Języki, automaty i obliczenia

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Języki, automaty i obliczenia"

Transkrypt

1 Języki, utomty i oliczeni Wykłd 5: Wricje n temt utomtów skończonych Słwomir Lsot Uniwersytet Wrszwski 25 mrc 2015

2 Pln

3 Automty dwukierunkowe (Niedeterministyczny) utomt dwukierunkowy A = (A,,, Q, I, F, δ) δ Q (A {, }) Q { 1, 0, 1} (q,, q, k) δ: czytj, zmień stn z q n q, zmień pozycję o k Ustlmy słowo wejściowe w A, niech n = w. Konfigurcj utomtu A n słowie w to pr (q, i) Q {0... n + 1} konfigurcje początkowe I {1} q i n n+1 konfigurcje kceptujące F {n + 1} Zrnimy przejść postci (q,, q, 1) (q,, q, 1), czyli: δ (Q { } Q { 1} Q { } Q {1}) =

4 Przykłd Pytnie Jki język rozpoznje ten utomt dwukierunkowy? A = {, } Q = {q 0, q 1, q 2, p 1, p 2,, r} I = {q 0 } F = {} q 0 (q 0, +1) (q 1, +1) (q 0, +1) (p 0, 1) q 1 (q 2, +1) (q 1, +1) (r, 1) q 2 (q 0, +1) (q 2, +1) (r, 1) p 0 (, +1) (p 0, 1) (p 1, 1) p 1 (r, +1) (p 1, 1) (p 0, 1) (, +1) (, +1) (, +1) r (r, +1) (r, +1) (r, +1)

5 Biegi utomtu dwukierunkowego Ustlmy utomt dwukierunkowy A = (A,,, Q, I, F, δ) i słowo w = 1... n A. Definiujemy relcję przejści pomiędzy konfigurcjmi utomtu A n słowie w. (q, i) (q, i + k) wtw. gdy 1 i n orz δ zwier przejście (q, i, q, k), lu i = 0 orz δ zwier przejście (q,, q, k), lu i = n + 1 orz δ zwier przejście (q,, q, k). Bieg n słowie w to ciąg konfigurcji (q 0, i 0 ),..., (q m, i m), gdzie q 0 I, i 0 = 0, orz (q j, i j ) (q j+1, i j+1 ), dl j = 0,..., m 1. Bieg jest kceptujący jeśli q m F orz i m = n + 1. Pytnie Jk długi może yć ieg utomtu dwukierunkowego n słowie w?

6 Język utomtu dwukierunkowego Język rozpoznwny przez A: L(A) = {w A : A m ieg kceptujący n w}. Pytnie Jki język rozpoznje ten utomt dwukierunkowy?, 1, 1, 1 strt, 1, 1, 1 (, nieużywne) Pytnie Czy utomty dwukierunkowe rozpoznją więcej języków niż utomty jednokierunkowe?

7 Automty dwukierunkowe jko mszyny Turing q i n n+1 Automty dwukierunkowe = mszyny Turing ze stłą pmięcią = mszyny Turing z tśmą wejściową tylko do odczytu, ez tśmy rooczej

8 Deterministyczne utomty dwukierunkowe Automt dwukierunkowy A = (A,,, Q, I, F, δ) jest deterministyczny, jeśli relcj przejści jest funkcją: δ : Q A Q { 1, 0, 1} q 0 (q 0, +1) (q 1, +1) (q 0, +1) (p 0, 1) q 1 (q 2, +1) (q 1, +1) (r, 1) q 2 (q 0, +1) (q 2, +1) (r, 1) p 0 (, +1) (p 0, 1) (p 1, 1) p 1 (r, +1) (p 1, 1) (p 0, 1) (, +1) (, +1) (, +1) r (r, +1) (r, +1) (r, +1) Pytnie Ile stnów musi mieć deterministyczny utomt dwukierunkowy dl język L n = A A n 1?

