Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna
|
|
- Janina Urbaniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci liski zeru) i jedynk (stn npięci liski npięciu zsilni zwykle V lu w nowszych ukłdch.b lu nwet.v). System operujący n dwóch stnch nzywmy dwójkowym lu też inrnym. W systemie dziesiętnym kolejne cyfry od prwej strony mją wrtość kolejnych potęg, podonie w dwójkowym są to kolejne potęgi dwójki: ( ),,,,,,,, ( ) itp. Czyli np. licz in dec. W celu zminy z systemu dziesiętnego n dwójkowy, wykonujemy n liczie dzielenie cłkowite przez, zpisując przy tym resztę z dzieleni i powtrzmy to ż dojdziemy do. Kolejne reszty to cyfry reprezentcji inrnej ułożone od njmłodszej (njmniej znczącej) do njstrszej (łącznie z końcową jedynką). Tk więc n przykłd: Licz Reszt Licz Reszt dec in () dec in. Uwg: wynik inrny wpisujemy odczytując reszty z dzieleni ptrząc od dołu do góry. Zpiszemy telę dl licz dziesiętnych, dwójkowych i szesnstkowych: dec in hex Widzimy, że jedn cyfr szesnstkow odpowid dokłdnie czterem cyfrom dwójkowym. Szesnstkowy zpis licz inrnych jest powszechnie stosowny, gdyż zmin jest o wiele łtwiejsz niż dl licz dziesiętnych, zpis jest krótszy. N przykłd jeden jt, który skłd się z ośmiu itów, możn przedstwić przy pomocy dwóch znków od do FF. B C D E F W celu zminy in hex grupujemy cyfry po (od njmłodszego itu), nstępnie kżdej grupie przypisujemy cyfrę szesnstkową (np. korzystjąc z teli). Tk więc: in BB hex. Zmin w drugą stronę wygląd nlogicznie: FCE hex in.
2 . Brmki logiczne Podstwą ukłdów logicznych są rmki, relizujące pewne funkcje logiczne. Odpowiednim stnom npięć n wejściu odpowid npięcie n wyjściu, przy czym npięcie interpretujemy jko, jego rk jko. (jest to tzw. logik dodtni). Podstwowe rmki wrz z ich symolmi: ND NND OR NOR XOR NOT B B B B B B Przykłd: Jką funkcję relizuje poniższy ukłd (wejście,b, wyjście Y)? y rozwiązć poniższe zdnie nleży dodć zmienne pomocnicze C,D,E orz sprwdzić ich stn w zleżności od wszystkich możliwych komincji wejść. CNND(,B) DNND(,C) ENND(B,C) XNND(D,E) B C D E X Więc po porównniu X z i B otrzymujemy, że XXOR(,B), X B. Jednym z zstosowń rmki XOR jest kontrol itu przystości, np. jeżeli mmy ity ( ) in, to wtedy, kiedy n itch jest nieprzyst licz jedynek, ntomist funkcj t jest równ, jeżeli licz jedynek (czyli itów zpełnionych) jest przyst. Możn to łtwo sprwdzić rozpisując telę dl np. zmiennych wejściowych. Bit przystości XOR(,,, ) Bit przystości XOR(,,, )
3 Przy pomocy rmek XOR możn opisć kod Gry : g g g g Ukłd ten zmieni kod inrny n kod Gry' N przykłd dl liczy mmy:,,,. g, g, g, g, więc w kodzie Gry jest on przedstwin jko. Jk łtwo zuwżyć, nstępujące po soie liczy przedstwione w kodzie Gry różnią się tylko jednym item (n przykłd dl licz i jest to i ). Znjdzie to później zstosownie między innymi przy minimlizcji. Zzwyczj kolejne stny itów przedstwimy w sposó pokzny w pierwszej kolumnie (), o odpowid to numercji w systemie dwójkowym, jednk przedstwinie ich w sposó pokzny w drugiej kolumnie (g) - czyli w kodzie Gry - powoduje, że zmin stnu itów n kolejny pociąg z soą zminę tylko jednego itu, co jk się później okże pozwl tworzyć ukłdy logiczne w rdziej ekonomiczny sposó. to jest ukłd konwertujący kod Gry n kod inrny:
4 . lger Boole Podstwowe twierdzeni lgery Boole : ( ) ( )( ) ( ) ( ) ( ) ( ) ( c ( c Możn je łtwo udowodnić korzystjąc z tlic prwdy dl poszczególnych funkcji. Jk widć, opercje dodwni (OR) i mnożeni (ND) logicznego podlegją tkim smym prwom rozdzielności jk zwykłe dodwnie i mnożenie, le mją też kilk nietypowych włsności. Możn np. udowodnić wzór n : Przykłd wykorzystni twierdzeń: zminimlizowć funkcję (. ( c c (c ) lo też nstępującą funkcję: c c c c c c c (c ) (c ) c c c c Ten przykłd może n pierwszy rzut ok wydć się nieco zmieszny skorzystliśmy w nim dwukrotnie z twierdzeni, że B B, c ()( c Możn też zjąć się pierwszym przykłdem, gdzie: CNND(,B), DNND(,C), ENND(B,C), XNND(D,E). X DE (C)(BC) C BC (B) B(B) ( B)(B) ( B)( B) B B BB B B B B Jk widzieliśmy wcześniej funkcj t odpowid funkcji XOR, możn więc zuwżyć, że: B B B Uproszczeni dl funkcji XOR:
5 Przykłd: zminimlizowć ) ( ) ( ) ( Możn też zminimlizowć ukłd zdny w formie schemtu: c )c ( ( c c c )c ( ()( ()( ( () E D Y Możn też rozpisć tlicę prwdy dl funkcji Y(,, zdnych n o sposoy: c c c Y Sprwdziliśmy więc równowżność tych wyrżeń. Ćwiczeni nr z Teorii Ukłdów Logicznych Prowdzący: dr inż. Ernest Jmro Oprcowł: Dniel Strnowski c c D E Y
Podstawy układów logicznych
Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.
Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty
Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów
Bardzo krótki wstęp do elektroniki cyfrowej
Brdzo krótki wstęp do elektroniki cyfrowej Słwomir Mmic http://min5.mu.edu.pl/~zfp/sm/home.html Pln ) Ukłdy logiczne b) Algebr Boole i jej relizcj sprzętow c) Brmki są dwie? d) Prosty przykłd sumtor e)
H L. The Nobel Prize in Physics 2000 "for basic work on information and communication technology"
2014 CYFROWE UKŁADY SCALONE Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile wrtości. WE ukłd nlogowy WY Ukłdy cyfrowe: przetwrznie sygnłów o dwóch wrtościch
PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych
PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f
WYKŁAD 7 CYFROWE UKŁADY SCALONE
65 KŁAD 7 CYFRO UKŁADY SCALONE Ukłdy nlogowe są przystosowne do przetwrzni npięć (lu prądów), których wrtości zwierją się w pewnym przedzile ukłd nlogowy wrtości Ukłdy cyfrowe służą do przetwrzni sygnłów
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi
f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)
Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
H L. The Nobel Prize in Physics 2000 "for basic work on information and communication technology"
2012 CYFROWE UKŁADY SCALONE Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile wrtości. WE ukłd nlogowy Ukłdy cyfrowe: przetwrznie sygnłów o dwóch wrtościch npięć
Matematyczne Podstawy Informatyki
Mtemtyczne Podstwy Informtyki dr inż. Andrzej Grosser Instytut Informtyki Teoretycznej i Stosownej Politechnik Częstochowsk Rok kdemicki 2013/2014 Podstwowe pojęci teorii utomtów I Alfetem jest nzywny
Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny
Dr Glin Criow Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne.
CYFROWE UKŁADY SCALONE
CYFROWE UKŁADY SCALONE PA 2011 Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile wrtości. Ukłdy cyfrowe: przetwrznie sygnłów o dwóch wrtościch npięć (ewentulnie
2. Funktory TTL cz.2
2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)
CYFROWE UKŁADY SCALONE. Technologia planarna
CYFRO UKŁADY SCALONE PA 2010 The Noel Prize in Physics 2000 "for sic work on informtion nd communiction technology" Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile
Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA
kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej
Wprowadzenie: Do czego służą wektory?
Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny
Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych
Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni
CYFROWE UKŁADY SCALONE
CYFROWE UKŁADY SCALONE 2013 Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile wrtości. Ukłdy cyfrowe: przetwrznie sygnłów o dwóch wrtościch npięć (ewentulnie
PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach
PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
Wyrównanie sieci niwelacyjnej
1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
Lista 4 Deterministyczne i niedeterministyczne automaty
Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym
CYFROWE UKŁADY SCALONE. Technologia planarna
CYFRO UKŁADY SCALONE PA 29 The Noel Prize in Physics 2 "for sic work on informtion nd communiction technology" Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile
ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1
ELEKTRONIKA CYFROWA Mteriły y pomocnicze do wykłd dów Dl AiZ zoczne inŝynierskie, sem Wykorzystne mteriły Łub T Ukłdy logiczne, PW 26 Wenck A NOTATKI Z TECHNIKI CYFROWEJ PW 26 wwwelektronikorgpl Wprowdzenie
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań
KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni
O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI
ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,
LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&
LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.
