a a a b M. Przybycień Matematyczne Metody Fizyki I

Wielkość: px
Rozpocząć pokaz od strony:

Download "a a a b M. Przybycień Matematyczne Metody Fizyki I"

Transkrypt

1

2 Relcje równowr wnowżności i klsy Definicj: Relcją określoną n zbiorze A nzywmy dowolny test porównwczy pomiędzy uporządkownymi prmi elementów elementów zbioru A. Jeśli pr (, b) œ A ä A spełni ten test, mówimy, że pozostje w relcji do b, ( b). Definicj: Relcją równowżności określoną n zbiorze A nzywmy relcję któr jest: zwrotn: A, symetryczn:,b A, b b przechodni:,b,c A, ( b) ( b c) c O elementch,bœa mówimy wówczs, że jest równowżne b Definicj: Klsą równowżności elementu œ A nzywmy zbiór wszystkich elementów A pozostjących w relcji równowżności z, { b A : b } Twierdzenie: Jeśli jest relcją równowżności n A orz,b œ A wtedy lbo b lbo b więc dowolny element klsy możn wybrć jko reprezentnt tej klsy. Przykłd: A zbiór ludzi: b - jest strszy od b nie jest relcją równowżności. b - i b mją tego smego dzidk ze strony ojc jest relcją równowności. M. Przybycień Mtemtyczne Metody Fizyki I Wykłd 2-22

3 Algebr wektorów Definicj: Sklr to wielkość fizyczn, któr posid tylko wrtość (liczb). np. tempertur, czs, ms, Definicj: Wektor to kls równowżności pr punktów, czyli zorientownych odcinków, które przeksztłcją się w siebie przy przesunięciu równoległym. np. wektor położeni, siły, prędkości, Symbole wektorów: PQ P Dodwnie wektorów (reguł równoległoboku): przemienność: + b b + łączność: ( + b ) + c + ( b + c ) + b + c b + b + c c M. Przybycień Mtemtyczne Metody Fizyki I Q b Odejmownie wektorów: ( ) P Q P 2 Q 2 P 3 b + + b Q 3 b - b + -b Wykłd 2-32

4 Algebr wektorów W wyniku mnożeni wektor przez liczbę rzeczywistą otrzymujemy wektor o tym smym kierunku co wektor oryginlny i proporcjonlnej długości: - λ P Q P Q P Q PQ' λ PQ Włsności: ( λµ ) λ ( µ ) µ ( λ ) ( + b ) λ λ + λ b ( λ + µ ) λ + µ Przykłd: Niech punkt P dzieli odcinek AB w stosunku λ : µ. Znjdź wektor położeni punktu P jeśli wektory położeni punktów A i B są znne i wynoszą odpowiednio i. B λ λ p + AB + ( OP b ) λ + µ λ + µ µ λ + b λ + µ λ + µ O b p µ P λ b A M. Przybycień Mtemtyczne Metody Fizyki I Wykłd 2-42

5 Kombincj liniow wektorów Definicj: Wektor b nzywmy liniową kombincją wektorów jeśli istnieją stłe c, c 2,, c n tkie, że: M. Przybycień Mtemtyczne Metody Fizyki I,,..., 2 n b c + c c 2 2 n n Definicj: Mówimy, że wektory,,..., są liniowo zleżne jeśli istnieją 2 n stłe c, c 2,, c n, nie wszystkie równe zero, tkie że: c + c c 2 2 n n 0 Jeśli powyższ równość zchodzi tylko wtedy gdy wszystkie stłe c, c 2,, c n, są jednocześnie równe zero, to o wektorch, 2,..., n mówimy, że są liniowo niezleżne. Uwg: Powyższe opercje możn określić dl wektorów w dowolnej liczbie wymirów. Włsności: kżdy zbiór m+ lub więcej m-wymirowych wektorów jest liniowo zleżny. jeśli dny zbiór wektorów jest liniowo niezleżny, to kżdy podzbiór tych wektorów jest również liniowo niezleżny. kżdy zbiór wektorów o tym smych wymirze, zwierjący wektor zerowy, jest liniowo zleżny. Wykłd 2-52

6 Krtezjński ukłd współrz rzędnych Odległość pomiędzy punktmi P i P 2 znjdujemy z twierdzeni Pitgors: 2 ( ) ( ) ( ) P P x x + y y + z z M. Przybycień Mtemtyczne Metody Fizyki I Wykłd 2-62