9 Deterministyczne utomty dwukierunkowe (c.d.) Pytnie Ile stnów musi mieć deterministyczny utomt dwukierunkowy dl język L n = A A n 1 A?,, strt,,,

10 Deterministyczne utomty dwukierunkowe (c.d.) Pytnie Ile stnów musi mieć deterministyczny utomt dwukierunkowy dl język L n = A A n 1 A?,, strt,,, Odpowiedź idź w prwo do pierwszej idź n kroków w prwo jeśli to kceptuj w.p.p. idź n 1 kroków w lewo kontynuuj od pierwszej instrukcji wyjątek: jeśli to odrzuć

11 Automty dwukierunkowe jednokierunkowe Pytnie Czy utomty dwukierunkowe rozpoznją więcej języków niż utomty jednokierunkowe?

12 Automty dwukierunkowe jednokierunkowe Pytnie Czy utomty dwukierunkowe rozpoznją więcej języków niż utomty jednokierunkowe? Twierdzenie (Rin, Scott 1959, Sheprdson 1959) Automty dwukierunkowe rozpoznją języki regulrne. Dowód (Vrdi 1989): Niech A = (A,,, Q, I, F, δ) utomt dwukierunkowy. Fkt w = 1... n L(A) wtw. gdy P 0, P 1,..., P n+1 t.że I P 1 F P n+1 = i {0... n + 1}. (q, i, q, k) δ q P i = q P i+k(0 =, n+1 = )

13 Dowód (2N 1N) P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 Dowód (c.d.): Definiujemy niedeterministyczny utomt jednokierunkowy A : Q = P(Q) P(Q) I = {(P, P ) : F = {(P, P ) : I P q P, p Q. (q,, p, 0) δ = p P q P, p Q. (q,, p, 1) δ = p P } P F = q P, p Q. (q,, p, 0) δ = p P q P, p Q. (q,, p, 1) δ = p P} δ = {((P, P ),, (P, P )) : q P, p Q. (q,, p, 1) δ = p P q P, p Q. (q,, p, 0) δ = p P q P, p Q. (q,, p, 1) δ = p P } Z fktu z poprzedniego sljdu wynik: w L(A ) w L(A)

14 Determinizcj? 2D utomty dwukierunkowe deterministyczne? 1N utomty jednokierunkowe niedeterministyczne 2 n O(n n ) 1D utomty jednokierunkowe deterministyczne 2N utomty dwukierunkowe niedeterministyczne O(2 n2 )

15 Pln

16 Niedeterminizm = A = {, } L n = A A A w = strt 0, 0 1 1, 2 2 3, 3

17 ? = A = {, } A L n w = strt 0, , 2 3, 3

18 Alterncj Notcj Stny egzystencjlne i uniwerslne: strt 0, 0 1 1, 2 2 3, 3

19 Automty lternujące Automt lternujący A = (A, Q, Q, q 0, F, δ), Q Q =, Q = Q Q Zkłdmy, że dl kżdego q Q i A, istnieje p Q t.że (q,, p) δ. Ustlmy słowo wejściowe w = 1... n A. Gr o kceptcję G A,w : grcze: Automt, Przeciwnik pozycje Automtu: Q {0... n} pozycje Przeciwnik: Q {0... n} pozycj początkow: (q 0, 0) ruch (q, i 1) (q, i) jeśli (q, i, q ) δ Automt wygryw, gdy gr osiągnie pozycję (q, n), gdzie q F Język rozpoznwny przez utomt A: L(A) = {w A : Automt m strtegię wygrywjącą w grze G A,w }

20 Strtegi wygrywjąc Automtu Język rozpoznwny przez utomt A: L(A) = {w A : Automt m strtegię wygrywjącą w grze G A,w z (q 0, 0) } Automt m strtegię wygrywjącą w G A,w z (q, n) wtw. gdy q F W n A,w = F Automt m strtegię wygrywjącą w G A,w z (q, i 1) wtw. gdy q Q i istnieje p Q t.że (q, i, p) δ i Automt m strtegię wygrywjącą w G A,w z (p, i), lo q Q i dl kżdego p Q t.że (q, i, p) δ, Automt m strtegię wygrywjącą w G A,w z (p, i) W i 1 A,w = {q Q : p Q. (q, i, p) δ p W i A,w } {q Q : p Q. (q, i, p) δ = p W i A,w } L(A) = {w A : q 0 W 0 A,w }

21 Przykłd,, c c c, c strt c, c c, c c Pytnie Czy c L(A)? Jki język rozpoznje ten utomt?

22 Przykłd,, c c c, c strt c, c c, c c Pytnie Czy c L(A)? Jki język rozpoznje ten utomt? Odpowiedź ( (LL LcL) ) L, gdzie L = ( + c)

23 Pytni Pytnie Jk przeroić utomt lternujący A n utomt rozpoznjący język A L(A)?

24 Pytni Pytnie Jk przeroić utomt lternujący A n utomt rozpoznjący język A L(A)? Pytnie Czy utomty lternujące rozpoznją więcej języków niż utomty niedeterministyczne?

