Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Wielkość: px
Rozpocząć pokaz od strony:

Download "Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa"

Transkrypt

1 Mtemtyk finnsow r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

2 Mtemtyk finnsow r. 1. Zkłd uezpieczeń n życie plnuje zudownie portfel uezpieczeniowego przy nstępujących złożenich: udow portfel ędzie trwł 10 lt, w pierwszym roku zkłd zwrze umów uezpieczeni, w kżdym nstępnym roku dziłlności zkłd ędzie zwierł o umów więcej niż w poprzednim roku, wszystkie umowy uezpieczeni zwierne są n początku roku, zwrcie kżdej umowy uezpieczeni powoduje poniesienie kosztów kwizycji w wysokości 50, wykzywnych n końcu roku, kżd zwrt umow uezpieczeni, począwszy od drugiego roku jej trwni, przynosi zkłdowi zysk w wysokości 100, wykzywny n końcu roku, w czsie udowy portfel 10 lt zkłd uezpieczeń nie wypłci żdnych świdczeń i żdn z zwrtych umów nie zostnie rozwiązn. Olicz, jk powinn yć minimln początkow wysokość kpitłu zkłdu uezpieczeń kpitł opłcono n początku pierwszego roku, y n końcu kżdego roku, podczs cłego 10-letniego okresu udowy portfel, jego wysokość nie ył niższ niż Przyjmij, że stop zwrotu z inwestycji wynosi 5%. Podj njliższą wrtość: A B C D E

3 Mtemtyk finnsow r.. Kredyt w wysokości udzielony n okres 0 lt może yć spłcony n dw sposoy rtmi płtnymi n końcu roku. Sposó pierwszy poleg n tym, że przez pierwsze 10 lt kredyt jest spłcny równymi rtmi o wysokości R, ntomist przez pozostłe 10 lt kredyt spłc się rtmi, które spełniją wrunek, iż kżd nstępn rt jest o 10% niższ od poprzedniej. O sposoie drugim widomo, że przez okres pierwszych 10 lt płcimy rty o zmiennej wielkości, przy czym wysokość rty wzrst co roku o tę smą kwotę, ntomist rty płtne n koniec 10, 11, roku są tej smej wysokości równej R. Wiedząc, że stop oprocentowni kredytu wynosi 7%, olicz wysokość pierwszej rty przy spłcie kredytu drugim sposoem. Podj njliższą wrtość. A B C 1 00 D 1 00 E 1 00

4 Mtemtyk finnsow r.. Portfel inwestycyjny zwier nstępujące rodzje instrumentów finnsowych: 10 letnie oligcje z kuponem o wrtości 6% wrtości nominlnej, płtnym n koniec roku i wrtością wykupu równą wrtości nominlnej, 15 - letnie oligcje zero kuponowe, 5 - letnie oligcje z kuponem o wrtości 6% wrtości nominlnej, płtnym n koniec roku i wrtością wykupu równą wrtości nominlnej, 50 letnie oligcje zero kuponowe. Durtion cłego portfel wynosi, ntomist durtion portfel skłdjącego się tylko z oligcji 10, 15 i 50 - letnich wynosi,7. Wyzncz udził procentowy oligcji 5 letnich w portfelu, przy złożeniu, że stop procentow jest równ 6%. Podj njliższą wrtość: A 0.1% B 1.1% C.1% D.1% E.1%