7 Współrz rzędne wektor i wektory bzowe Q(x 2, y 2, z 2 ) P(x, y, z ) Reprezentnt wektor PQ u ν, ν, ν ( ν ν ν ) 2 3 Dysponując trzem różnymi wektormi, e, e, e 2 3, nie leżącymi w jednej płszczyźnie, możn w trójwymirowej przestrzeni dowolny wektor zpisć jko kombincję tych wektorów: e + e + e ie ˆ ei i ei i Wektory e, e, e ei nzywmy bzą w przestrzeni 3, ntomist sklry,, to współrzędne wektor w tej bzie. Mówimy, że wektor zostł rozłożony n skłdowe. Dl współrzędnych krtezjńskich w 3 stosujemy oznczeni: e ˆ i e ˆ j e ˆ k M. Przybycień Mtemtyczne Metody Fizyki I 2 3 Wykłd 2-72

8 y Algebr wektorów w n współrz rzędnych Mth Plyer Mth Plyer (u +, u ) Dodwnie i odejmownie wektorów: M. Przybycień Mtemtyczne Metody Fizyki I ± b ( xi + y j + zk ) ± ( bxi + by j + bzk ) ± b i + ± b j + ± b k ( x x ) ( y y ) ( z z ) x ( x, y, z ) lub y z x Długość (moduł) wektor: x + y + z ˆ x y z λ λ,, fi wektor jednostkowy: x λ y λ z,, i + 3 j + 6k 2 i 2k. Znjdź ich sumę, + 2 u + ( i + j + k ) + ( i k ) j + 4k u + + uˆ czyli j + k Mnożenie wektor przez liczbę: ( ) Przykłd: Dne są wektory orz Wygodny sposób zpisu wektor: moduł sumy i wektor jednostkowy o tym smym kierunku i zwrocie co wektor Wykłd 2-82

9 Iloczyn sklrny wektorów Definicj: Iloczynem sklrnym dwóch wektorów i b nzywmy liczbę: b b cosq gdzie q jest kątem pomiędzy wektormi i b. Uwg: W dowolnej liczbie wymirów iloczyn sklrny jest liczbą. Włsności: przemienny: b b b + bc b + b c liniowy w kżdym z rgumentów (, b e ): ( ) Dw niezerowe wektory są ortogonlne (prostopdłe) jeśli ich iloczyn sklrny jest równy zero: b 0 Przykłd: Wektory bzowe w ukłdzie krtezjńskim spełniją relcje: M. Przybycień Mtemtyczne Metody Fizyki I b b cosq i i j j k k i j j k k i 0 Oblicznie iloczynu sklrnego: b i + j + k b i + b j + b k b + b + b b i 2 Długość wektor: 3 ( 2 3 ) ( 2 3 ) i i Wykłd 2-92

10 Iloczyn sklrny wektorów Przykłd: Znjdź kąt pomiędzy wektormi i + 2 j + 3k orz b 2i + 3 j + 4k b b b cosq cosq b b cos q q 0. 2 rd b Cosinusy kierunkowe wektorów: b x bx y by z bz cosq + + b b b b / b / b b wielkości orz gdzie i x, y, z to cosinusy kierunkowe wektorów i. i Delt Kronecker (i, j, 2): Skłdowe wektorów w bzie : i ij j dij d di 0 { e, e,..., e } 2 n n n n u e u e e u ( e e ) u d u j k k j k k j k kj j k k k M. Przybycień Mtemtyczne Metody Fizyki I dl dl i i j j Wykłd 2-02

11 Rozkłd wektor n dowolne skłdowe u u u u proj u + ( u proj u) + u 2 2 Przykłd: Rozłożyć wektor n skłdowe: równoległą i prostopdłą do wektor. proj skldow skldow rownolegl do prostopdl do u u u u u cosq 2 gdzie rzut wektor n wektor dny jest przez: M. Przybycień Mtemtyczne Metody Fizyki I proj u u u proj u Metod ortonormlizcji Grm-Schmidt w 2-dim: Rozwżmy dowolną bzę w 2-dim przestrzeni. Chcemy utworzyć tkie { }, 2 kombincje liniowe tych wektorów by otrzymne wektory były ortonormlne. Jko pierwszy wektor poszukiwnej bzy wybiermy: eˆ eˆ eˆ ( ) eˆ Drugi wektor otrzymujemy odejmując od jego rzut n wektor : 2 i odpowiednio normlizując do ê eˆ 2 e 2 e 2 Mth Plyer Wykłd 2-2

