Wielkość: px
Rozpocząć pokaz od strony:

Download "PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych"

Transkrypt

1 PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1

2 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I N f f g 12 h 3 jest przypdkiem schemtu relcyjnego E := ( { I, N, P, O }, { I N, IP O } ). W zleżności od wyoru zioru zleżności funkcyjnych jko podstwy rozkłdu relcję tą możn rozłożyć ez strty dnych n dw sposoy: 2005/2006 Wykłd "Podstwy z dnych" 2 P O 3 4 3

3 Rozkłdlno dlność schemtów w relcyjnych E 1 : I N E 2 : 10 f 11 g 12 h I P O E 3 : I P O E 4 : I P N f f g h W oydwu przypdkch mmy: EGZ=E >< 1 E 2, EGZ=E >< 3 E /2006 Wykłd "Podstwy z dnych" 3

4 Definicj. Mówimy, że schemt relcyjny R := ( U, F ) jest rozkłdlny ez strty zleżności n dw schemty gdy Rozkłdlno dlność schemtów w relcyjnych R 1 := ( X, G ), R 2 := ( Y, H ), ) X Y = U, ) F + = ( G H ) /2006 Wykłd "Podstwy z dnych" 4

5 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Dl schemtu relcyjnego R := ( U, F ) U := { A, B, C, D }, F := { A B, BC D, D B, D C } rozwżmy nstępujące schemty: R 1 := ( { A, B }, { A B }), R 2 := ( { B, C, D }, { BC D, D B, D C } ), ędące rozkłdmi schemtu R ez strty zleżności. Rozkłd ten nie jest jednk rozkłdem ez strty dnych. 2005/2006 Wykłd "Podstwy z dnych" 5

6 Rozkłdlno dlność schemtów w relcyjnych Istotnie, rozwżmy relcję R INST(R) postci: R: A B C D c d 1 c 1 d 1 2 c 1 d 1 Wówczs relcje: mją postć: R 1 := R[AB] i R 2 := R[BCD] 2005/2006 Wykłd "Podstwy z dnych" 6

7 Rozkłdlno dlność schemtów w relcyjnych R 1 : A B 1 c 1 d 1 2 i R R >< 1 R 2 (nstępny sljd). R 2 : Zuwżmy, że zleżności B A i B CD nie nleżą do F +, tzn. nie są spełnione złożeni twierdzeni o wrunku koniecznym i dosttecznym rozkłdlności ez strty dnych. B C c D d 2005/2006 Wykłd "Podstwy z dnych" 7

8 Rozkłdlno dlność schemtów w relcyjnych R 1 >< R 2 A B 1 c d 1 c 1 d 1 2 c d 2 c 1 d 1 1 c 1 c /2006 Wykłd "Podstwy z dnych" 8 C c c 1 D d d 1 R: A B C c D d 2 d 1 d 1

9 Normlizcj schemtów w relcyjnych Definicj. Mówimy, że ziór K U jest kluczem dl schemtu relcyjnego R := ( U, F ), gdy spełni wrunki: ) ( K U ) F +, ) ( X U ) ( [ ( X U ) F + ] [ ( X K ) ] ). Jeżeli ziór K spełni tylko wrunek ) to nzywmy go ndkluczem. Elementy zioru K nzywmy tryutmi kluczowymi. 2005/2006 Wykłd "Podstwy z dnych" 9

10 Normlizcj schemtów w relcyjnych Przykłd. Dl schemtu relcyjnego E := ( { I, N, P, O }, { I N, IP O } ) wrunek ) definicji spełniją ziory { I, P }, { I, N, P }, { I, N, P, O }. Wrunek ) spełni ziór { I, P } i ten ziór jest kluczem schemtu R. 2005/2006 Wykłd "Podstwy z dnych" 10

11 Normlizcj schemtów w relcyjnych Uwg. Schemt relcyjny może posidć wiele kluczy (klucze kndydujące). Jeden z nich nzywmy kluczem głównym, (Primry key). Atryuty nie nleżące do żdnego klucz nzywmy tryutmi niekluczowymi. 2005/2006 Wykłd "Podstwy z dnych" 11

