Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny

Wielkość: px
Rozpocząć pokaz od strony:

Download "Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny"

Transkrypt

1 Dr Glin Criow

2 Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny

3 Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne. Istnieją dodtkowe możliwości uzyskni oszczędności kosztów związne z zstosowniem ukłdów wielopoziomowych.

4 Optymlizcj ukłdów wielopoziomowych Kb -koszt wejść brmkowych

5 Optymlizcj ukłdów wielopoziomowych Optymlizcj wielopoziomow bzuje n zstosowniu ciągu przeksztłceń, które są wykonywne w powiązniu z obliczenimi kosztów w celu znlezieni dobrego, choć nieoptymlnego, rozwiązni.

6 Optymlizcj ukłdów wielopoziomowych Fktoryzcj (ng.fctorihg) to znlezienie postci iloczynowej n podstwie zrówno wyrżeni funkcji w postci sumy iloczynów, jk i wyrżeni w postci iloczynu sum. Dekompozycj (ng.decomposition) - to wyrżenie funkcji z pomocą zbioru funkcji. Ekstrkcj (ng.extrction) to wyrżenie wielu funkcji z pomocą zbioru nowych funkcji. Zstępownie (ng. substitution) funkcji G w funkcji F - to wyrżnie funkcji F jko funkcji G orz pierwotnych zmiennych funkcji F (niektórych lub wszystkich). Elimincj (ng. elimintion) to opercj odwrotn do zstępowni: funkcj G w wyrżeniu funkcji F jest zstępown wyrżeniem opisującym G.

7 Przykłd (zilustrownie przeksztłceń do optymlizcji wielopoziomowej) Schemt logiczny odpowidjący pierwotnym postciom sum iloczynów funkcji G i H

8 Fktoryzcj

9 I Fktoryzcj - przykłd Fktoryzcj to znlezienie postci iloczynowej funkcji logicznej

10 II Dekompozycj- przykłd Dekompozycj - to wyrżenie funkcji z pomocą zbioru funkcji. Dekompozycj jest wykonn po rozkłdzie n czynniki (po fktoryzcji): Zdefiniujemy funkcje pomocnicze: X X 2 CD 1, E F Dekompozycj sfktoryzownej funkcji : G A( C D) X 2 BX 1EF Znegujemy Wtedy: X 1, X 2 G : AX X X 1 2 C D EF 1X 2 BX 1X 2 K b 14 - dekompozycj funkcji G

11 III Ekstrkcj przykłd Ekstrkcj to wyrżenie wielu funkcji z pomocą zbioru nowych funkcji. Fktoryzcj funkcji H Dekompozycj funkcji H: K b 17 H B( AX X 2 ) 1 3X Funkcj H po dekompozycji

12 Schemt logiczny po wykonniu ekstrkcji

13 Zstosownie przeksztłceń do optymlizcji wielopoziomowej Ten przykłd ilustruje znczenie przeksztłceń w redukcji liczby wejść. Otrzymnie prwdziwie optymlnego rozwiązni pod względem liczby wejść brmkowych jest zwykle niewykonlnie (znjdowne tylko dobre rozwiązni). Kluczem do wykonni udnych trnsformcji jest określenie czynników w dekompozycji lub ekstrkcji.

14 IV Elimincj - zmnieszenie opóznieni ukłdu Opercj elimincji, w której zstępuje się pośrednie zmienne X i wyrżenimi stojącymi po ich prwej stronie lub usuw się inne czynniki, stnowi przeksztłcenie zmniejszjące liczbę brmek połączonych kskdowo. Skrcnie ścieżek powinno być dokonne przy minimlnym wzroście liczby wejść brmkowych.

15 IV Elimincj Długość njdłuższej ścieżki ukłdu jest ogrniczn ze względu n czs, który upływ od zminy sygnłu n początku ścieżki do chwili zminy stnu n jej końcu. Dopuszczlne opóźnienie ścieżki może być co njwyżej równe opóźnieniu ścieżki złożonej z trzech wielowejściowych brmek lub równowżnym im opóźnieniom brmek wielowejściowych i inwertorów. W nszym ukłdzie po wykonniu ekstrkcji wszystkie ścieżki od wejść C, D, E, F, A do wyjści H przechodzą przez cztery 2-wejściowe brmki. Te ścieżki wprowdzją njdłuższe opóźnienie w ukłdzie.