25 Automty lternujące języki regulrne Twierdzenie Automty lternujące rozpoznją języki regulrne. Dowód: Niech A = (A, Q, Q, q 0, F, δ) utomt lternujący. Konstruujemy utomt niedeterministyczny A = (A, Q, I, F, δ ): Q = P(Q) I = {X Q : q 0 X } F = P(F ) (X,, Y ) δ wtw. gdy X = {q Q : p Q. (q,, p) δ p Y } {q Q : p Q. (q,, p) δ = p Y } w L(A) q 0 W 0 A,w (W 0 A,w, w, W n A,w ) δ X I, Y F. (X, w, Y ) δ w L(A )

26 Automty lternujące języki regulrne ( ) utomty niedeterministyczne (egzystencjlne) ( ) utomty lternujące R utomty deterministyczne ( ) utomty ko-niedeterministyczne (uniwerslne) Fkt Automt (A ) R jest deterministyczny.

27 W nstępnym odcinku: minimlizcj utomtów niedeterministycznych utomty n drzewch czyli... prim prilis!

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Mtemtyczne Podstwy Informtyki dr inż. Andrzej Grosser Instytut Informtyki Teoretycznej i Stosownej Politechnik Częstochowsk Rok kdemicki 2013/2014 Podstwowe pojęci teorii utomtów I Alfetem jest nzywny

Bardziej szczegółowo

4.3. Przekształcenia automatów skończonych

4.3. Przekształcenia automatów skończonych 4.3. Przeksztłceni utomtów skończonych Konstrukcj utomtu skończonego (niedeterministycznego) n podstwie wyrżeni regulrnego (lgorytm Thompson). Wejście: wyrżenie regulrne r nd lfetem T Wyjście : utomt skończony

Bardziej szczegółowo

ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE

ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE DAS Deterministyczny Automt Skończony Zdnie Niech M ędzie DAS tkim że funkcj przejści: Q F ) podj digrm stnów dl M ) które ze słów nleżą do język kceptownego

Bardziej szczegółowo

bezkontekstowa generujac X 010 0X0.

bezkontekstowa generujac X 010 0X0. 1. Npisz grmtyke ezkontekstow generujc jezyk : L 1 = { 0 i 10 j 10 p : i, j, p > 0, i + j = p } Odpowiedź. Grmtyk wygląd tk: Nieterminlem strtowym jest S. S 01X0 0S0 X 010 0X0. Nieterminl X generuje słow

Bardziej szczegółowo

Lista 4 Deterministyczne i niedeterministyczne automaty

Lista 4 Deterministyczne i niedeterministyczne automaty Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A

Bardziej szczegółowo

JAO - Języki, Automaty i Obliczenia - Wykład 2. JAO - Języki, Automaty i Obliczenia - Wykład 2

JAO - Języki, Automaty i Obliczenia - Wykład 2. JAO - Języki, Automaty i Obliczenia - Wykład 2 Dowodzenie nieregularności języka [lemat o pompowaniu] Jeśli L regularny to istnieje stała c spełniająca : jeżeli z L, z c to istnieje dekompozycja w = u v x tak, że uv i x L dla każdego i 0 [lemat o skończonej

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015 Plan 1 Gramatyki 2 Języki

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 11: Obliczalność i nieobliczalność Sławomir Lasota Uniwersytet Warszawski 6 maja 2015 Plan 1 Problemy częściowo rozstrzygalne 2 Problemy rozstrzygalne 3 Funkcje (częściowo)

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 2 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy bz dnych" 1 Pojęcie krotki - definicj Definicj. Niech dny będzie skończony zbiór U := { A 1, A 2,..., A n }, którego

Bardziej szczegółowo

ezyki Automaty i Obliczenia (nieformalne notatki)

ezyki Automaty i Obliczenia (nieformalne notatki) J ezyki Automty i Oliczeni (nieformlne nottki) W. Rytter J ezyki formlne i podsttwowe opercje, wyrżeni regulrne stndrdowe i rozeszerzone (z opercjmi dope lnieni i przeci eci), przyk ldy. N ćwiczenich stndrdowe

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu.