12 Normlizcj schemtów w relcyjnych - 1PN Definicj. Schemt relcyjny R := ( U, F ) jest w pierwszej postci normlnej (1PN), gdy dl kżdego A U ziór DOM(A) skłd się z wrtości elementrnych (tomic vlue). 2005/2006 Wykłd "Podstwy z dnych" 12

13 Normlizcj schemtów w relcyjnych - 2PN Definicj. Niech X, Y U i X Y =. Mówimy, że Y jest w pełni funkcyjnie zleżny od X, gdy istnieje zleżność funkcyjn X Y i nie istnieje zleżność z żdnego włściwego podzioru zioru X w Y. X Y F + X Y X 1 X 1 Y F /2006 Wykłd "Podstwy z dnych" 13

14 Normlizcj schemtów w relcyjnych - 2PN Definicj. Schemt relcyjny R := ( U, F ) jest w drugiej postci normlnej (2PN), gdy kżdy niekluczowy tryut A U jest w pełni zleżny od kżdego klucz tego schemtu. K 1 A F + K 2 A F + K 1 A K 2 K 1 A F + K 2 A F /2006 Wykłd "Podstwy z dnych" 14

15 Normlizcj schemtów w relcyjnych - 2PN Przykłd. Schemt relcyjny E = ( U, F ) gdzie U := { Indeks, Nzwisko, Kierunek, Adres, Przedmiot, Ocen }, F := { I NAK, IP O } z kluczem K := { I, P } nie jest w 2PN, o np. niekluczowy tryut N jest zleżny funkcyjnie tylko od { I } K. 2005/2006 Wykłd "Podstwy z dnych" 15

16 Normlizcj schemt Normlizcj schemtów relcyjnych w relcyjnych - 2PN Niech E ędzie relcją o schemcie E = ( U, F ) określoną nstępująco: E: I N A K P O 10 f x mt 3 10 f x mt 4 11 g y inf 3 12 h x inf 3 10 f x mt c /2006 Wykłd "Podstwy z dnych" 16

17 Normlizcj schemtów w relcyjnych - 2PN W relcji tej możn zuwżyć nstępujące nomli: usuwni ktulizcji zminy w kilku krotkch; dołączni -nie możn dołączyć student, który nie zdłżdnego egzminu; - np. przy uniewżnieniu egzminu student o indeksie 11 nleży usunąć cłą krotkę, co spowoduje utrtę informcji o studencie. - zmin dresu student wymg 2005/2006 Wykłd "Podstwy z dnych" 17

18 Normlizcj schemtów w relcyjnych - 2PN Dl kżdej relcji E INST(E) mmy E = E[INKA] >< E[IPO] tzn. uzyskliśmy dw schemty relcyjne i E 1 := ( { I, N, K, A }, { I NAK }) E 2 := ( { I, P, O }, { IP O }) odpowiednio z kluczmi { I } i { I, P }. Jest to rozkłd ez strty dnych. 2005/2006 Wykłd "Podstwy z dnych" 18

19 E 1 : Normlizcj schemtów w relcyjnych - 2PN Relcję E możn zstąpić dwiem relcjmi: I N f g h A x y x K mt inf inf E 2 : I Kżdy z tych schemtów jest w 2PN. Stwierdzenie. Jeżeli kżdy klucz schemtu jest ziorem jednoelementowym to schemt jest w 2PN. 2005/2006 Wykłd "Podstwy z dnych" 19 P c O

20 Normlizcj schemtów w relcyjnych - 3PN Definicj. Ziór tryutów Z jest trnzytywnie zleżny od zioru X, gdy ) X Z =, ) ( Y U ){(Y X = Y Z= ) [(X Y ) F + (Y X) F + (Y Z) F + ]}. X Y Z (X Y ) F + (Y X) F + (Y Z) F /2006 Wykłd "Podstwy z dnych" 20