5 Mtemtyk finnsow r. 5. Wiedząc, że: n n wskż, który z poniższych wzorów wyrż n I : A ln B ln C ln D ln E ln

6 Mtemtyk finnsow r. 5. Zkłd uezpieczeń mjątkowych prowdzi dziłlność od 1 styczni 006 roku. Część szkód jest zgłszn w formie rent pewnych wieczystych płtnych n koniec roku. Łączn licz szkód rentowych, które zszły w dnym roku stnowi 0.1% liczy polis dl tego roku, zś licz polis w 006 wyniosł i w kolejnych ltch rosł o 5%. Prwdopodoieństwo, że rent zostnie zgłoszon do wypłty z k-letnim opóźnieniem k = 0,1,, w stosunku do roku zjści szkody wynosi p k = 1 k+1, k = 0,1,, k = 0 ozncz, że rent jest zgłoszon do wypłty w tym smym roku, w którym zszł szkod. Zkłdmy, że wypłty rent zczynją się ntychmist po zgłoszeniu. Rok zgłoszeni renty do wypłty określ stłą miesięczną płtność renty, któr w przyszłości nie jest indeksown. I tk miesięczn płtność z tytułu rent zgłoszonych w 006 roku wynosi 100 PLN, rent zgłoszonych w 007 roku wynosi 10 PLN i o % więcej w kżdym kolejnym roku. Zkłdjąc, że zgłoszeni rent z kolejnych lt zjści szkód są niezleżne, wyzncz wrtość oczekiwną łącznej kwoty wypłt świdczeń rentowych w 009 roku do oliczeń nie przyjmuj zokrągleń do cłkowitej liczy rent zgłsznych i wypłcnych w dnym roku. Odpowiedź podj njliższą wrtość: A 6 B 7 C 58 D 69 E 80 6

7 Mtemtyk finnsow r. 6. Cen rynkow P pewnego instrumentu dłużnego spełni równnie różniczkowe dp di = 10v I 0 000v1, gdzie v jest czynnikiem dyskontującym dl stopy i = YTM. Wyzncz wrtość P tego instrumentu dl i = YTM = 7%, jeżeli dl i = YTM = 5% wynosi on 16. Podj njliższą wrtość. A 18 B 1 C 16 D 17 E 155 7

8 Mtemtyk finnsow r. 7. N rynku finnsowym dny jest instrument pochodny typu europejskiego X zpdjący z 5 lt od dziś. Instrumentem zowym dl instrumentu X jest kcj, o której widomo, że rozkłd jej ceny S 5 z 5 lt jest zleżny od zmiennej Y o rozkłdzie jednostjnym n przedzile60,0w nstępujący sposó: S Y 100 Y ~ U60,0 5 Wypłt V5 generown przez instrument X dn jest nstępującą funkcją zleżną od ceny S5 orz od zmiennej Y: S 00,0 exp 0.8. V5 mx 5 Y Pondto n rynku dostępn jest zerokuponow oligcj rządow o terminie zpdlności równym 5 lt, której cen oecn zleży od zmiennej Y w nstępujący sposó: P 0,5 exp 0.1Y. N podstwie powyższych informcji orz zkłdjąc rk ritrżu oecn wrtość instrumentu X wynosi podj njliższą wrtość: A 0.1 exp exp 7.5 B 16 exp exp 7.5 C 160 exp exp 7.5 D 5 exp exp 80 E 8 exp exp 80 8

9 Mtemtyk finnsow r. 8. Dny jest dyskretny proces, t 0,..., opisujący zchownie rocznej stopy zmienno- X t procentowej. Widomo, że stop strtuje z wrtości początkowej X.5 0 % i rośnie o 0% lu mleje o 5% w stosunku do wrtości z poprzedniego okresu odpowiednio z prwdopodoieństwmi 0.75 i 0.5. Dny jest również instrument zowy, którego cenę opisuje dyskretny proces: N instrument zowy S 10exp5 X 1, t 0,..., t t. Stwystwiono europejską rierową opcję kupn typu knock-downnd- out * opcj z rierą wyjści w dół o cenie wykonni K 8 i rierze H 5. Wyzncz oecną cenę opcji rierowej zkłdjąc roczną stopę wolną od ryzyk 6%. Przy sprwdzniu ktywności opcji zchowj dokłdność do setnych części ceny. A 6.81 B C 11.7 D 1.18 E 1. Wskzówk: * Opcj z rierą wyjści knock-out option przestje yć ktywn w momencie osiągnięci przez cenę instrumentu zowego ustlonej riery. Opcj z rierą wyjści w dół knock-down nd out wygs ez wrtości, jeśli w dowolnym momencie życi opcji, przed dtą wygśnięci, nstępuje oniżenie ceny instrumentu zowego poniżej poziomu riery. Opcj przestje yć wtedy ktywn ez względu n rozwój ceny instrumentu zowego w przyszłości. 9