12 Permutcje { } Definicj: Permutcją zbioru liczb 2,,..., n nzywmy dowolną różnowrtościową funkcję określoną n tym zbiorze i o wrtościch w tym zbiorze. Uwg: Liczb wszystkich permutcji wynosi n! ( n ) Permutcje zpisujemy w formie tbeli: f 2 f ( ) f ( 2) f ( n ) ( ) Permutcj identycznościow: I 2 n 2 Iloczynem permutcji f i g jest złożenie tych funkcji: n ( ) f g ( i) f g ( i) ( ) ( ) Przykłd: Niech f orz g ( ) ( ) Wtedy f g orz g f Definicj: Niech π będzie permutcją określoną n zbiorze { 2,,..., n} orz niech r będzie njmniejszą liczbą cłkowitą tką, że π r (i) i. Wówczs zbiór r różnych k { π ( i) } r elementów nzywmy r-wyrzowym cyklem permutcji π. k 0 M. Przybycień Mtemtyczne Metody Fizyki I Wykłd 2-22

13 Permutcje rozkłd n cykle ( ) Przykłd: ( 374)( 25)( 68) π ( ) ( 25)( 36748) ( ) ( 5387)( 2)( 46) π π π π ( )( )( )( )( ) ( )( )( ) π Dw cykle ( i, i2,..., i k ) orz ( j, j2,..., jl ) nzywmy rozłącznymi jeżeli zbiory liczb { i, i2,..., i k } orz { j, j2,..., jl} nie mją elementów wspólnych. Twierdzenie: Kżdą permutcję możn rozłożyć n iloczyn rozłącznych cykli. Definicj: Permutcję π w której jeden cykl m długość r, pozostłe mją tylko po jednym elemencie, nzywmy permutcją cykliczną o długości r. Definicj: Permutcję cykliczną o długości 2 nzywmy trnspozycją. ( )( )( ) ( ) π Przykłd: ( ) M. Przybycień Mtemtyczne Metody Fizyki I Mth Plyer Wykłd 2-32

14 Przystość permutcji Twierdzenie: Dowolny cykl o długości r możn rozłożyć n r- trnspozycji: ( i, i,..., i ) ( i, i )( i, i )...( i, i )( i, i ) 2 r r r 3 2 Uwg: Chociż rozkłd n trnspozycje nie jest jednoznczny, to możn pokzć, że przystość rozkłdu (tzn. czy liczb trnspozycje jest przyst czy nie) jest jednoznczn. ( 234) ( 4)( 3)( 2) ( 4)( 34)( 34)( 23)( 2)( 2)( 23)( 3)( 2) Twierdzenie: Dowoln permutcj może być rozłożon n iloczyn trnspozycji. Przystość rozkłdu jest jednozncznie określon. Definicj: Permutcję nzywmy przystą (nieprzystą) jeśli może być rozłożon n iloczyn przystej (nieprzystej) liczby trnspozycji. Określenie: Nieporządkiem w permutcji π nzywmy kżdą prę liczb i, j tką że i < j orz π(i) > π(j). A więc przystość permutcji możn określić zliczjąc nieporządki: π ( j) π ( i) + przyst i< j j i nieprzyst M. Przybycień Mtemtyczne Metody Fizyki I Wykłd 2-42

15 Symbol cłkowicie ntysymetryczny Definicj: Symbolem cłkowicie ntysymetrycznym w n wymirch nzywmy: ε i i2 i n 2 n + jeżeli permutcj jest permutcją przystą i i i 2 n jeżeli jest permutcją nieprzystą 0 jeżeli nie wszystkie liczby są różne Wybrne włsności (dowody przez pokznie, że L ijk P ijk dl wszystkich i,j,k, ): 2-dim: 3-dim: 2 2 ε ε δ δ δ δ ε ε δ ε ε 2 ik jl ik jl il jk ik jk ij ij ij k i, j ε ε δ δ δ δ ε ε 2 δ ε ε 3! ijk lmk il jm im jl ijk ljk il ijk ijk k j, k i, j, k 4-dim: ( ) ε ε 2 δ δ δ δ ε ε 3! δ ε ε 4! ijks lmks il jm im jl ijks ljks il ijks ijks k, s j, k, s i, j, k, s Mth Plyer n-dim: M. Przybycień Mtemtyczne Metody Fizyki I Wykłd 2-52