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu. Osob prowdząc wykłd i ćwiczeni: dr inż. Mrek werwin Instytut terowni i ystemów Informtycznych Uniwersytet Zielonogórski e-mil : M.werwin@issi.uz.zgor.pl tel. (prc) : 68 328 2321, pok. 328 A-2, ul. prof.

Bardziej szczegółowo

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11} Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga

Bardziej szczegółowo

Imię, nazwisko, nr indeksu

Imię, nazwisko, nr indeksu Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za

Bardziej szczegółowo

ezyki Automaty i Obliczenia (nieformalne notatki)

ezyki Automaty i Obliczenia (nieformalne notatki) J ezyki Automty i Oliczeni (nieformlne nottki) W. Rytter J ezyki formlne - ziory s lów nd lfetem skończonym.podsttwowe opercje to, orz konktencj. Wyrżeni regulrne stndrdowe - tylko te opercje, st le to

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 7

Języki formalne i automaty Ćwiczenia 7 Języki formalne i automaty Ćwiczenia 7 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Automaty... 2 Cechy automatów... 4 Łączenie automatów... 4 Konwersja automatu do wyrażenia

Bardziej szczegółowo

ę Ł Ó ę ę ć ę ę ż ę ę Ź Ć ć ę ę ż ę ę Ł ć ż ż ć ć ź ć ę Ń ć ę ż ę ć ęż Ń ć ż ć ź ę ę ź ę ć ż ć Ź ż ę Ł Ż ż ć Ź ę Ń ż ć ę ę ż ę ę ć ę ż ż ż Ł ę żę ż ć ź ę Ó ć ć ż ć ę ę ę ę ę ć ę Źć ę ę ę ę ę ę ż ż ż ć

Bardziej szczegółowo

Jaki język zrozumie automat?

Jaki język zrozumie automat? Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy

Bardziej szczegółowo

Minimalizacja automatów niedeterministycznych na słowach skończonych i nieskończonych

Minimalizacja automatów niedeterministycznych na słowach skończonych i nieskończonych Szczepan Hummel Minimalizacja automatów niedeterministycznych na słowach skończonych i nieskończonych 24.11.2005 1. Minimalizacja automatów deterministycznych na słowach skończonych (DFA) [HU] relacja

Bardziej szczegółowo

Dopełnienie to można wyrazić w następujący sposób:

Dopełnienie to można wyrazić w następujący sposób: 1. (6 punktów) Czy dla każdego regularnego L, język f(l) = {w : każdy prefiks w długości nieparzystej należy do L} też jest regularny? Odpowiedź. Tak, jęsli L jest regularny to też f(l). Niech A będzie

Bardziej szczegółowo

Modele abstrakcyjne w weryfikacji

Modele abstrakcyjne w weryfikacji Modele strkyjne w weryfikji Krzysztof Nozderko kn201076@students.mimuw.edu.pl 16 mj 2006 Modele strkyjne w weryfikji Bisymulj jko gr Weżmy dw modele. Żey rozstrzygnć, zy s one z punktu widzeni oserwtor

Bardziej szczegółowo

Przeguby precyzyjne KTR z łożyskowaniem ślizgowym lub igiełkowym

Przeguby precyzyjne KTR z łożyskowaniem ślizgowym lub igiełkowym Przeguy precyzyjne KTR z łożyskowniem ślizgowym lu igiełkowym Przeguy KTR, to pod względem technicznym, wysokojkościowe elementy do łączeni dwóch włów, o dopuszczlnej wielkości kąt prcy dl pojedynczego

Bardziej szczegółowo

Automaty Büchi ego i równoważne modele obliczeń

Automaty Büchi ego i równoważne modele obliczeń Politechnika Krakowska im. Tadeusza Kościuszki Wydział Fizyki, Matematyki i Informatyki Kierunek Matematyka Paulina Barbara Rozwód Automaty Büchi ego i równoważne modele obliczeń praca magisterska studia