16 IV Elimincj Ze względu n wymgni związne z mksymlnym opóźnieniem ścieżki w ukłdzie, te ścieżki muszą być skrócone. Dopuszczlne opóźnienie ścieżki może być co njwyżej równe opóźnieniu ścieżki złożonej z trzech wielowejściowych brmek lub równowżnym im opóźnieniom brmek wielowejściowych i inwertorów W przykłdzie istnieje tylko 3 połączeni elimincji : -Elimincj czynnik B; -Elimincj X 1, X 2, X 3 ; -Elimincj zrówno czynnik B jk i X1, X2, X3. Wzrost wejść brmkowych wynosi odpowiednio 0, 12 i 12.

17 Elimincj przykłd Usunięcie czynnik B nie powoduje zwiększenie liczby wejść brmkowych (K b =25).

18 Inne typy brmek. Bufor.

19 Inne typy brmek. Bufor 3 stnowy. E- dodtkowe wejście zezwoleni Wyjście Hi-Z trzeci wrtość, określn jko stn wysokiej impedncji. Wyjście w stnie wysokiej impedncji zchowuje się jko przerw w obwodzie pozostje ono nie podłączone.

20 Bufor 3-stnowy Brmki z wyjścimi Hi-Z możn łączyć ze sobą wyjścimi, pod wrunkiem że żdne dwie brmki w tym smym czsie nie przyjmą n wyjścich przeciwnych wrtości 0 i 1. Jeśli E=0, to n wyjściu jest stn wysokiej impedncji Hi-Z, niezleżnie od wrtości X. Jeśli wejście zezwoleni E=1, to brmk zchowuje się jko zwykły bufor. Wyjści bufor trójstnowego połączone rzem tworzą multipleksowną (przełączną) linię wyjściową. Wejście E X Wyjście F Hi-Z Hi-Z 0 1

21 AND OR INVERT (AOI) (dopełnienie sumy iloczynów) Przykłd AOI Przykłd 2.

22 OR AND INVERT (OAI) (dopełnienie iloczynu sum)

23 AND OR (AO) (wersj brmki AOI bez końcowej negcji)

24 OR AND (OA) (wersj brmki OAI bez końcowej negcji)

25 Stosownie brmek złożonych 1) Zmniejszyć stopień złożoności ukłdu potrzebnego do zrelizowni określonych funkcji boolowskich, tym smym zmniejszyć koszty wytwrzni ukłdu sclonego; 2) Zmniejszyć czs propgcji sygnłów przez ukłd.

26 Opertor i brmki typu EXOR Opercj EXOR jest przemienn i łączn: A B B A Dw wejści brmki EXOR mogą być ze sobą zmienione ( A B) C A ( B C) A B C Wrtość funkcji EXOR trzech zmiennych możn wyliczć w dowolnej kolejności

27 Opertor i brmki typu EXOR Dwuwejściową funkcję EXOR możn zrelizowć przy użyciu typowych brmek NOT, AND i OR. Funkcj EXOR więcej niż dwóch zmiennych jest definiown jko funkcj kontroli nieprzystości. Funkcj EXNOR wielu zmiennych jest definiown jko funkcj kontroli przystości.

28 Opertor i brmki typu EXOR Funkcj kontroli nieprzystości może być zrelizown z pomocą dwóch dwuwejściowych brmek typu EXOR.

29 Funkcj kontroli nieprzystości Opercje EXOR dl trzech zmiennych możn przeksztłcić do postci zwykłej funkcji boolowskiej: x y z ( x y xy) z ( xy xy) z xyz xyz xyz xyz Funkcj EXOR trzech zmiennych jest równ 1 tylko wtedy, gdy jedn z trzech zmiennych m wrtość 1, lub wrtości wszystkich zmiennych są równe 1, czyli Nieprzyst liczb zmiennych musi mieć wrtość 1.

30 System funkcjonlnie pełny Zbiór funkcji boolowskich nzyw się systemem funkcjonlnie pełnym (bzą), jeśli dowoln funkcj boolowsk może być przedstwion z pomocą stłych 0 i 1 orz funkcji nleżących do tego zbioru i rgumentów funkcji. Przykłd. Funkcje sumy, iloczynu i negcji tworzą tzw. podstwowy system funkcjonlnie pełny.

31 Relizcj brmki OR z pomocą brmek NOT i AND

32 Relizcj brmki AND z pomocą brmek NOT i OR

33 System funkcjonlnie pełny

34 System funkcjonlnie pełny Przy relizcji ukłdów logicznych może czsem zjść potrzeb przedstwieni funkcji logicznej z pomocą jedynie funktorów NAND lub jedynie funktorów NOR. T potrzeb wynik z: )minimlizcji ukłdów sclonych (z pomocą których buduje się brmki logiczne); b)wykorzystni jednkowych ukłdów w celu powtrzlności procesu produkcji.