10 Mtemtyk finnsow r. 9. Dwuletni oligcj korporcyjn o nominle i kuponie 8% płtnym rocznie jest wycenin w momencie emisji n PLN. Pondto, widomo, że: roczn oligcj rządow o nominle z 5% kuponem płtnym rocznie wycenion jest w momencie emisji n 1 000, dwuletni oligcj rządow o nominle z 5% kuponem płtnym rocznie jest wycenion w momencie emisji n Jkiego nrzutu n ryzyko kredytowe używ rynek przy wycenie tej oligcji? Podj njliższą odpowiedź: A 1.75% B.00% C.5% D.50% E.75% 10

11 Mtemtyk finnsow r. 10. Rozwżmy nstępujący model wyceny oligcji, w którym: dostępne są oligcje zerokuponowe o nominle 1, które wygsją w chwilch 1,, i, odpowiednio; ceny tych oligcji w chwili 0 wynoszą odpowiednio: P 0,1 = 0.9, P 0, = 0.81, P 0, = 0.79, P 0, = gdzie P 0, T ozncz cenę w chwili 0 oligcji wygsjącej w momencie T. Widomo, że w chwili 1 wystąpi jeden z możliwych stnów rynku: ω 1, ω, ω. Ceny oligcji w chwili 1, w kżdym ze stnów dne są w teli: ω 1 ω ω 1 P 1, P 1, P 1, x Żdne trnskcje nie są możliwe pomiędzy chwilmi 0 i 1. Wrtość x, przy której model ten jest wolny od ritrżu wynosi podj njliższą wrtość: A 0.70 B C D 0.80 E

12 Mtemtyk finnsow r. Egzmin dl Akturiuszy z 15 mrc 010 r. Mtemtyk finnsow Arkusz odpowiedzi * Imię i nzwisko:... Pesel:... OZNACZENIE WERSJI TESTU... Zdnie nr Odpowiedź Punktcj 1 A D B E 5 E 6 B 7 A 8 B 9 B 10 C * Ocenine są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi. Wypełni Komisj Egzmincyjn. 1

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Dodatkowe informacje i objaśnienia. Zakres zmian wartości grup rodzajowych środków trwałych, wnip oraz inwestycji długoterminowych Zwieksz Stan na.

Dodatkowe informacje i objaśnienia. Zakres zmian wartości grup rodzajowych środków trwałych, wnip oraz inwestycji długoterminowych Zwieksz Stan na. STOWARZYSZENIE RYNKÓW FINANSOWYCH ACI POLSKA Afiliowne przy ACI - The Finncil Mrkets Assocition Dodtkowe informcje i objśnieni Wrszw, 21 mrzec 2014 1.1 szczegółowy zkres zmin wrtości grup rodzjowych środków

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Matematyka finansowa 17.05.2003

Matematyka finansowa 17.05.2003 1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE

ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE DAS Deterministyczny Automt Skończony Zdnie Niech M ędzie DAS tkim że funkcj przejści: Q F ) podj digrm stnów dl M ) które ze słów nleżą do język kceptownego

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO

WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO w roku szkolnym... I. Dne osoowe uczni / słuchcz Nzwisko..... Imion...... Imię ojc i mtki...... PESEL uczni / słuchcz Dt i miejsce urodzeni... II. Adres zmieszkni