21 Normlizcj schemtów w relcyjnych - 3PN Definicj. Schemt relcyjny R := ( U, F ) jest w trzeciej postci normlnej ( 3PN ), gdy jest w 2PN i kżdy ziór niekluczowych tryutów Z U nie jest trnzytywnie zleżny od kżdego zioru tryutów K ędącego kluczem tego schemtu. 2005/2006 Wykłd "Podstwy z dnych" 21

22 Normlizcj schemtów w relcyjnych - 3PN Przykłd. Rozwżmy schemt relcyjny E := ( U, F ) U :={Wykonwc, Adres, Projekt, Dt_zkończeni}, F := { W APD, P D } z kluczem K := { W } jest w 2PN. 2005/2006 Wykłd "Podstwy z dnych" 22

23 Normlizcj schemtów w relcyjnych - 3PN Niech E ędzie relcją o schemcie E := (U, F) U := { Wykonwc, Adres, Projekt, Dt_zk } F := { W AP, P D } określoną nstępująco: E: W A 30 x 40 y 50 y 60 z P c D 01/01/ /01/ /01/ /01/ /2006 Wykłd "Podstwy z dnych" 23

24 Normlizcj schemtów w relcyjnych - 3PN Poniewż W P P D to W D tzn. ziór {D} jest trnzytywnie zleżny od zioru {W}. W relcji tej możn zuwżyć nstępujące nomli: dołączni, ktulizcji i usuwni. Dl kżdej relcji E INST(E) mmy E=E[WAP] >< E[PD] tzn. uzyskmy dw schemty relcyjne ędące w 3PN E 1 := ( { W, A, P }, { W A, W P }) i E 2 := ( { P, D }, { P D } ). 2005/2006 Wykłd "Podstwy z dnych" 24

25 Normlizcj schemtów w relcyjnych - 3PN Jest to rozkłd ez strty dnych. Relcję E możn zstąpić dwiem relcjmi: E 1 : W A x y y z P c E 2 : P c D 01/01/ /01/ /01/ /2006 Wykłd "Podstwy z dnych" 25

26 Normlizcj schemtów w relcyjnych - 3PN Uwg. W kżdym schemcie ędącym w 3PN między tryutmi niekluczowymi nie m zleżności funkcyjnych. Zdnie. Sprwdzić, czy schemt relcyjny E := ( { A, B, C }, { AB C, C A } ) jest w 3PN. 2005/2006 Wykłd "Podstwy z dnych" 26

27 Normlizcj schemtów w relcyjnych - PNB-C Definicj. Schemt relcyjny R := ( U, F ) jest w postci normlnej Boyce'-Codd,(PNB-C), gdy z fktu ( X Y ) F +, Y U - X, wynik, że X jest ndkluczem tzn. ( X U ) F /2006 Wykłd "Podstwy z dnych" 27

28 Uwg. Kżdy schemt w PNB-C jest w 3PN. Przykłd. Schemt relcyjny E := ( { Student, Przedmiot, Wykłdowc }, { W P, SP W } ) z kluczem K := { S, P } nie jest w PNB-C, o mimo, że W P F +, to nie istnieje zleżność W U. Normlizcj schemtów relcyjnych - PNB-C 2005/2006 Wykłd "Podstwy z dnych" 28

29 Normlizcj schemtów relcyjnych - PNB-C Niech E ędzie relcją o schemcie R := ( U, F ) określoną nstępująco: E: S P W W relcji E występują nomli usuwni i dołączni. Nie możn dołączyć wykłdowcy i przedmiotu jeżeli rk chociż jednego student uczęszczjącego n wykłd. Nie możn również usunąć osttniego student uczęszczjącego n dny przedmiot. 2005/2006 Wykłd "Podstwy z dnych" x x y z

30 Normlizcj schemtów relcyjnych relcyjnych - PNB-C Schemt E możn rozłożyć n dw schemty relcyjne E 1 := ( { W, P }, { W P } ) i E 2 := ( { W, S }, ), z których kżdy jest w PNB-C. Wtedy relcję E możn przedstwić w postci: E 1 : W x y z P E 2 : W x x y z S /2006 Wykłd "Podstwy z dnych" 30