16 Iloczyn zewnętrzny w 2 Iloczyn zewnętrzny dwóch wektorów jest obiektem, którego rodzj zleży od liczby wymirów. N płszczyźnie iloczyn zewnętrzny jest liczbą. Definicj: Iloczyn zewnętrzny wektorów w 2D przestrzeni Euklides to liczb: u 2 ε y jkuj k u2 u2 j,k u u ( cos α sin β sin α cos β ) u sin( α β ) u sin γ b Interpretcj geometryczn: x Powierzchni Włsności iloczynu zewnętrznego w 2D: u sin θ u ntysymetryczny: u u - liniowy (α, β e): u ( α + β w ) α u + β u w u u 0 określ skrętność ukłdu: e ˆ e ˆ Mth Plyer 2 M. Przybycień Mtemtyczne Metody Fizyki I Wykłd 2-62

17 Iloczyn zewnętrzny (wektorowy) w 3 Definicj: Iloczynem wektorowym dwóch wektorów u i nzywmy wektor o skłdowych: u ε u 3 j,k ( ) i ijk j k Iloczyn wektorowy jest wektorem prostopdłym do obu wektorów skłdowych i m wrtość: i j k Mth u u u2 u3 Plyer 2 3 ( u23 u32 ) i + ( u3 u3 ) j + ( u2 u2 ) k u sin γ n γ kąt pomiędzy wektormi u i n wektor jednostkowy, prostopdły do płszczyzny u wyznczonej przez wektory i. Uwg: Dowód powyższej równości przez przedstwienie skłdowych z pomocą cosinusów kierunkowych. M. Przybycień Mtemtyczne Metody Fizyki I Wykłd 2-72

18 Iloczyn wektorowy w 3 Iloczyn wektorowy jest wektorem ortogonlnym do kżdego z wektorów skłdowych: u ( u ) ui ε ijku jk ε ijkuiu jk 0 i j,k i, j, k ( u ) 0 Włsności: ntysymetryczny: u - u u u 0 u α + β w α u + β u w liniowy (α, β e): ( ) określ skrętność ukłdu: ( u ) wπ u ( w) b + λc λ e, wtedy c b c c ( b + c ) λ c b c + λ c c b c Uwg: Z powyższego nie wynik że b Przykłd: Pokż, że jeśli dl pewnej M. Przybycień Mtemtyczne Metody Fizyki I Wykłd 2-82

19 Iloczyn mieszny wektorów u u u Iloczyn mieszny: u ( w ) ε ijkui jwk 2 3 i, j, k w w w 2 3 ( ) ( ) ( ) u 2w3 3w2 + u2 3w w3 + u3 w2 2w Włsności: u w w u w u -u w - u w -w u Interpretcj geometryczn: w ( u ) jest objętością równoległościnu ( ) ( ) ( ) ( ) ( ) ( ) u zbudownego n wektorch, orz. w Wysokość pole podstwy u M. Przybycień Mtemtyczne Metody Fizyki I Wykłd 2-92

20 Podwójny iloczyn wektorowy Podwójny iloczyn wektorowy: Włsności: gdzie c nie zleży od, i. eˆ ( ˆ ˆ ) ˆ ˆ ˆ e e2 e e3 e2 ( ˆ ˆ ) ˆ ( ˆ ˆ ) ˆ ˆ c + e e2 e e e e2 e2 - Wprost z definicji iloczynów sklrnego i wektorowego: ( u ( w )) ε u ε w u w ε ε i u ( w) () jest ortogonlny do ( w) tzn. u ( w) α + β w zleżą od u i. (b) jest liniowy w skłdowych (c) jest ortogonlny do u u, i w. ()+(c) fi α ( u) + β ( w u) 0 α c ( w u), β c ( u) u w ijk j klm l m j l m kij klm j, k l, m j, l, m k u w ( δ δ δ δ ) u w u w j l m il jm im jl j j i j j i j, l, m j j przy czym α, β nie u ( w) ( u w) ( u ) w czyli u ( w) ( u w) -( u ) w orz ( u ) w ( u w) -( w) u Prwdziw jest więc tożsmość: u ( w) + ( w u) + w ( u ) 0 M. Przybycień Mtemtyczne Metody Fizyki I Wykłd