35 System funkcjonlnie pełny Korzystjąc z zpisu z pomocą smych NAND i NOR wystrczy użyć jedynie jeden czy dw ukłdy i to n dodtek tego smego rodzju. Poz tym, funkcj NAND jest podstwową funkcją w technice TTL i jest reprezentown przez pojedynczy trnzystor, więc i ich produkcj jest łtwiejsz i tńsz.

36 System funkcjonlnie pełny Aby udowodnić, iż z pomocą jedynie NAND lub jedynie NOR możemy przedstwić dowolną funkcję wystrczy pokzć, że z ich pomocą możn przedstwić trzy funkcje podstwowe: mnożenie, sumę i negcję.

37 Przedstwienie funkcji NOT z pomocą NAND -więc, n wejści NAND y nleży podć ten sm sygnł.

38 Przedstwienie funkcji NOT z pomocą NOR y -więc, n wejści NOR nleży podć ten sm sygnł

39 Przedstwienie funkcji AND z pomocą NAND y b b b Otrzym się znegowny iloczyn zmiennych i b plus dodtkow negcj, którą możn zrelizowć jko drugi NAND ze zwrtymi wejścimi:

40 Przedstwienie funkcji AND z pomocą NOR y b b b b Otrzym się znegowną sumę znegownych rgumentów. Znegowne rgumenty- to dw NOR-y ze zwrtymi wejścimi, n pierwszy podjemy, n drugi b. Znegown ich sum- to trzeci NOR.

41 Przedstwienie funkcji OR z pomocą NAND y b b b b Otrzym się znegowny iloczyn znegownych zmiennych. Znegowne rgumenty- to dw NAND-y, negujące i b. Znegowny ich iloczyn- to trzeci NAND.

42 Przedstwienie funkcji OR z pomocą NOR y b b b Otrzym się dw NOR -y, jeden jko znegowną sumę rgumentów, drugi - jko negcj tego wyrżeni.

43 Przedstwienie z pomocą jedynie NAND brmki NOR

44 Przedstwienie z pomocą jedynie NOR brmki NAND

45 Zpis funkcji przy pomocy brmek NAND Przedstwić z pomocą NAND funkcję. Korzystjąc z prw de Morgn i podwójnej negcji: y b c y b c b c b c bc Otrzymujemy trzy NAND-y znegowny iloczyn i b, znegowne c, orz znegowny iloczyn i c. Zmist dwóch ukłdów sclonych, jeden do OR (+) drugi do AND (*) możn użyć jednego z 3 NAND-mi. Oszczędz się więc miejsce, czs montżu i wykonni.

46 Przedstwić z pomocą NOR funkcję c b y Korzystjąc z prw de Morgn i podwójnej negcji: c b c b c b c b y Zpis funkcji przy pomocy brmek NOR

47 Zpis funkcji przy pomocy brmek NAND EXOR: y b b Aby zrelizowć to z pomocą funkcji podstwowych nleżłoby użyć 2-ch AND, OR i dwóch NOT- trzech różnych funkcji- trzech różnych ukłdów sclonych. y b b b b b b Potrzeb 5 NAND -ów, więc tylko dw tkie sme ukłdy sclone, które mją w sobie cztery NAND -y kżdy.

48 Przykłdy. Zpis funkcji EXOR przy pomocy brmek NAND

49 Przykłdy. Zpis funkcji EXOR przy pomocy brmek NOR b b b b b b b b b b y Otrzymujemy 6-NOR-ów. Zmist 3 różnych ukłdów sclonych możn użyć jedynie dwóch i to tkich smych, zwierjących po cztery NOR-y. EXOR: b b y

50 Przykłdy. Zpis funkcji EXOR przy pomocy brmek NOR

51 Zpis funkcji y bc bc b przy pomocy brmek NAND y bc bc b Nleży zmienić znki sum n mnożenie prwo De Morgn bc bc b Otrzymujemy 5 NAND-ów: dw 2-wejściowe do negcji i b, jeden dwuwejściowy do znegownego iloczynu i b -, i trzy 3- wejściowe do relizcji: bc, bc orz negcji iloczynu wszystkich skłdników.