31 Normlizcj schemtów relcyjnych - PNB-C Poniewż E = E 1 >< E 2, więc rozkłd ten jest rozkłdem ez strty dnych, le nie jest rozkłdem ez strty zleżności, owiem { W P, SP W } + {{W P } } +. Nie jest możliwe dopisnie krotki (z,10) do relcji E 2, owiem wykłdowc z prowdzi wykłd z przedmiotu, student 10 uczęszcz n ten przedmiot do wykłdowcy y. 2005/2006 Wykłd "Podstwy z dnych" 31

32 Zleżność wielowrtościow Definicj. Niech X,Y U, Z:= U - XY. Mówimy, że istnieje zleżność wielowrtościow między ziormi X i Y, co oznczmy przez X >>Y, gdy dl kżdego zioru KROTKA(U) istnieje pewn funkcj ω : KROTKA(X) (KROTKA(YZ)), gdzie (KROTKA(YZ)) ozncz ziór wszystkich podziorów zioru KROTKA(YZ), tk, że jeżeli do zioru ω(krotka(x)) nleżą krotki ( y, z ) i (y, z ), to nleżą również krotki ( y, z ) i (y, z ). 2005/2006 Wykłd "Podstwy z dnych" 32

33 Zleżność wielowrtościow Definicj. Niech dn ędzie relcj R(U), X, Y U i Z:=U-XY. Mówimy, że w R spełnion jest zleżność wielowrtościow X >> Y, gdy spełniony jest jeden z równowżnych wrunków: ) (, ), [ ] ( [ ]) [ ] ( ) x R X y y R Y z z R Z { [( x >< y >< z R) ( x >< y >< z R) ] [( x >< y >< z R) ( x >< y >< z R) ] } ) [ XY ] R[ XZ ]. R = R >< 2005/2006 Wykłd "Podstwy z dnych" 33

34 Zleżność wielowrtościow X Y Z Uwg. Kżd zleżność funkcyjn X Y jest zleżnością wielowrtościową tzn. X >> Y. Uwg. Zleżności X >> U i X >> spełnione są w kżdej relcji R(U). Nzywmy je trywilnymi zleżnościmi wielowrtościowymi. 2005/2006 Wykłd "Podstwy z dnych" 34

35 Zleżność wielowrtościow Przykłd. U := { Prcownik, Imię_Dzieck, Zroki, Rok } E: P D x y x y z z Z R P >> D P >> ZR E 1 : P D E 2 : P Z R x y z P >> D P >> ZR 2005/2006 Wykłd "Podstwy z dnych" 35

36 Zleżność wielowrtościow Definicj. Niech U ędzie ziorem tryutów i M { X >> Y X U Y U }. Przez M + oznczmy njmniejszy (ze względu n relcję ) ziór zleżności wielowrtościowych tkich, że M M + i dl ( X, Y, Z U)( X Y= X Z = Z Y = ) spełnione są nstępujące ksjomty: 2005/2006 Wykłd "Podstwy z dnych" 36

37 Zleżność wielowrtościow ( Y X ) ( X >> Y ) M, + M0. (zwrotność), ( X >> Y ) M ( X >> U XY) M, ( X >> Y) M ( XZ >> YZ) M, M (dopełnilność), M (poszerzlność), [ M ] ( X >> Z ) M, ( X >> Y) M ( Y >> Z) M (przechodniość), M4. M5. M6. [ ] + + M ( XZ >> W ) M, + ( X >> Y) M ( YZ >> W) + ( X >> Y ) M ( X >> Z ) (pseudo-przechodniość), [ ] + + M ( X >> YZ ) M, (ddytywność), [( ) ( ) ] + + ( ) + X >> Y M X >> Z M X >> Y Z M, (dekompozycj). 2005/2006 Wykłd "Podstwy z dnych" 37

38 Uwg. Między zleżnościmi funkcyjnymi i wielowrtościowymi zchodzą nstępujące związki: FM1. FM2. Zleżność wielowrtościow ( ) + ( ) + X Y F X >> Y M, [( ) ( ) ( ) ( )] + + X >> Z M Y >> V M V Z Y Z = ( ) + X V F. 2005/2006 Wykłd "Podstwy z dnych" 38