Bardziej szczegółowo

Częściowo przemienne grafy bezkontekstowe

Częściowo przemienne grafy bezkontekstowe Częściowo przemienne grfy ezkontekstowe Wojciech Czerwiński utorefert rozprwy doktorskiej Temtem rozprwy jest kls częściowo przemiennych grfów ezkontekstowych. Jest to model oliczeń odzwierciedljący zrówno

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Od maszyn Turinga do automatów komórkowych Jarosław Miszczak IITiS PAN Gliwice 03/03/2016 1 / 16 1 2 3 Krótka historia Znaczenie 2 / 16 Czego dowiedzieliśmy się

Bardziej szczegółowo

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik 3 Krt oceny merytorycznej wniosku o dofinnsownie konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA WNIOSEK:. NUMER KONKURSU 2/POKL/8.1.1/2010 TYTUŁ PROJEKTU:... SUMA KONTROLNA

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł

Bardziej szczegółowo

ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś

Bardziej szczegółowo

ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć

Bardziej szczegółowo

Maszyna Turinga języki

Maszyna Turinga języki Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

Ż ż Ź ż ż ć ż ż ż ż ć ż Ź ż ż ż ć Ś ż Ś ć ż ć ż ż ż ć ć ż Ź ż ćż ż ż ż Ż ż Ą ż żć ż ż Ś ż ż ż ć ż ż ż ż ż ż ż ć Ć ż Ą Ż Ż ć Ś ż ż Ś Ś Ęż ż ć ż Ż Żż Ć ż ż ż ż ż ć Ż ż Ćż Ż ż ż ż Ą ż ż ć ż ć ż ż ć ż ż ż

Bardziej szczegółowo

Ó Ę Ę ź ź ź Ź ź ź ź Ż Ś Ś Ż Ś ź ź Ó Ś Ż ź ć Ść Ź Ż ć Ż Ć ć ź Ź Ź Ó Ś ć ć Ż Ć Ś ć ź Ż ć Ść ć ć Ż Ś Ż ć Ż ź ć ź Ż ź ć ć Ś Ź Ż ć ć ć ć ć Ś Ś Ż ź Ę Ś Ś Ś Ż ć ź ć ć ć Ż Ż ć ć Ż Ź ć Ś Ś Ś Ś Ź Ó Ś Ś ć Ś ć Ć ź

Bardziej szczegółowo

ć Ł ć ć ź Ą ć ć ć źć Ź Ź ŹĆ ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ł ć ć ć ć ć ć ć ŚĆ Ś ź ć ć ć Ć Ó Ć ć Ą Ł Ł Ł ź Ś Ł ć ć Ą Ą ź ć ć Ą ć ź ć ź ź ć ź ź Ą Ą Ń ć ź Ł ć Ć ć ź ć Ś ć ć ć ć ć ć ć Ś ć ć ć ć

Bardziej szczegółowo

Ł Ż ć Ę Ę Ę Ę Ż Ę Ź ć ć ć Ł Ż ć Ę ć Ł ć Ę ź Ż ć Ę ć ć Ł Ł ć ź Ż Ż Ż ć ć Ż ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć ć Ę Ę Ł ć Ś ć Ł Ż Ę ć ć ć Ż Ż Ę Ł Ę ć Ę ć ć ć ć ć Ę ć ć ć Ł ź Ż Ę Ż Ż ć Ę źć źć ź Ż Ł ć ć ć Ż Ę ź

Bardziej szczegółowo

Ł Ś ÓŻ Ż Ż Ż Ż Ś Ś Ę Ł ć Ą ŚĆ Ś Ą ć Ą Ś Ą Ś ź ć ź ć ć Ą ć Ą Ń ź ź ć Ą ć ć Ą ź Ę Ś Ą ź Ś ź Ą Ą ć Ę ć ź Ą ć Ą ć ć ć Ą Ą Ą Ą ŚĆ Ść ć Ń Ś ć ć Ę Ź ć Ę Ń ć Ć ć ć ć ć Ę Ń ć ć ć Ł ć Ą ć Ą Ą Ę Ć źć ć Ś ź Ę Ą Ś

Bardziej szczegółowo

ż Ą ż Ó Ę Ś ć ż ć ż ć Ś ż Ś ż Ń ż ż Ź ż Ź ż Ą Ś ż ć ć Ś Ą ż ż ż ź ż ż Ń Ę ż ż ć Ń ż Ń ż ż ź ż ż ż ż ż ź Ś ż ż ź ż Ś Ś ż ź ź ż ź Ą ż Ź ż ź ź Ź ź Ź ź ż Ź ż ź Ę ż ż Ę ż Ó Ń ż ź ć ż ź ż Ę ż ć ż ź ź ź ż ż