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Zbiory wyznaczone przez funkcje zdaniowe

Zbiory wyznaczone przez funkcje zdaniowe pojęci zbioru i elementu RCHUNEK ZIORÓW zbiór zwier element element nleży do zbioru jest elementem zbioru ( X zbiór wszystkich przedmiotów indywidulnych, których dotyczy dn nuk zbiór pełny (uniwerslny

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

Pojęcia Działania na macierzach Wyznacznik macierzy

Pojęcia Działania na macierzach Wyznacznik macierzy Temt: Mcierze Pojęci Dziłni n mcierzch Wyzncznik mcierzy Symbolem gwizdki (*) oznczono zgdnieni przeznczone dl studentów wybitnie zinteresownych prezentowną temtyką. Ann Rjfur Pojęcie mcierzy Mcierz to

Bardziej szczegółowo

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie Funkcj kwdrtow - powtórzenie z klsy pierwszej (5godzin) PLANIMETRIA Moduł - dził - temt Miry kątów w trójkącie Lp Zkres treści 1 klsyfikcj trójkątów twierdzenie o sumie mir kątów w trójkącie Trójkąty przystjące

Bardziej szczegółowo

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b, WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz

Bardziej szczegółowo

Wykład z matematyki dla studentów Inżynierii Środowiska. Wykład 1. Literatura PRZEGLĄD FUNKCJI ELEMENTARNYCH

Wykład z matematyki dla studentów Inżynierii Środowiska. Wykład 1. Literatura PRZEGLĄD FUNKCJI ELEMENTARNYCH Wykłd z mtemtyki dl studentów Inżynierii Środowisk Wykłd. Litertur. Gewert M., Skoczyls Z.: Anliz mtemtyczn, Oficyn Wydwnicz GiS, Wrocłw, 0.. Jurlewicz T., Skoczyls Z.: Algebr liniow, Oficyn Wydwnicz GiS,

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 2 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy bz dnych" 1 Pojęcie krotki - definicj Definicj. Niech dny będzie skończony zbiór U := { A 1, A 2,..., A n }, którego

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Wyk lad 1 Podstawowe wiadomości o macierzach

Wyk lad 1 Podstawowe wiadomości o macierzach Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Translacja jako operacja symetrii. Wybór komórki elementarnej wg A. Bravais, połowa XIX wieku wybieramy komórkę. Symetria sieci translacyjnej

Translacja jako operacja symetrii. Wybór komórki elementarnej wg A. Bravais, połowa XIX wieku wybieramy komórkę. Symetria sieci translacyjnej Trnslcj jko opercj symetrii Wykłd trzeci W obrębie figur nieskończonych przesunięcie (trnslcję) możn trktowć jko opercję symetrii Jest tk np. w szlkch ornmentcyjnych (bordiurch) i siecich krysztłów polimerów

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Pochodne i całki, macierze i wyznaczniki

Pochodne i całki, macierze i wyznaczniki Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk

Bardziej szczegółowo

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I. RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

2. ELEMENTY GEOMETRII ANALITYCZNEJ I WEKTOROWEJ

2. ELEMENTY GEOMETRII ANALITYCZNEJ I WEKTOROWEJ . ELEMENTY GEOMETRII ANALITYCZNEJ I WEKTOROWEJ.. Wstęp: metod współrzędnych WYKŁAD 5 W geometrii nlitycznej dmy oiekty geometryczne metodą nlityczną. Njrdziej znną metodą tego typu jest metod współrzędnych

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową

Bardziej szczegółowo

Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk

Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk Algebra Wektory Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wektory Najnowsza wersja

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Analiza Matematyczna (część II)

Analiza Matematyczna (część II) Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

III. Rachunek całkowy funkcji jednej zmiennej.

III. Rachunek całkowy funkcji jednej zmiennej. III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,

Bardziej szczegółowo

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

Zasa Za d sa y d d y d nam na iki Newtona (2) Prawo Praw o I I Przys zys es e ze s ni ze e e punkt punkt mat e iralneg ne o g j es e t s

Zasa Za d sa y d d y d nam na iki Newtona (2) Prawo Praw o I I Przys zys es e ze s ni ze e e punkt punkt mat e iralneg ne o g j es e t s Mechnik ogóln ykłd nr 1 prowdzenie i podstwowe pojęci. Rchunek wektorowy. ypdkow ukłdu sił. Równowg. 1 rzedmiot Mechnik: ogóln, techniczn, teoretyczn. Dził fizyki zjmujący się bdniem ruchu i równowgi cił