WSTĘP DO INFORMATYKI
Akdemi Górniczo-Hutnicz Wydził Elektrotechniki, Automtyki, Informtyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI SYSTEMY KODOWANIA ORAZ REPREZENTACJA I ARYTMETYKA LICZB Adrin Horzyk www.gh.edu.pl SYSTEMY
Analiza matematyczna i algebra liniowa
Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
1 Wprowadzenie do automatów
Dr inż. D.W. Brzeziński - Automty skończone, mszyn Turing. Lingwistyk mtemtyczn - ćwiczeni. Mteriły pomocnicze. Prowdzący: dr inż. Driusz W Brzeziński 1 Wprowdzenie do utomtów Automty skończone to urządzeni
1 Ułamki zwykłe i dziesiętne
Liczby wymierne i niewymierne Liczby wymierne i niewymierne - powtórzenie Ułmki zwykłe i dziesiętne. Rozszerznie ułmków Rozszerz ułmki b c b c 6 8. Skrcnie ułmków c b c b 8 0 Liczby wymierne i niewymierne
Podstawy techniki cyfrowej cz1
23--4 Podstwy techniki cyfrowej cz Wykłd dr inż. Rfł Wlkowik Litertur. Podstwy Techniki Cyfrowej, Brry Wilkinson, WKiŁ 2 2. Podstwy Projektowni Ukłdów Cyfrowych, Cezry Zieliński, PWN 22 3. Fundmentls of
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY Arkusz I Instrukcj dl zdjącego 1. Sprwdź, czy rkusz egzmincyjny zwier 8 stron (zdni 1 3). Ewentulny brk zgłoś przewodniczącemu zespołu ndzorującego
Wyk lad 1 Podstawowe wiadomości o macierzach
Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi
PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,
Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie
O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych
Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć
ARCHITEKTURA KOMPUTERÓW Systemy liczbowe
ARCHITEKTURA KOMPUTERÓW Systemy liczbowe 20.10.2010 System Zakres znaków Przykład zapisu Dziesiętny ( DEC ) 0,1,2,3, 4,5,6,7,8,9 255 DEC Dwójkowy / Binarny ( BIN ) 0,1 11111 Ósemkowy ( OCT ) 0,1,2,3, 4,5,6,7
Podstawy Techniki Cyfrowej Układy komutacyjne
Podstwy Techniki Cyfrowej Ukłdy komutcyjne Ukłdy kombincyjne, umożliwijące przełącznie (komutcję) sygnłów cyfrowych, nzyw się ukłdmi ukłdmi komutcyjnymi. Do podstwowych ukłdów komutcyjnych zlicz się multipleksery
Temat lekcji Zakres treści Osiągnięcia ucznia
ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:
Podstawy programowania obiektowego
1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty
Pierwiastek z liczby zespolonej
Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor
Wektor N fizce w szkole średniej spotkcie się z dwom tpmi wielkości fizcznch. Jedne z nich, np. ms, tempertur, łdunek elektrczn są opiswne przez jedną liczę; te nzwm wielkościmi sklrnmi, w skrócie - sklrmi.
4.2. Automat skończony
4.2. Automt skończony Przykłd: Rozwżmy język nd lfetem inrnym T = {0, } skłdjący się z łńcuchów zero-jedynkowych o tej włsności, że licz zer w kżdym łńcuchu jest przyst i licz jedynek w kżdym łńcuchu też
Wymagania kl. 2. Uczeń:
Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej
Pierwiastek z liczby zespolonej
Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
4.3. Przekształcenia automatów skończonych
4.3. Przeksztłceni utomtów skończonych Konstrukcj utomtu skończonego (niedeterministycznego) n podstwie wyrżeni regulrnego (lgorytm Thompson). Wejście: wyrżenie regulrne r nd lfetem T Wyjście : utomt skończony
Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale
Trójkąt Pscl od kuchni Kls 1 Gimnzjum nr 1 z Oddziłmi Integrcyjnym i Sportowymi im. Bł. Slomei w Skle ul. Ks.St.Połetk 32 32-043 Skł Gimnzjum nr 1 z Oddziłmi Integrcyjnymi i Sportowymi im. Bł. Slomei w
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
Badanie regularności w słowach
Przypdek sekwencyjny Mrcin Piątkowski Wydził Mtemtyki i Informtyki Uniwersytet Mikołj Kopernik Edsger Wybe Dijkstr (1930 2002) Computer science is no more bout computers thn stronomy is bout telescopes,
Wszystkim życzę Wesołych Świąt :-)
Poniższe zdni pochodzą ze zbiorów: ) J. Rutkowski, Algebr bstrkcyjn w zdnich b) M. Bryński, J. Jurkiewicz, Zbiór zdń z lgebry Do kolokwium proszę też przejrzeć zdni z ćwiczeń. Wszystkim życzę Wesołych
Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y
Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =
Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1
Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem
2. PODSTAWY STATYKI NA PŁASZCZYŹNIE
M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć
Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci
PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,
WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz
Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach
Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,
Wykład 6 Dyfrakcja Fresnela i Fraunhofera
Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie
Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie
Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH
Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.
Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu
Zbiory wyznaczone przez funkcje zdaniowe
pojęci zbioru i elementu RCHUNEK ZIORÓW zbiór zwier element element nleży do zbioru jest elementem zbioru ( X zbiór wszystkich przedmiotów indywidulnych, których dotyczy dn nuk zbiór pełny (uniwerslny
INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane?
INSTRUKCJA - Jk rozwiązywć zdni wysoko punktowne? Mturzysto! Zdni wysoko punktowne to tkie, z które możesz zdobyć 4 lub więcej punktów. Zdni z dużą ilość punktów nie zwsze są trudniejsze, często ich punktcj
WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012
mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 Zadania dla grupy elektronicznej na zawody II stopnia
EOELEKTA Ogólnopolsk Olimpid Wiedzy Elektrycznej i Elektronicznej ok szkolny 204/205 Zdni dl grupy elektronicznej n zwody stopni Zdnie Dl diody półprzewodnikowej, której przeieg chrkterystyki prądowo-npięciowej
Programy współbieżne
Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby
ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.
ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.
RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.
RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i
Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.
1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od
Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA
Część 2 7. METODA MIESZANA 7. 7. METODA MIESZANA Metod mieszn poleg n jednoczesnym wykorzystniu metody sił i metody przemieszczeń przy rozwiązywniu ukłdów sttycznie niewyznczlnych. Nwiązuje on do twierdzeni
bezkontekstowa generujac X 010 0X0.
1. Npisz grmtyke ezkontekstow generujc jezyk : L 1 = { 0 i 10 j 10 p : i, j, p > 0, i + j = p } Odpowiedź. Grmtyk wygląd tk: Nieterminlem strtowym jest S. S 01X0 0S0 X 010 0X0. Nieterminl X generuje słow
usuwa niewymierność z mianownika wyrażenia typu
Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje
Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa
Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją
Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym
Zior rozmte Teori i zstosowni we wniosowniu prosmcjnm PODSTWOWE POJĘCI Motwcje Potrze opisni zjwis i pojęć wielozncznch i niepreczjnch użwnch swoodnie w jęzu nturlnm np. wso tempertur młod człowie średni
KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy
KOMPENDIUM MATURZYSTY Mtemtyk poziom podstwowy Publikcj dystrybuown bezpłtnie Dostępn n stronie: Kompendium do pobrni n stronie: SPIS TREŚCI. Potęgi i pierwistki... W tym:. Wykorzystnie wzorów;. Przeksztłcnie
Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych
Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
Ćwiczenie 9. BADANIE UKŁADÓW ZASILANIA I STEROWANIA STANOWISKO I. Badanie modelu linii zasilającej prądu przemiennego
ortorium elektrotechniki Ćwiczenie 9. BADAIE UKŁADÓ ZASIAIA I STEOAIA STAOISKO I. Bdnie modelu linii zsiljącej prądu przemiennego Ukłd zowy (ez połączeń wrintowych) 30 V~ A A A 3 3 3 A 3 A 6 V 9 0 I A
BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ
ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy
Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka
Stron Wstęp Zbiór Mój przedmiot mtemtyk jest zestwem scenriuszy przeznczonych dl uczniów szczególnie zinteresownych mtemtyką. Scenriusze mogą być wykorzystywne przez nuczycieli zrówno n typowych zjęcich
zestaw DO ĆWICZEŃ z matematyki
zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy
DZIAŁ 2. Figury geometryczne
1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje
Pochodne i całki, macierze i wyznaczniki
Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk
PEWNIK DEDEKINDA i jego najprostsze konsekwencje
PEWNIK DEDEKINDA i jego njprostsze konsekwencje W rozdzile ósmym stwierdziliśmy, że z podnych tm pewników nie wynik istnienie pierwistków z liczb rzeczywistych. Uzupe lnimy terz liste pewników jeszcze
Semantyka i Weryfikacja Programów - Laboratorium 7
Semntyk i Weryfikj Progrmów - Lortorium 7 Weryfikj twierdzeń logiznyh Cel. Celem ćwizeni jest zpoznnie się z metodą utomtyznego dowodzeni twierdzeń, tzn. weryfikji, zy dne twierdzenie jest tutologią (twierdzenie
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Arytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1