Bardziej szczegółowo

Ę Ś ź Ę Ę ć ć ź ć ć ć ć ć źć ć ć ć ć Ź ź Ś ć Ł Ę ć ć Ą ź ć Ó Ł ź ć ć Ź Ł ć ć ć ć ć ć ć ź ć ć ć ć ź Ź ć ź ć ć ź ć ź Ź Ź ź ź ź Ś ź ź ć ć Ś Ę ć ź ć ć Ś ć ć ć ć ź ź ć ź ć ć ć Ź Ź ć Ś Ę ć Ć ć ź ć Ę ć ć ć ć

Bardziej szczegółowo

Ł Ę Ł Ż ż Ń Ą Ó Ó ż Ś Ź ć ż ż ć Ć ż Ż ć Ó ż Ś Ó Ś ż Ó ż Ś ć ć Ż Ł ż ż ż ć ć ż Ó Ó Ę Ż Ó Ż ż Ó ż Ó Ź Ż ż Ó Ó ć Ó ż ż ć ż Ś Ż ć Ó ż Ś Ś ż ć ć Ó ż Ó Ó ż Ź Ę Ł Ż Ł Ź Ż ż Ó ż ż ż ż Ż ż ż Ż ż Ł ć Ż ż Ż ż Ó Ż

Bardziej szczegółowo

ć Ń Ż Ł ć ć Ś ź ŚĆ Ą ć ź ć ć Ż Ś ź Ą ć Ń Ć Ć ć ć Ą ć źć Ń Ł Ł Ł ź ć Ą ź Ś ź ć Ń Ń ć Ć Ć ź Ś ź ć Ś Ś Ł ź Ś Ś ź ć ź ć Ś ć Ś ć ć Ż ć Ż ź ź Ą ć Ł Ń Ć ć Ż Ś ć ć ć ć Ś ć ć ć Ą ć ć ź ć ć ć ć ć Ń Ż Ż Ż Ż Ś ć Ą

Bardziej szczegółowo

Ś ć ć Ż ć ć Ż ć ć ć ć ć Ę Ź Ż Ż ć Ę ć Ę Ź Ź Ó ć ć Ź ć Ó Ś ć Ź Ę Ę Ę ć Ń ć Ś ć Ż ć Ę Ę ć Ż Ł ź Ź Ś Ą ć Ą Ą ć Ą Ę ć ć Ę ć ć ć Ż ć Ź Ą Ł ć ć ć ć Ę ć Ź ć Ź ć Ą ć Ą ć ć ć ć Ą ć Ą ć Ż Ą ć ć ć ć ć ć Ść ć źć Ę

Bardziej szczegółowo

Ł Ł Ź Ź ź ź ć ź ć Ę Ź Ś Ś ć ć Ś ć ć ć Ź ć źć ć ć ć ć Ź ć ć ć ć ć ć ź ć Ś ć ć Ą ć Ź ć Ś Ó Ź Ś ź ć ź Ś ć Ł Ą ć ć ć ć Ź Ź ć Ź ć ć ć Ź ź ć ć ć ć ć Ś ć ć ć ć ć Ł ć Ś ć Ź Ź Ź ć ć Ś Ś ć ć ć ź Ą ć ć ć ć ć ć ć

Bardziej szczegółowo

ń ć ć ń Ń ź ć ć ć ć ź ć ć ń ć źć ń ź ć ć ć ć ć Ę ć ń ć ć ć Ę ź ń ń ć ć ń ć ć ć ć ć ć ć ć ć ć ń ć ź ć ć ć ć ź ć ń ć ć ć ń ć ć ć Ń ć ź ć ć ń ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ź Ń ń ź ń ć ń ć ć ć Ę ć