Bardziej szczegółowo

Przygotowanie kart RUP

Przygotowanie kart RUP Przygotownie krt RUP Bnk Gospodrstw Krjowego, Al. Jerozolimskie 7, 00-955 Wrszw Stron nr 1 z 18 Spis Treści 1. WPROWADZENIE... 3 2. PRZYGOTOWANIE KART RUP... 3 2.1 KARTA RUP_L_0151 Depozyt do sygntury

Bardziej szczegółowo

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł TRZECI SEMESTR LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRACA KONTROLNA Z MATEMATYKI ROZSZERZONEJ O TEMACIE: Liczby rzeczywiste i wyrżeni lgebriczne Niniejsz prc kontroln skłd się z zdń zmkniętych ( zdń)

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

I. INFORMACJE OGÓLNE O PROJEKCIE 1. Tytuł projektu. 2. Identyfikacja rodzaju interwencji

I. INFORMACJE OGÓLNE O PROJEKCIE 1. Tytuł projektu. 2. Identyfikacja rodzaju interwencji MINISTERSTWO ROZWOJU REGIONALNEGO Progrm Opercyjny Innowcyjn Gospodrk Wniosek o dofinnsownie relizcji projektu 8. Oś Priorytetow: Społeczeństwo informcyjne zwiększnie innowcyjności gospodrki Dziłnie 8.2:

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik nr 3 Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: POKL.05.02.01 00../..

Bardziej szczegółowo

do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość

do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość Projekt współfinnsowny przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Złącznik nr do Regulminu przyznwni środków finnsowych n rozwój przedsięiorczości w projekcie Dojrzł przedsięiorczość

Bardziej szczegółowo

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH Michł PAWŁOWSKI 1 1. WSTĘP Corz większy rozwój przemysłu energetycznego, w tym siłowni witrowych stwi corz większe wymgni woec producentów przekłdni zętych jeśli

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

T-08 Sprawozdanie o przewozach morską i przybrzeżną flotą transportową

T-08 Sprawozdanie o przewozach morską i przybrzeżną flotą transportową GŁÓWNY URZĄD STATYSTYCZNY, l. Niepodległości 208, 00-925 Wrszw www.stt.gov.pl Nzw i dres jednostki sprwozdwczej T-08 Sprwozdnie o przewozch morską i przyrzeżną flotą trnsportową Portl sprwozdwczy GUS www.stt.gov.pl

Bardziej szczegółowo

DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW

DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW 1 Nzw progrmu opercyjnego Regionlny Progrm Opercyjny Województw Łódzkiego n lt 2007-2013. 2 Numer i nzw osi priorytetowej Oś priorytetow III: Gospodrk,

Bardziej szczegółowo

WYJAŚNIENIA TREŚCI SIWZ

WYJAŚNIENIA TREŚCI SIWZ WYJAŚNIENIA TREŚCI SIWZ W postępowniu o udzielenie i obsługę długoterminowego u bnkowego w wysokości 172 zł 1 Zświdczenie o ndniu NIP Gminy Znjduje się pod ogłoszeniem o zmówieniu n udzielenie długoterminowego

Bardziej szczegółowo

WNIOSEK O USTALENIE PRAWA DO ŚWIADCZENIA PIELĘGNACYJNEGO Część I. Dane osoby ubiegającej się o ustalenie prawa do świadczenia pielęgnacyjnego

WNIOSEK O USTALENIE PRAWA DO ŚWIADCZENIA PIELĘGNACYJNEGO Część I. Dane osoby ubiegającej się o ustalenie prawa do świadczenia pielęgnacyjnego Miejski Ośrodek Pomocy Rodzinie ul. Strzelców Bytomskich 16, 41-902 Bytom Dził Świdczeń Rodzinnych ul. Strzelców Bytomskich 21, 41-902 Bytom tel. 32 388-86-07 lub 388-95-40; e-mil: sr@mopr.bytom.pl WNIOSEK

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

WNIOSEK O USTALENIE PRAWA DO SPECJALNEGO ZASIŁKU OPIEKUŃCZEGO. Dane osoby ubiegającej się o ustalenie prawa do specjalnego zasiłku opiekuńczego.