39 Schemt relcyjny Definicj. Dl zioru tryutów U i ziorów F i M, ( zkłdmy, że ziór M nie zwier zleżności funkcyjnych), prę R := ( U, F M ) nzywmy schemtem relcyjnym i mówimy, że relcj R jest przypdkiem schemtu relcyjnego R jeśli jest relcją typu U orz kżd zleżność funkcyjn i wielowrtościow jest spełnion w R. 2005/2006 Wykłd "Podstwy z dnych" 39

40 Zleżność wielowrtościow - 4PN Definicj. Mówimy, że schemt relcyjny R := ( U, F M ) jest w czwrtej postci normlnej (4PN) gdy [( ) ( ) ] + ( ) + X >> Y M Y U X X U F. Przykłd. Dl schemtu relcyjnego - R := ( { P, D, Z, R }, {D P, PR Z, P > D, }) i relcji E z przykłdu ze sljdu 35 rozwżmy dw schemty R 1 := ( { P, D }, {D P }), R 2 := ( { P, Z, R }, { PR Z }). Wtedy relcje E 1 i E 2 z tego przykłdu są w 4PN. 2005/2006 Wykłd "Podstwy z dnych" 40

41 Schemt relcyjnej zy dnych Definicj. Schemtem relcyjnej zy dnych nzywmy ziór R := { R i := ( U i, F i ) i = 1,2,..,n }. wszystkich schemtów relcyjnych występujących w dnej zie dnych 2005/2006 Wykłd "Podstwy z dnych" 41

42 Algorytm tworzeni schemtu relcyjnej zy dnych 1. Określmy jeden schemt relcyjnej zy dnych { R := ( U, F ) }, gdzie U jest ziorem wszystkich tryutów występujących w zie dnych, przy czym ziór U doiermy w tki sposó y możn yło n ziorze U określić zleżności funkcyjne. 2. Rozkłdjąc schemt relcyjny R n schemty R := ( U i i, F i ), i = 1,2,..,n otrzymmy schemt zy dnych R := { R := ( U i i, F i ) i = 1,2,..,n }. 2005/2006 Wykłd "Podstwy z dnych" 42

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu. ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.

Bardziej szczegółowo

4.3. Przekształcenia automatów skończonych

4.3. Przekształcenia automatów skończonych 4.3. Przeksztłceni utomtów skończonych Konstrukcj utomtu skończonego (niedeterministycznego) n podstwie wyrżeni regulrnego (lgorytm Thompson). Wejście: wyrżenie regulrne r nd lfetem T Wyjście : utomt skończony

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

PODSTAWY BAZ DANYCH 2009/ / Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH 2009/ / Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 2009/2010 1 Literatura 1. Connolly T., Begg C.: Systemy baz danych. Tom 1 i tom 2. Wydawnictwo RM 2004. 2. R. Elmasri, S. B. Navathe: Wprowadzenie do systemu baz danych, Wydawnictwo

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Wszystkim życzę Wesołych Świąt :-)

Wszystkim życzę Wesołych Świąt :-) Poniższe zdni pochodzą ze zbiorów: ) J. Rutkowski, Algebr bstrkcyjn w zdnich b) M. Bryński, J. Jurkiewicz, Zbiór zdń z lgebry Do kolokwium proszę też przejrzeć zdni z ćwiczeń. Wszystkim życzę Wesołych

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Lista 4 Deterministyczne i niedeterministyczne automaty

Lista 4 Deterministyczne i niedeterministyczne automaty Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

Wyk lad 1 Podstawowe wiadomości o macierzach

Wyk lad 1 Podstawowe wiadomości o macierzach Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE)

TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE) 1. TEORIA PŁYT CIENKOŚCIENNYCH 1 1. 1. TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE) Płyt jest to ukłd ogrniczony dwom płszczyznmi o młej krzywiźnie. Odległość między powierzchnimi ogrniczjącymi tę wysokość płyty