52 Zpis funkcji przy pomocy brmek NAND

53 Zpis funkcji przy pomocy brmek NAND

54 Zpis funkcji przy pomocy brmek NAND c.d.

55 Zpis funkcji przy pomocy brmek NOR

56 Zpis funkcji przy pomocy brmek NOR c.d.

57 Dziękuję z uwgę

Podstawy układów logicznych

Podstawy układów logicznych Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.

Bardziej szczegółowo

Bardzo krótki wstęp do elektroniki cyfrowej

Bardzo krótki wstęp do elektroniki cyfrowej Brdzo krótki wstęp do elektroniki cyfrowej Słwomir Mmic http://min5.mu.edu.pl/~zfp/sm/home.html Pln ) Ukłdy logiczne b) Algebr Boole i jej relizcj sprzętow c) Brmki są dwie? d) Prosty przykłd sumtor e)

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Elementy cyfrowe i układy logiczne Wykład Legenda Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny Optymalizacja układów wielopoziomowych Układy wielopoziomowe układy

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

H L. The Nobel Prize in Physics 2000 "for basic work on information and communication technology"

H L. The Nobel Prize in Physics 2000 for basic work on information and communication technology 2014 CYFROWE UKŁADY SCALONE Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile wrtości. WE ukłd nlogowy WY Ukłdy cyfrowe: przetwrznie sygnłów o dwóch wrtościch

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

H L. The Nobel Prize in Physics 2000 "for basic work on information and communication technology"

H L. The Nobel Prize in Physics 2000 for basic work on information and communication technology 2012 CYFROWE UKŁADY SCALONE Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile wrtości. WE ukłd nlogowy Ukłdy cyfrowe: przetwrznie sygnłów o dwóch wrtościch npięć

Bardziej szczegółowo

WYKŁAD 7 CYFROWE UKŁADY SCALONE

WYKŁAD 7 CYFROWE UKŁADY SCALONE 65 KŁAD 7 CYFRO UKŁADY SCALONE Ukłdy nlogowe są przystosowne do przetwrzni npięć (lu prądów), których wrtości zwierją się w pewnym przedzile ukłd nlogowy wrtości Ukłdy cyfrowe służą do przetwrzni sygnłów

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Podstawy Techniki Cyfrowej Układy komutacyjne

Podstawy Techniki Cyfrowej Układy komutacyjne Podstwy Techniki Cyfrowej Ukłdy komutcyjne Ukłdy kombincyjne, umożliwijące przełącznie (komutcję) sygnłów cyfrowych, nzyw się ukłdmi ukłdmi komutcyjnymi. Do podstwowych ukłdów komutcyjnych zlicz się multipleksery

Bardziej szczegółowo

ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1

ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1 ELEKTRONIKA CYFROWA Mteriły y pomocnicze do wykłd dów Dl AiZ zoczne inŝynierskie, sem Wykorzystne mteriły Łub T Ukłdy logiczne, PW 26 Wenck A NOTATKI Z TECHNIKI CYFROWEJ PW 26 wwwelektronikorgpl Wprowdzenie

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE. Technologia planarna

CYFROWE UKŁADY SCALONE. Technologia planarna CYFRO UKŁADY SCALONE PA 2010 The Noel Prize in Physics 2000 "for sic work on informtion nd communiction technology" Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile 1. SUMY ALGEBRAICZNE Kl. II poziom podstwowy Uczeń otrzymuje ocenę dopuszczjącą, jeśli: rozpoznje jednominy i sumy lgebriczne

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE

CYFROWE UKŁADY SCALONE CYFROWE UKŁADY SCALONE PA 2011 Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile wrtości. Ukłdy cyfrowe: przetwrznie sygnłów o dwóch wrtościch npięć (ewentulnie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2 WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2 1. SUMY ALGEBRAICZNE rozpoznje jednominy i sumy lgebriczne

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE. Technologia planarna

CYFROWE UKŁADY SCALONE. Technologia planarna CYFRO UKŁADY SCALONE PA 29 The Noel Prize in Physics 2 "for sic work on informtion nd communiction technology" Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych kls drug zkres podstwowy Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy Wymgni edukcyjne z mtemtyki Kls IIB. Rok szkolny 2013/2014 Poziom podstwowy FUNKCJA KWADRATOWA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: 2 rysuje wykres funkcji f ( ) i podje jej włsności

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE Ib ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE Ib ZAKRES PODSTAWOWY . LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje liczbę do odpowiedniego zbioru liczb stosuje cechy podzielności

Bardziej szczegółowo

Modelowanie układów kombinacyjnych w VHDL (cz.1)