WNIOSEK O USTALENIE PRAWA DO SPECJALNEGO ZASIŁKU OPIEKUŃCZEGO. Dane osoby ubiegającej się o ustalenie prawa do specjalnego zasiłku opiekuńczego. Miejski Ośrodek Pomocy Rodzinie ul. Strzelców Bytomskich 16, 41-902 Bytom Dził Świdczeń Rodzinnych ul. Strzelców Bytomskich 21, 41-902 Bytom tel. 32 388-86-07 lub 388-95-40; e-mil: sr@mopr.bytom.pl WNIOSEK

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1

Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1 1 Rodzaje i źródła ryzyka stopy procentowej: Ryzyko niedopasowania terminów przeszacowania, np. 6M kredyt o stałym oprocentowaniu finansowany miesięcznymi lokatami o zmiennym oprocentowaniu. Ryzyko podstawy

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. RozwaŜmy

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Matematyka finansowa 25.01.2003 r.

Matematyka finansowa 25.01.2003 r. Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),

Bardziej szczegółowo

Umowa licencyjna Nr./on-line/wariant odnawialny

Umowa licencyjna Nr./on-line/wariant odnawialny Umow licencyjn Nr./on-line/wrint odnwilny zwrt w dniu w r. pomiędzy: 1) z siedzibą w.., ul.,/ wpisną/*ym do rejestru prowdzonego przez Sąd Rejonowy Wydził Gospodrczy z numerem KRS, kpitł zkłdowy/* kpitł

Bardziej szczegółowo

Obligacje. nazywamy papier warto sciowy maj acy, po_zyczki przez instytucj e, obligacj e, u jej nabywcy.

Obligacje. nazywamy papier warto sciowy maj acy, po_zyczki przez instytucj e, obligacj e, u jej nabywcy. Obligacje De nicja Obligacj nazywamy papier warto sciowy maj acy, charakter wierzycielski. Obligacj jest zaci agni, eciem, po_zyczki przez instytucj e, sprzedaj ac, obligacj e, u jej nabywcy. Sprzedaj

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia

Bardziej szczegółowo

O PEWNYCH MODELACH DECYZJI FINANSOWYCH

O PEWNYCH MODELACH DECYZJI FINANSOWYCH DECYZJE nr 1 czerwiec 2004 37 O PEWNYCH MODELACH DECYZJI FINANSOWYCH Krzysztof Jjug Akdemi Ekonomiczn we Wrocłwiu Wprowdzenie modele teorii finnsów Teori finnsów, zwn również ekonomią finnsową, jest jednym

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Podstawy programowania obiektowego

Podstawy programowania obiektowego 1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Zadanie 3

Zadanie 1. Zadanie 2. Zadanie 3 Zadanie 1 Inwestor rozważa nabycie obligacji wieczystej (konsoli), od której będzie otrzymywał na koniec każdego półrocza kupon w wysokości 80 zł. Wymagana przez inwestora stopa zwrotu w terminie do wykupu

Bardziej szczegółowo

Pakiet aplikacyjny. Specjalista ds. rozliczeń i administracji [Pomorze] ADM/2011/01

Pakiet aplikacyjny. Specjalista ds. rozliczeń i administracji [Pomorze] ADM/2011/01 Pkiet plikcyjny Stnowisko: Nr referencyjny: Specjlist ds. rozliczeń i dministrcji [Pomorze] ADM/2011/01 Niniejszy pkiet zwier informcje, które musisz posidć zgłszjąc swoją kndydturę. Zwier on: List do

Bardziej szczegółowo

REGULAMIN usług oferowanych z[ pośrednictwem serwisu internetowego Przygody i Nagrody prowadzonego pod adresem internetowym http://przygodynagrody.pl/ przez Annę Samson-Zoń działającą pod firmą Emotio