Bardziej szczegółowo

Ę Ę ć Ó ć ć Ń ź ź Ó Ć Ó ć ć ź ź ć ć ć Ń ć Ó ć ć ć ć Ó Ó ć Ó ć ć Ó Ę Ó ÓÓ Ę ć Ó ć ć Ó ć ć Ó Ę ć Ć Ó Ź Ę Ó Ó Ó ć Ó ź Ó ź Ń Ę Ó Ę Ę Ę ć ć Ć ć Ę Ę Ó Ó Ó ć ź Ń ć Ź ć ź ć ć Ę ć Ę ć ź ć Ó Ó Ę ć ć ć ź ć Ę ć Ź

Bardziej szczegółowo

Ó ż ń Ą ź ń ż ć Ó ń ć Ć Ą ż Ą ć Ł Ę Ę Ą ć Ó ź ć ć ć ń Ń Ą ć ć ż Ó ź Ł Ł Ę ć ż ć Ę Ł ć Ń Ą Ł Ł Ę Ł ć ż ż ż Ł ć ć Ę Ń Ę Ą ń Ą ń ń ż ż ń ż ź Ń ź ć ź ń Ó ń ć Ł Ą Ą ż ż ć Ó Ł ć ć ź Ó ź ź Ę ć ć ń źć Ą ż Ą ż

Bardziej szczegółowo

Ć Ć Ą ź ń ć ń Ź ń ć Ą ć ć ć Ę ć ń Ą Ą ź ń ź ń ń Ę ń ć ć Ę Ę ć Ę Ź Ź Ą Ę ń ń ń Ę ń ń Ą ń ń Ą Ą Ć Ą ć ń ć ń ć Ć ń ń Ą ń Ą Ą ć ć ź ź Ź ć ń ń Ą ń ń ń Ę Ą ć ń Ą ć Ą Ę ć ć Ę ń Ć Ę ń Ą Ź Ę ń Ę ń ń ć ć Ń ń Ą ń

Bardziej szczegółowo

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu. ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.

Bardziej szczegółowo

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie Dr inż. Zigniew PLEWAKO Ćwiczeni z konstrukcji żeletowych. Temt I Temt I. Wrunku współprcy etonu i zrojeni w konstrukcjch żeletowych. Wymgni. Beton Zdnie: Przeniesienie sił ściskjących, sclenie i zpewnienie

Bardziej szczegółowo

Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ)

Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ) Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też L = {vw : vuw L dla pewnego u A takiego, że u = v + w } Rozwiązanie. Niech A =

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Podstawy programowania obiektowego

Podstawy programowania obiektowego 1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Twoje zdrowie -isamopoczucie

Twoje zdrowie -isamopoczucie Twoje zdrowie -ismopoczucie Kidney Disese nd Qulity of Life (KDQOL-SF ) Poniższ nkiet zwier pytni dotyczące Pn/Pni opinii o włsnym zdrowiu. Informcje te pozwolą nm zorientowć się, jkie jest Pn/Pni smopoczucie

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową

Bardziej szczegółowo

Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech

Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech anagram(l) = {w : w jest anagaramem v dla pewnego v L}. (a) Czy jeśli L jest

Bardziej szczegółowo

Hierarchia Chomsky ego

Hierarchia Chomsky ego Hierarchia Chomsky ego Gramatyki nieograniczone Def. Gramatyką nieograniczoną (albo typu 0) nazywamy uporządkowaną czwórkę G= gdzie: % Σ - skończony alfabet symboli końcowych (alfabet, nad którym

Bardziej szczegółowo

AUTOMATY SKOŃCZONE. Automat skończony przedstawiamy formalnie jako uporządkowaną piątkę:

AUTOMATY SKOŃCZONE. Automat skończony przedstawiamy formalnie jako uporządkowaną piątkę: AUTOMATY SKOŃCZONE DETERMINISTYCZNY AUTOMAT SKOŃCZONY - DAS Automat skończony jest modelem matematycznym systemu o dyskretnych wejściach i wyjściach. System taki w danej chwili może znajdować się w jednym

Bardziej szczegółowo

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Języki regularne, rozpoznawanie wzorców regularnych, automaty skończone, wyrażenia regularne

Języki regularne, rozpoznawanie wzorców regularnych, automaty skończone, wyrażenia regularne Języki regularne, rozpoznawanie wzorców regularnych, automaty skończone, wyrażenia regularne Automat skończony (AS), ang. Finite Automaton (FA) Automat skończony (automat czytający, maszyna Rabina-Scotta)

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe

Bardziej szczegółowo

Uszczelnienie przepływowe w maszyn przepływowych oraz sposób diagnozowania uszczelnienia przepływowego zwłaszcza w maszyn przepływowych

Uszczelnienie przepływowe w maszyn przepływowych oraz sposób diagnozowania uszczelnienia przepływowego zwłaszcza w maszyn przepływowych Uszczelnienie przepływowe w mszyn przepływowych orz sposób dignozowni uszczelnieni przepływowego zwłszcz w mszyn przepływowych Przedmiotem wynlzku jest uszczelnienie przepływowe mszyn przepływowych orz

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy

Bardziej szczegółowo

Wykład5,str.1. Maszyny ze stosem ... 1,0 λ r. λ,z λ

Wykład5,str.1. Maszyny ze stosem ... 1,0 λ r. λ,z λ Wykład5,str1 p 0,Z 0Z 0,0 00 q λ,z λ r Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana Z p 0,Z 0Z 0,0 00 q λ,z λ r Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana 0 Z p 0,Z 0Z 0,0 00

Bardziej szczegółowo

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny!

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny! TEZA CHURCHA-TURINGA Mzyn Turing: m końzenie wiele tnów zpiuje po jenym ymolu n liniowej tśmie Co możn zroić z pomoą mzyny Turing? Wzytko! Mzyn Turing potrfi rozwiązć kży efektywnie rozwiązywlny prolem

Bardziej szczegółowo

Rozbiór wstępujący gramatyki z pierwszeństwem. Rozbiór wstępujący gramatyki z pierwszeństwem

Rozbiór wstępujący gramatyki z pierwszeństwem. Rozbiór wstępujący gramatyki z pierwszeństwem Rozbiór wstępujący grmtyki z pierwszeństwem Rozbiór wstępujący budujemy drzewo rozbioru od liści W ciągu symboli wejściowych musimy znleźć podstwę czyli uchwyt njbliższej redukcji, czyli podciąg który

Bardziej szczegółowo

Wszystkim życzę Wesołych Świąt :-)

Wszystkim życzę Wesołych Świąt :-) Poniższe zdni pochodzą ze zbiorów: ) J. Rutkowski, Algebr bstrkcyjn w zdnich b) M. Bryński, J. Jurkiewicz, Zbiór zdń z lgebry Do kolokwium proszę też przejrzeć zdni z ćwiczeń. Wszystkim życzę Wesołych

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy

Bardziej szczegółowo

Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia)

Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia) Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia) Kamil Matuszewski 20 lutego 2017 22 lutego 2017 Zadania, które

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

10110 =

10110 = 1. (6 punktów) Niedeterministyczny automat skończony nazwiemy jednoznacznym, jeśli dla każdego akceptowanego słowa istnieje dokładnie jeden bieg akceptujący. Napisać algorytm sprawdzający, czy niedeterministyczny

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Opracowanie zbiorcze wyników ankiet przeprowadzonych wśród rodziców na temat koncepcji pracy szkoły szkoły.

Opracowanie zbiorcze wyników ankiet przeprowadzonych wśród rodziców na temat koncepcji pracy szkoły szkoły. Oprcownie ziorcze wyników nkiet przeprowdzonych wśród rodziców n temt koncepcji prcy szkoły szkoły. Termin i miejsce dń Zernie Rodziców dn. 22.09.2014r. Ankiet zostł oprcown w celu poznni opinii nuczycieli

Bardziej szczegółowo

Bardzo krótki wstęp do elektroniki cyfrowej

Bardzo krótki wstęp do elektroniki cyfrowej Brdzo krótki wstęp do elektroniki cyfrowej Słwomir Mmic http://min5.mu.edu.pl/~zfp/sm/home.html Pln ) Ukłdy logiczne b) Algebr Boole i jej relizcj sprzętow c) Brmki są dwie? d) Prosty przykłd sumtor e)

Bardziej szczegółowo

Scenariusz lekcji matematyki w kl. VI.

Scenariusz lekcji matematyki w kl. VI. Alin Grodzk Scenriusz lekcji mtemtyki w kl. VI. Temt lekcji: Pol figur płskich - powtórzenie. Celem lekcji jest rozwijnie umiejętności rozpoznwni i klsyfikowni wielokątów, obliczni pól figur orz utrwlnie

Bardziej szczegółowo