Modelowanie układów kombinacyjnych w VHDL (cz.1) Modelownie ukłdów kombincyjnych w VHDL (c.1) jednostki (entity) i rchitektury (rchitecture) modele prostych brmek w VHDL typ bit i opertory logicne identyfiktory, spcje, komentre listy połąceń prypisni

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE

CYFROWE UKŁADY SCALONE CYFROWE UKŁADY SCALONE 2013 Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile wrtości. Ukłdy cyfrowe: przetwrznie sygnłów o dwóch wrtościch npięć (ewentulnie

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymgni edukcyjne z mtemtyki LICEUM OGÓLNOKSZTAŁCĄCE Kls II Poniżej przedstwiony zostł podził wymgń edukcyjnych n poszczególne oceny. Wiedz i umiejętności konieczne do opnowni (K) to zgdnieni, które są

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Szczegółowe wymagania edukacyjne z matematyki w klasie drugiej Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Szczegółowe wymagania edukacyjne z matematyki w klasie drugiej Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk 2 Szczegółowe wymgni edukcyjne z mtemtyki w klsie drugiej Zkres podstwowy Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące,

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysłw Smorwińskiego w Zespole Szkół Ekonomicznych w Kliszu Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom podstawowy

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom podstawowy Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile. LICZBY RZECZYWISTE Kl. I poziom podstwowy podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II a liceum (poziom podstawowy) na rok szkolny 2018/2019

Wymagania edukacyjne z matematyki dla klasy II a liceum (poziom podstawowy) na rok szkolny 2018/2019 Wymgni edukcyjne z mtemtyki dl klsy II liceum (poziom podstwowy) n rok szkolny 08/09 Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące. SUMY

Bardziej szczegółowo

Załącznik nr 3 do PSO z matematyki

Załącznik nr 3 do PSO z matematyki Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących

Bardziej szczegółowo

Zbiory wyznaczone przez funkcje zdaniowe

Zbiory wyznaczone przez funkcje zdaniowe pojęci zbioru i elementu RCHUNEK ZIORÓW zbiór zwier element element nleży do zbioru jest elementem zbioru ( X zbiór wszystkich przedmiotów indywidulnych, których dotyczy dn nuk zbiór pełny (uniwerslny

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych.

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Dorot Ponczek, Krolin Wej MATeMAtyk 2 Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych.

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Dorot Ponczek, Krolin Wej MATeMAtyk 2 Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy MATeMAtyk 2. Propozycj przedmiotowego systemu ocenini. ZP Wyróżnione zostły

Bardziej szczegółowo

WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO

WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO Pln wynikowy dostosowny jest do progrmu nuczni mtemtyki w szkole pondgimnzjlnej z zkresu ksztłceni podstwowego PROSTO DO MATURY (progrm nuczni

Bardziej szczegółowo

Plan wynikowy klasa 2. Zakres podstawowy

Plan wynikowy klasa 2. Zakres podstawowy Pln wynikowy kls Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące. SUMY ALGEBRAICZNE 0. Sumy

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnik Gdńsk Wydził Elektrotechniki i Automtyki Ktedr Inżynierii Systemów Sterowni Teori sterowni Sterowlność i obserwowlność liniowych ukłdów sterowni Zdni do ćwiczeń lbortoryjnych termin T Oprcownie:

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

MATeMAtyka 2 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 2 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyk 2 Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy Kls 2 Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe (P), rozszerzjące (R), dopełnijące

Bardziej szczegółowo

symbol dodatkowy element graficzny kolorystyka typografia

symbol dodatkowy element graficzny kolorystyka typografia Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Kls technikum Przedmiotowy system ocenini wrz wymgnimi edukcyjnymi Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe (P), rozszerzjące (R), dopełnijące (D) i wykrczjące (W). Wymienione

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA II

Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA II 1.Sumy lgebriczne Mtemtyk wykz umiejętności wymgnych n poszczególne oceny KLASA II N ocenę dop: 1. Rozpoznwnie jednominów i sum lgebricznych 2. Oblicznie wrtości liczbowych wyrżeń lgebricznych 3. Redukownie

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r.

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r. Typ/orgn wydjący Rozporządzenie/Minister Infrstruktury Tytuł w sprwie szczegółowych wrunków i trybu wydwni zezwoleń n przejzdy pojzdów nienormtywnych Skrócony opis pojzdy nienormtywne Dt wydni 16 grudni

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Mtemtyczne Podstwy Informtyki dr inż. Andrzej Grosser Instytut Informtyki Teoretycznej i Stosownej Politechnik Częstochowsk Rok kdemicki 2013/2014 Podstwowe pojęci teorii utomtów I Alfetem jest nzywny

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Komputerowe wspomgnie decyzi 008/009 Liniowe zgdnieni decyzyne Nottki do temtu Metody poszukiwni rozwiązń ednokryterilnych problemów decyzynych metody dl zgdnień liniowego progrmowni mtemtycznego Liniowe

Bardziej szczegółowo

Plan wynikowy z matematyki

Plan wynikowy z matematyki ln wynikowy z mtemtyki Dl kls 1-3 liceum ogólnoksztłcącego i 1-4 technikum sztłcenie ogólne w zkresie podstwowym i rozszerzonym Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY I TECHNIKUM Egzmin poprwkowy n ocenę dopuszczjącą będzie obejmowł zdni zgodne z poniższymi wymgnimi n ocenę dopuszczjącą. Egzmin poprwkowy n wyższą ocenę

Bardziej szczegółowo

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

Podstawy programowania obiektowego

Podstawy programowania obiektowego 1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty

Bardziej szczegółowo

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r.

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r. złącznik nr 3 do uchwły nr V-38-11 Rdy Miejskiej w Andrychowie z dni 24 lutego 2011 r. ROZSTRZYGNIĘCIE O SPOSOBIE ROZPATRZENIA UWAG WNIESIONYCH DO WYŁOŻONEGO DO PUBLICZNEGO WGLĄDU PROJEKTU ZMIANY MIEJSCOWEGO

Bardziej szczegółowo

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI..

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI.. Temat: Układ z bramkami NAND i bramki AOI.. Ćwiczenie 26 Cel ćwiczenia Zapoznanie się ze sposobami konstruowania z bramek NAND różnych bramek logicznych. Konstruowanie bramek NOT, AND i OR z bramek NAND.

Bardziej szczegółowo

Algebra Boole a i jej zastosowania

Algebra Boole a i jej zastosowania lgebra oole a i jej zastosowania Wprowadzenie Niech dany będzie zbiór dwuelementowy, którego elementy oznaczymy symbolami 0 oraz 1, tj. {0, 1}. W zbiorze tym określamy działania sumy :, iloczynu : _ oraz

Bardziej szczegółowo

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych Edwrd Musił Oddził Gdński SEP Zokrąglnie i zpisywnie wyników obliczeń przybliżonych Inżynier wykonuje nieml wyłącznie obliczeni przybliżone i powinien mieć nieustnnie n względzie dokłdność, jką chce uzyskć

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 Zadania dla grupy elektronicznej na zawody II stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 Zadania dla grupy elektronicznej na zawody II stopnia EOELEKTA Ogólnopolsk Olimpid Wiedzy Elektrycznej i Elektronicznej ok szkolny 204/205 Zdni dl grupy elektronicznej n zwody stopni Zdnie Dl diody półprzewodnikowej, której przeieg chrkterystyki prądowo-npięciowej

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja

Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja Mteriły pomocnicze do ćwiczeń z przedmiotu: Orzewnictwo, wentylcj i klimtyzcj II. Klimtyzcj Rozdził 1 Podstwowe włsności powietrz jko nośnik ciepł mr inż. Anieszk Sdłowsk-Słę Mteriły pomocnicze do klimtyzcji.

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

Lista 4 Deterministyczne i niedeterministyczne automaty

Lista 4 Deterministyczne i niedeterministyczne automaty Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki. Klasa 2C. MATeMATyka. Nowa Era. Klasa 2

Wymagania egzaminacyjne z matematyki. Klasa 2C. MATeMATyka. Nowa Era. Klasa 2 Wymgni egzmincyjne z mtemtyki. ls C. MATeMATyk. Now Er. y są ze sobą ściśle powiązne ( + + R + D + W), stnowiąc ocenę szkolną, i tk: ocenę dopuszczjącą () otrzymuje uczeń, który spełnił wymgni konieczne;

Bardziej szczegółowo

bezkontekstowa generujac X 010 0X0.

bezkontekstowa generujac X 010 0X0. 1. Npisz grmtyke ezkontekstow generujc jezyk : L 1 = { 0 i 10 j 10 p : i, j, p > 0, i + j = p } Odpowiedź. Grmtyk wygląd tk: Nieterminlem strtowym jest S. S 01X0 0S0 X 010 0X0. Nieterminl X generuje słow

Bardziej szczegółowo

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b, WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz

Bardziej szczegółowo