Bardziej szczegółowo

4. Składkę ubezpieczeniową zaokrągla się do pełnych złotych.

4. Składkę ubezpieczeniową zaokrągla się do pełnych złotych. . Stwki tryfowe n dwunstomiesięczny okres ubezpieczeni, dl kżdego z rodzjów ubezpieczeń, określone są w kolejnych częścich tryfy. 2. Stwki podne w poszczególnych tbelch są stwkmi minimlnymi, z zstrzeżeniem

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Analiza instrumentów pochodnych

Analiza instrumentów pochodnych Analiza instrumentów pochodnych Dr Wioletta Nowak Wykład 2-3 Kontrakt forward na przyszłą stopę procentową Kontrakty futures na długoterminowe instrumenty procentowe Swapy procentowe Przykład 1 Inwestor

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych Dz.U.2012.204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych (Dz. U. z dni 22 lutego 2012 r.) N podstwie rt. 22 ust. 2 pkt 1 ustwy

Bardziej szczegółowo

WNIOSEK O USTALENIE PRAWA DO ŚWIADCZEŃ Z FUNDUSZU ALIMENTACYJNEGO. okres świadczeniowy.. /.. Część I 1. Dane osoby ubiegającej się o świadczenia 2)

WNIOSEK O USTALENIE PRAWA DO ŚWIADCZEŃ Z FUNDUSZU ALIMENTACYJNEGO. okres świadczeniowy.. /.. Część I 1. Dane osoby ubiegającej się o świadczenia 2) Miejski Ośrodek Pomocy Rodzinie ul. Strzelców Bytomskich 16, 41-902 Bytom Dził Świdczeń Alimentcyjnych i Dochodzeni Nleżności ul. Strzelców Bytomskich 21, 41-902 Bytom tel. 32 388-86-07 lub 388-95-40;

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Twoje zdrowie -isamopoczucie

Twoje zdrowie -isamopoczucie Twoje zdrowie -ismopoczucie Kidney Disese nd Qulity of Life (KDQOL-SF ) Poniższ nkiet zwier pytni dotyczące Pn/Pni opinii o włsnym zdrowiu. Informcje te pozwolą nm zorientowć się, jkie jest Pn/Pni smopoczucie

Bardziej szczegółowo

Inżynieria finansowa Ćwiczenia II Stopy Procentowe

Inżynieria finansowa Ćwiczenia II Stopy Procentowe Inżynieria finansowa Ćwiczenia II Stopy Procentowe Wydział Matematyki Informatyki i Mechaniki UW 11 października 2011 Zadanie 2.1 Oprocentowanie 3M pożyczki wynosi 5.00% (ACT/365). Natomiast, 3M bon skarbowy

Bardziej szczegółowo

IZBA KSIĘGARSTWA POLSKIEGO Sprawozdanie finansowe za rok 2011 - dodatkowe informacje i objaśnienia

IZBA KSIĘGARSTWA POLSKIEGO Sprawozdanie finansowe za rok 2011 - dodatkowe informacje i objaśnienia NOTA nr 1 ZMIANY W STANIE WARTOŚCI NIEMATERIALNYCH I PRAWNYCH - WARTOŚĆ BRUTTO Koszt zkończonych prc rozwojowych Wrtość firmy Inne wrtości niemterilne i utorskie prw mjątkowe, prw pokrewne, licencje, koncesje

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r.

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r. Typ/orgn wydjący Rozporządzenie/Minister Infrstruktury Tytuł w sprwie szczegółowych wrunków i trybu wydwni zezwoleń n przejzdy pojzdów nienormtywnych Skrócony opis pojzdy nienormtywne Dt wydni 16 grudni

Bardziej szczegółowo

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą

Bardziej szczegółowo

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r.