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale Trójkąt Pscl od kuchni Kls 1 Gimnzjum nr 1 z Oddziłmi Integrcyjnym i Sportowymi im. Bł. Slomei w Skle ul. Ks.St.Połetk 32 32-043 Skł Gimnzjum nr 1 z Oddziłmi Integrcyjnymi i Sportowymi im. Bł. Slomei w

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

Analiza Matematyczna (część II)

Analiza Matematyczna (część II) Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)

Bardziej szczegółowo

Wstęp do Analizy Matematycznej funkcje jednej zmiennej. Stanisław Spodzieja

Wstęp do Analizy Matematycznej funkcje jednej zmiennej. Stanisław Spodzieja Wstęp do Anlizy Mtemtycznej funkcje jednej zmiennej Stnisłw Spodziej Łódź 2014 2 Wstęp Książk t jest niezncznie zmodyfikowną wersją wykłdu z nlizy mtemtycznej dl pierwszego roku mtemtyki, jki prowdziłem

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową

Bardziej szczegółowo

Pochodne i całki, macierze i wyznaczniki

Pochodne i całki, macierze i wyznaczniki Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu.

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu. Osob prowdząc wykłd i ćwiczeni: dr inż. Mrek werwin Instytut terowni i ystemów Informtycznych Uniwersytet Zielonogórski e-mil : M.werwin@issi.uz.zgor.pl tel. (prc) : 68 328 2321, pok. 328 A-2, ul. prof.

Bardziej szczegółowo

Wartość bezwzględna. Proste równania i nierówności.

Wartość bezwzględna. Proste równania i nierówności. Wrtość bezwzględn Proste równni i nierówności Dl liczb rzeczywistych możemy zdefiniowć opercję zwną wrtością bezwzględną lub modułem liczby Definicj 7,, Sens powyższej definicji jest nstępujący Jeżeli

Bardziej szczegółowo

Modelowanie 3 D na podstawie fotografii amatorskich

Modelowanie 3 D na podstawie fotografii amatorskich Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Podstawy układów logicznych

Podstawy układów logicznych Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

III. Rachunek całkowy funkcji jednej zmiennej.

III. Rachunek całkowy funkcji jednej zmiennej. III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 006/7 3. Liczby nturlne i rzeczywiste; funkcje elementrne.. Funkcje. Niech X i Y będą zbiormi. Definicj.. Funkcją (inczej: odwzorowniem) z X do Y nzyw się przyporządkownie

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew

Bardziej szczegółowo

Próbny egzamin maturalny MARZEC 2017 schemat oceniania. Klucz odpowiedzi do zadań zamkniętych C A D C C B C C C D C B A A A C A B D D C A C A C

Próbny egzamin maturalny MARZEC 2017 schemat oceniania. Klucz odpowiedzi do zadań zamkniętych C A D C C B C C C D C B A A A C A B D D C A C A C Próbny egzmin mturlny MARZEC 7 schemt ocenini Klucz odpowiedzi do zdń zmkniętych 4 5 7 8 9 4 5 7 8 9 4 5 C A D C C B C C C D C B A A A C A B D D C A C A C Schemt ocenini zdń otwrtych Zdnie. (-) x Rozwiąż

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

Wybrane zagadnienia z geometrii płaszczyzny. Danuta Zaremba

Wybrane zagadnienia z geometrii płaszczyzny. Danuta Zaremba Wybrne zgdnieni z geometrii płszczyzny Dnut Zremb Wstęp Publikcj t powstł z myślą o studentch, którzy chcą zdobyć uprwnieni do nuczni mtemtyki w szkole. Zwier on nieco podstwowych widomości z geometrii

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej

Bardziej szczegółowo

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2014)

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2014) Prce Koł Mt. Uniw. Ped. w Krk. 1 014), 1-5 edgogicznego w Krkowie PKoło Mtemtyków Uniwersytetu Prce Koł Mtemtyków Uniwersytetu Pedgogicznego w Krkowie 014) Bet Gwron 1 Kwdrtury Newton Cotes Streszczenie.

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

O PEWNYCH MODELACH DECYZJI FINANSOWYCH

O PEWNYCH MODELACH DECYZJI FINANSOWYCH DECYZJE nr 1 czerwiec 2004 37 O PEWNYCH MODELACH DECYZJI FINANSOWYCH Krzysztof Jjug Akdemi Ekonomiczn we Wrocłwiu Wprowdzenie modele teorii finnsów Teori finnsów, zwn również ekonomią finnsową, jest jednym

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy Wymgni edukcyjne z mtemtyki Kls IIB. Rok szkolny 2013/2014 Poziom podstwowy FUNKCJA KWADRATOWA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: 2 rysuje wykres funkcji f ( ) i podje jej włsności

Bardziej szczegółowo

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym Zior rozmte Teori i zstosowni we wniosowniu prosmcjnm PODSTWOWE POJĘCI Motwcje Potrze opisni zjwis i pojęć wielozncznch i niepreczjnch użwnch swoodnie w jęzu nturlnm np. wso tempertur młod człowie średni

Bardziej szczegółowo

ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE

ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE DAS Deterministyczny Automt Skończony Zdnie Niech M ędzie DAS tkim że funkcj przejści: Q F ) podj digrm stnów dl M ) które ze słów nleżą do język kceptownego

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

Topologia i podzbiory,

Topologia i podzbiory, Jest to tekst związny z odczytem wygłoszonym n XLV Szkole Mtemtyki Poglądowej, Co mi się podo, Jchrnk, sierpień 2010, z który utor otrzymł Medl Filc. Topologi i podziory, czyli histori jednego twierdzeni

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Mtemtyczne Podstwy Informtyki dr inż. Andrzej Grosser Instytut Informtyki Teoretycznej i Stosownej Politechnik Częstochowsk Rok kdemicki 2013/2014 Podstwowe pojęci teorii utomtów I Alfetem jest nzywny

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element

MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element MATEMATYKA Wykłd 4 (Funkcje) Pisząc f : (,b) R rozumiemy Ŝe kŝdemu (, b) przyporządkowny zostł dokłdnie jeden element y R. Wykresem funkcji nzywmy zbiór pr (,f()) n płszczyźnie skłdjącej się ze wszystkich

Bardziej szczegółowo

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek Ćwiczenie 4 Wyzncznie ogniskowych soczewek Wstęp teoretyczny: Krzyszto Rębils. utorem ćwiczeni w Prcowni izycznej Zkłdu izyki Uniwersytetu Rolniczego w Krkowie jest Józe Zpłotny. ZJWISK ZŁMNI ŚWITŁ Świtło,

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik 3 Krt oceny merytorycznej wniosku o dofinnsownie konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA WNIOSEK:. NUMER KONKURSU 2/POKL/8.1.1/2010 TYTUŁ PROJEKTU:... SUMA KONTROLNA

Bardziej szczegółowo

Spis treści. Podstawowe definicje. Wielokąty. Trójkąty. Czworokąty. Kąty

Spis treści. Podstawowe definicje. Wielokąty. Trójkąty. Czworokąty. Kąty Mrt Compny Ksprowicz LOGO Spis treści. 1 Podstwowe definicje 2 Wielokąty 3 Trójkąty 4 Czworokąty 5 Kąty Podstwowe definicje w geometrii. 1.Punkt 2.Prost 3.Proste prostopdłe 4.Proste równoległe 5.Półprost

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY Arkusz I Instrukcj dl zdjącego 1. Sprwdź, czy rkusz egzmincyjny zwier 8 stron (zdni 1 3). Ewentulny brk zgłoś przewodniczącemu zespołu ndzorującego

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Komputerowe wspomgnie decyzi 008/009 Liniowe zgdnieni decyzyne Nottki do temtu Metody poszukiwni rozwiązń ednokryterilnych problemów decyzynych metody dl zgdnień liniowego progrmowni mtemtycznego Liniowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny Dr Glin Criow Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne.

Bardziej szczegółowo

SCHEMAT PUNKTOWANIA. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów. Rok szkolny 2012/2013. Etap rejonowy

SCHEMAT PUNKTOWANIA. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów. Rok szkolny 2012/2013. Etap rejonowy SCHEMAT UNKTOWANIA Wojewódzki Konkurs rzedmiotowy z Mtemtyki dl uczniów gimnzjów Rok szkolny 0/03 Etp rejonowy rzy punktowniu zdń otwrtych nleży stosowć nstępujące ogólne reguły: Ocenimy rozwiązni zdń

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych kls drug zkres podstwowy Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

Algebra WYKŁAD 6 ALGEBRA 1

Algebra WYKŁAD 6 ALGEBRA 1 Algebr WYKŁAD 6 ALGEBRA Ogóln postć ukłdu równń liniowych Rozwżmy ukłd m równń liniowych z n niewidomymi m m n n mn n n n b b b m o współczynnikch ik orz b i. Mcierz ukłdu równń wymiru m n m postć A m

Bardziej szczegółowo

Anna Malarska. statystyczna analiza danych. wspomagana programem SPSS

Anna Malarska. statystyczna analiza danych. wspomagana programem SPSS Ann Mlrsk sttystyczn nliz dnych wspomgn progrmem SPSS SPSS Polsk Krków 2005 Sttystyczn nliz dnych wspomgn progrmem SPSS 1.2 Grficzne formy prezentcji dnych 1.2.1 Wykres słupkowy, histogrm Częstości relizcji

Bardziej szczegółowo

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel, utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem

Bardziej szczegółowo

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Foli Univ. Agric. Stetin. 2007, Oeconomic 254 (47), 117 122 Jolnt KONDRATOWICZ-POZORSKA ROLA KLIENTA W ZRÓWNOWAŻONYM ROZWOJU FIRMY ROLE OF CUSTOMER IN BALANCED

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

Materiały do wykładu Logiczne podstawy kognitywistyki

Materiały do wykładu Logiczne podstawy kognitywistyki Andrzej Pietruszczk Mteriły do wykłdu Logiczne podstwy kognitywistyki Część 6 1. Logik, czyli bstrhownie od rozwżnych pojęć Poprzednią część wykłdu zkończyliśmy dedukcją, w której z dwóch przesłnek wyprowdziliśmy

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh

Bardziej szczegółowo

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy KOMPENDIUM MATURZYSTY Mtemtyk poziom podstwowy Publikcj dystrybuown bezpłtnie Dostępn n stronie: Kompendium do pobrni n stronie: SPIS TREŚCI. Potęgi i pierwistki... W tym:. Wykorzystnie wzorów;. Przeksztłcnie

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami.

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami. KARTY PRACY 1 CZĘŚĆ KARTA PRACY NR 1 IMIĘ:... DATA: STRONA 1 1. Jkie są twoje oczekiwni i postnowieni związne z kolejnym rokiem szkolnym? Npisz list do nuczyciel, uzupełnijąc luki w tekście. miejscowość

Bardziej szczegółowo

Elementy rachunku wariacyjnego

Elementy rachunku wariacyjnego Wykłd 13 Elementy rchunku wricyjnego 13.1 Przykłdowe zgdnieni Rchunek wricyjny zjmuje się metodmi wyznczni wrtości ekstremlnych funkcjonłów określonych n pewnych przestrzenich funkcyjnych. Klsyczn teori

Bardziej szczegółowo

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH SSof Polsk, el. (1) 4843, (61) 414151, info@ssof.pl, www.ssof.pl PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Andrzej Sokołowski Akdemi Ekonomiczn w Krkowie, Zkłd Sysyki W oprcowniu ym przedswiono pewną

Bardziej szczegółowo

Wariacje Funkcji, Ich Własności i Zastosowania

Wariacje Funkcji, Ich Własności i Zastosowania Środowiskowe Studi Doktornckie z Nuk Mtemtycznych Uniwersytet Mrii Curie-Skłodowskiej w Lublinie Józef Bnś Ktedr Mtemtyki Politechnik Rzeszowsk Wricje Funkcji, Ich Włsności i Zstosowni Lublin 2014 Spis

Bardziej szczegółowo