Bardziej szczegółowo

cz. 2 dr inż. Zbigniew Szklarski

cz. 2 dr inż. Zbigniew Szklarski Wykłd 11: Elektrosttyk cz. 2 dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://lyer.uci.gh.edu.pl/z.szklrski/ Pole elektryczne przewodnik N powierzchni metlicznej (przewodzącej) cły łdunek gromdzi się n

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

1.5. Iloczyn wektorowy. Definicja oraz k. Niech i

1.5. Iloczyn wektorowy. Definicja oraz k. Niech i .. Iloczyn ektoroy. Definicj. Niech i, j orz k. Iloczynem ektoroym ektoró = i j k orz = i j k nzymy ektor i j k.= ( )i ( )j ( )k Skrótoo możn iloczyn ektoroy zpisć postci yzncznik: i j k. Poniżej podno

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej. 2. Struktury i pierwistki N zjęcich zjmiemy się pierwistkmi i strukturmi krystlicznymi. O ile w przypdku tych pierwszych, temt poruszny był w trkcie wykłdu, to drugie zgdnienie może wymgć krótkiego przybliżeni/przypomnieni.

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri Środowisk w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

RBD Relacyjne Bazy Danych

RBD Relacyjne Bazy Danych Wykłd 6 RBD Relcyjne Bzy Dnych Bzy Dnych - A. Dwid 2011 1 Bzy Dnych - A. Dwid 2011 2 Sum ziorów A i B Teori ziorów B A R = ) ( Iloczyn ziorów A i B ( ) B A R = Teori ziorów Różnic ziorów ( A) i B Iloczyn

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Całka oznaczona

Analiza matematyczna i algebra liniowa Całka oznaczona Anliz mtemtyczn i lgebr liniow Cłk oznczon Wojciech Kotłowski Instytut Informtyki Politechniki Poznńskiej emil: imię.nzwisko@cs.put.poznn.pl pok. 2 (CW) tel. (61)665-2936 konsultcje: piątek 15:10-16:40

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład II

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład II Wykład II I. Algebra wektorów 2.1 Iloczyn wektorowy pary wektorów. 2.1.1 Orientacja przestrzeni Załóżmy, że trójka wektorów a, b i c jest niekomplanarna. Wynika z tego, że żaden z tych wektorów nie jest

Bardziej szczegółowo

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu. ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

f(x) = ax 2, gdzie a 0 sności funkcji: f ( x) wyróżnik trójmianu kw.

f(x) = ax 2, gdzie a 0 sności funkcji: f ( x) wyróżnik trójmianu kw. FUNKCJA KWADRATOWA Moduł - dził - Lp Lp temt z.p. z.r. Zkres treści Wykres f() = 1 1 wykres i włsności f() =, gdzie 0 Przesunięcie wykresu f() = wzdłuż osi OX i OY /o wektor/ Postć knoniczn i postć ogóln

Bardziej szczegółowo

KRYSTALOGRAFIA. pokój 7 w Gmachu Głównym konsultacje: czwartek 8-9. Treść wykładów: a/

KRYSTALOGRAFIA. pokój 7 w Gmachu Głównym konsultacje: czwartek 8-9. Treść wykładów:  a/ Mri Gzd: KRYSTALOGRAFIA pokój 7 w Gmchu Głównym konsultcje: czwrtek 8-9 Treść wykłdów: http://www.mif.pg.gd.pl/homepges/mri / Książki: kżd dotycząc krystlogrfii, np. Z. Bojrski i in. Krystlogrfi 1 Zliczenie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011 1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

Redukcja układów sił działających na bryły sztywne

Redukcja układów sił działających na bryły sztywne 1 Redukcj ukłdów sił dziłjących n bryły sztywne W zdnich tego rozdziłu wykorzystuje się zsdy redukcji ukłdów sił wykłdne w rmch mechniki ogólnej i powtórzone w tomie 1 podręcznik. Zdnie 1 Zredukowć ukłd

Bardziej szczegółowo

Wykład 3: Transformata Fouriera

Wykład 3: Transformata Fouriera Rchunek prwdopodobieństw MAP64 Wydził Elektroniki, rok kd. 28/9, sem. letni Wykłdowc: dr hb. A. Jurlewicz Wykłd 3: Trnsformt Fourier Złóżmy, że f(t) jest określon n R, ogrniczon, okresow o okresie 2T i

Bardziej szczegółowo

Piotr Stefaniak. Materiały uzupełniające do wykładu Matematyka

Piotr Stefaniak. Materiały uzupełniające do wykładu Matematyka Zchodniopomorski Uniwersytet Technologiczny w Szczecinie Piotr Stefnik Mteriły uzupełnijące do wykłdu Mtemtyk dl studentów Wydziłu Nuk o Żywności i Rybctwie Szczecin, 3 grudni 208 Spis treści Mcierze i

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

GEOMETRIA Z TOPOLOGIĄ NOTATKI NA ZAJĘCIA. Spis treści

GEOMETRIA Z TOPOLOGIĄ NOTATKI NA ZAJĘCIA. Spis treści GEOMETRIA Z TOPOLOGIĄ NOTATKI NA ZAJĘCIA Wydził Mtemtyki i Informtyki Uniwersytet Łódzki Spis treści 1. Przestrzenie metryczne 1 1.1. Definicje i przykłdy 1 1.2. Zbieżności, zbiory 2 1.3. Odwzorowni przestrzeni

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Biotechnologi w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość

Bardziej szczegółowo

Wszystkim życzę Wesołych Świąt :-)

Wszystkim życzę Wesołych Świąt :-) Poniższe zdni pochodzą ze zbiorów: ) J. Rutkowski, Algebr bstrkcyjn w zdnich b) M. Bryński, J. Jurkiewicz, Zbiór zdń z lgebry Do kolokwium proszę też przejrzeć zdni z ćwiczeń. Wszystkim życzę Wesołych

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Spis treści. Podstawowe definicje. Wielokąty. Trójkąty. Czworokąty. Kąty

Spis treści. Podstawowe definicje. Wielokąty. Trójkąty. Czworokąty. Kąty Mrt Compny Ksprowicz LOGO Spis treści. 1 Podstwowe definicje 2 Wielokąty 3 Trójkąty 4 Czworokąty 5 Kąty Podstwowe definicje w geometrii. 1.Punkt 2.Prost 3.Proste prostopdłe 4.Proste równoległe 5.Półprost

Bardziej szczegółowo

Władysław Tomaszewicz Piotr Grygiel. Podstawy Fizyki. Część I Fizyka Klasyczna. (na prawach rękopisu)

Władysław Tomaszewicz Piotr Grygiel. Podstawy Fizyki. Część I Fizyka Klasyczna. (na prawach rękopisu) Włdysłw Tomszewicz Piotr Grygiel Podstwy Fizyki Część I Fizyk Klsyczn (n prwch rękopisu) Wydził Fizyki Technicznej i Mtemtyki Stosownej Politechnik Gdńsk 2002 Rozdził 1 Wstęp 1.1 Międzynrodowy ukłd jednostek

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

Plan wykładów z Matematyki, I 2014/2015 semestr zimowy. (a) Podstawowe funkcje: pierwiastki, funkcja potęgowa, logarytm.

Plan wykładów z Matematyki, I 2014/2015 semestr zimowy. (a) Podstawowe funkcje: pierwiastki, funkcja potęgowa, logarytm. Pln wykłdów z Mtemtyki, I 014/015 semestr zimowy 1. Powtórk i widomości wstępne. () Podstwowe funkcje: pierwistki, funkcj potęgow, logrytm. (b) Trygonometri. (c) Dwumin Newton, przystość funkcji.. Rchunek

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymgni edukcyjne z mtemtyki LICEUM OGÓLNOKSZTAŁCĄCE Kls II Poniżej przedstwiony zostł podził wymgń edukcyjnych n poszczególne oceny. Wiedz i umiejętności konieczne do opnowni (K) to zgdnieni, które są

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1

ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1 ELEKTRONIKA CYFROWA Mteriły y pomocnicze do wykłd dów Dl AiZ zoczne inŝynierskie, sem Wykorzystne mteriły Łub T Ukłdy logiczne, PW 26 Wenck A NOTATKI Z TECHNIKI CYFROWEJ PW 26 wwwelektronikorgpl Wprowdzenie

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)

Bardziej szczegółowo

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej

Bardziej szczegółowo