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Wrszw, dni 22 lutego 2012 r. Pozycj 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych

Bardziej szczegółowo

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI INWESTYCJE Instrumenty finansowe, ryzyko Jajuga Krzysztof, Jajuga Teresa SPIS TREŚCI Przedmowa Wprowadzenie - badania w zakresie inwestycji i finansów Literatura Rozdział 1. Rynki i instrumenty finansowe

Bardziej szczegółowo

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami.

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami. KARTY PRACY 1 CZĘŚĆ KARTA PRACY NR 1 IMIĘ:... DATA: STRONA 1 1. Jkie są twoje oczekiwni i postnowieni związne z kolejnym rokiem szkolnym? Npisz list do nuczyciel, uzupełnijąc luki w tekście. miejscowość

Bardziej szczegółowo

Autor: Zbigniew Tuzimek Opracowanie wersji elektronicznej: Tomasz Wdowiak

Autor: Zbigniew Tuzimek Opracowanie wersji elektronicznej: Tomasz Wdowiak DNIE UKŁDÓW LOKD UTOMTYCZNYCH uor: Zigniew Tuzimek Oprcownie wersji elekronicznej: Tomsz Wdowik 1. Cel i zkres ćwiczeni Celem ćwiczeni jes zpoznnie sudenów z udową orz dziłniem zezpieczeń i lokd sosownych

Bardziej szczegółowo

WNIOSEK o przyznanie pomocy na zalesianie

WNIOSEK o przyznanie pomocy na zalesianie Agencj Restrukturyzcji i Modernizcji Rolnictw WNIOSEK o przyznnie pomocy n zlesinie 1) rok Potwierdzenie przyjęci wniosku przez Biuro Powitowe ARiMR /pieczęć/... Dt przyjęci i podpis... Znk sprwy - Schemt

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie I. ZASADY OGÓLNE PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnzjum nr 2 im. ks. Stnisłw Konrskiego nr 2 w Łukowie 1. W Gimnzjum nr 2 w Łukowie nuczne są: język ngielski - etp educyjny III.1 język

Bardziej szczegółowo

SPRAWOZDANIE O KSZTAŁTOWANIU SIĘ WIELOLETNIEJ PROGNOZY FINANSOWEJ MIASTA KATOWICE NA LATA 2012 2035

SPRAWOZDANIE O KSZTAŁTOWANIU SIĘ WIELOLETNIEJ PROGNOZY FINANSOWEJ MIASTA KATOWICE NA LATA 2012 2035 PREZYDENT MIASTA KATOWICE SPRAWOZDANIE O KSZTAŁTOWANIU SIĘ WIELOLETNIEJ PROGNOZY FINANSOWEJ MIASTA KATOWICE NA LATA 2012 2035 ZA 2012 ROK Ktowice, mrzec 2013 roku SPRAWOZDANIE O KSZTAŁTOWANIU SIĘ WIELOLETNIEJ

Bardziej szczegółowo

Matematyka finansowa 04.10.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

Matematyka finansowa 04.10.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Komisa Egzaminacyna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowane:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

a Komisją Zakładową NSZZ Solidarność Uniwersytetu im. Adama Mickiewicza w Poznaniu, reprezentowaną przez: mgr Krystynę Andrzejewską

a Komisją Zakładową NSZZ Solidarność Uniwersytetu im. Adama Mickiewicza w Poznaniu, reprezentowaną przez: mgr Krystynę Andrzejewską POROZUMIENIE zwrte w dniu 11 czerwc 2015 roku w sprwie zsd zwiększeni wyngrodzeń prcowników Uniwersytetu im. Adm Mickiewicz w Poznniu od 1 styczni 2015 roku pomiędzy: Uniwersytetem im. Adm Mickiewicz w

Bardziej szczegółowo

POROZUMIENIE. zawarte w dniu 16 maja 2014 r. w Warszawie, zwane dalej Porozumieniem, pomiędzy:

POROZUMIENIE. zawarte w dniu 16 maja 2014 r. w Warszawie, zwane dalej Porozumieniem, pomiędzy: POROZUMIENIE w sprwie przeprowdzeni pilotżu systemu komunikcji dl osób niedosłyszących (pętle indukcyjne przenośne) w jednostkch obsługujących użytkowników publicznie dostępnych usług telefonicznych orz

Bardziej szczegółowo

Przeguby precyzyjne KTR z łożyskowaniem ślizgowym lub igiełkowym

Przeguby precyzyjne KTR z łożyskowaniem ślizgowym lub igiełkowym Przeguy precyzyjne KTR z łożyskowniem ślizgowym lu igiełkowym Przeguy KTR, to pod względem technicznym, wysokojkościowe elementy do łączeni dwóch włów, o dopuszczlnej wielkości kąt prcy dl pojedynczego

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik 3 Krt oceny merytorycznej wniosku o dofinnsownie konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA WNIOSEK:. NUMER KONKURSU 2/POKL/8.1.1/2010 TYTUŁ PROJEKTU:... SUMA KONTROLNA

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

KARTA OCENY BIZNES PLANU

KARTA OCENY BIZNES PLANU Złącznik nr do Regulminu przyznwni środków finnsowych n rozwój przedsiębiorczości w projekcie Czs n przedsiębiorcze kobiety'' KARTA OCENY BIZNES PLANU w rmch projektu Czs n przedsiębiorcze kobiety'' w

Bardziej szczegółowo

Pakiet aplikacyjny. Niniejszy pakiet zawiera informacje, które musisz posiadać zgłaszając swoją kandydaturę. Zawiera on:

Pakiet aplikacyjny. Niniejszy pakiet zawiera informacje, które musisz posiadać zgłaszając swoją kandydaturę. Zawiera on: Pkiet plikcyjny Stnowisko: Nr referencyjny: Specjlist ds. interwencji ekologicznych CON/2011/01 Niniejszy pkiet zwier informcje, które musisz posidć zgłszjąc swoją kndydturę. Zwier on: List do kndydtów

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 424 PRACE INSTYTUTU KULTURY FIZYCZNEJ NR 22 2005

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 424 PRACE INSTYTUTU KULTURY FIZYCZNEJ NR 22 2005 ZEZYTY NAUKOWE UNIWERYTETU ZCZECIŃKIEGO NR 424 PRACE INTYTUTU KULTURY FIZYCZNEJ NR 22 2005 MARIA MAKRI PRAWNOŚĆ FIZYCZNA I AKTYWNOŚĆ RUCHOWA KOBIET W WIEKU 20 60 LAT 1. Wstęp Dobr sprwność fizyczn jest

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

PROJEKTOWANIE SYSTEMÓW I PROCESÓW LOGISTYCZNYCH. Efektywność procesów logistycznych AUTOR: ADAM KOLIŃSKI, PAWEŁ FAJFER

PROJEKTOWANIE SYSTEMÓW I PROCESÓW LOGISTYCZNYCH. Efektywność procesów logistycznych AUTOR: ADAM KOLIŃSKI, PAWEŁ FAJFER 1 PROJEKTOWANIE SYSTEMÓW I PROCESÓW LOGISTYCZNYCH Efektywność procesów logistycznych AUTOR: EFEKTYWNOŚĆ PROCESÓW PRODUKCYJNYCH 2 Efektywność jest pojęciem dość trudnym do jednozncznego zdefiniowni. Szczególnie

Bardziej szczegółowo

Obligacje, Swapy, FRAsy i Bob Citron

Obligacje, Swapy, FRAsy i Bob Citron Obligacje, Swapy, FRAsy i Bob Citron Andrzej Kulik andrzej.kulik@pioneer.com.pl +22 321 4106/ 609 691 729 1 Plan Przypomnienie informacji o rynku długu Rodzaje obligacji Ryzyko obligacji yield curve Duration

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo