Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Wielkość: px
Rozpocząć pokaz od strony:

Download "Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa"

Transkrypt

1 Mtemtyk finnsow r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut 1

2 Mtemtyk finnsow r. 1. Dne są dw fundusze Φ i Ψ, tkie, że zkumulown wrtość wpłconej w chwili 0 kwoty 1 wynosi: w przypdku funduszu Φ, w przypdku funduszu Ψ. Wrtość, dl której intensywność oprocentowni funduszu Φ jest równ intensywności oprocentowni funduszu Ψ, wynosi: A) B) C) D) E) 2

3 Mtemtyk finnsow r. 2. Zkłd ubezpieczeń nbył 10-letnią obligcję zerokuponową o nominle PLN z cenę. Obligcj t posid opcję wcześniejszego wykupu emitent z 5 lt od emisji po cenie. Opcj t jest wykonywn przez emitent zwsze, gdy jest to dl niego korzystne. Widomo, że 5-cio letni stop zerokuponow z 5 lt m rozkłd jednostjny n przedzile. Jeśli nstąpi wcześniejszy wykup, to otrzymne przez zkłd ubezpieczeń środki zostną w cłości reinwestowne w 5 letnie obligcje zerokuponowe. Ile wynosi roczn efektywn stop zwrotu dl tej inwestycji? Obliczeni nleży wykonć dl oczekiwnego zwrotu z inwestycji. Podć njbliższą odpowiedź. A) B) C) D) E) 3

4 Mtemtyk finnsow r. 3. Rozwżmy nieskończony ciąg rent nieskończonych. Rent wieczyst strtując w roku płci n koniec kżdego roku. Roczn stop dyskontow ( Niech ozncz wrtość obecną wypłt renty wyznczoną n początek roku 1. Sum tkich wrtości obecnych wypłt ze wszystkich rent, czyli, wynosi (podć njbliższą odpowiedź): A) B).27 C) D) E) 4

5 Mtemtyk finnsow r. 4. Inwestor zciągnął pożyczkę, którą musi spłcić w kwocie PLN z 5 lt od chwili obecnej. Inwestor nie jest obciążony żdnymi odsetkmi wynikjącymi z tej pożyczki i jest on jego jedynym zobowiązniem. Aby zbezpieczyć spłtę zobowiązni inwestor postnwi nbyć w chwili obecnej 2-letnią zero-kuponową obligcję rządową z kwotę X orz 10-letnią zero-kuponową obligcję rządową z kwotę Y. Strtegi zbezpieczjąc poleg n dopsowniu obecnej wrtości zobowiązń do obecnej wrtości portfel obligcji orz zpewnieniu, że zmin wrtości obecnej zobowiązń pod wpływem niewielkich whń stopy dochodowości jest tk sm jk zmin wrtości portfel obligcji pod wpływem whń tej stopy. Pondto widomo, że w otoczeniu stopy dyskontowej przy której możliw jest immunizcj (zbezpieczenie) portfel zobowiązń wrtość obecn portfel obligcji przewyższ wrtość obecną zobowiązń. Podj zkres wrtości X wiedząc, że stop rentowności strony zobowiązń jest tk sm jk stop rentowności portfel obligcji i wynosi w skli roku przy kpitlizcji dyskretnej i jest to jednocześnie stop dyskontow, przy której możliw jest immunizcj portfel zobowiązń: A) B) C) D) E) 5

6 Mtemtyk finnsow r. 5. Akcj spółki A m obecną cenę PLN 35, zmienność = 0.2 i zerową stopę dywidendy. Cen europejskiej opcji kupn n kcję spółki A wystwionej z ceną wykonni PLN 34, zpdlnością z 3 miesiące orz prmetrch (*) i wynosi PLN Cen innej europejskiej opcji kupn wystwionej n kcję spółki A z ceną wykonni PLN 38, zpdlnością z 3 miesiące orz prmetrch i wynosi PLN Inwestor wystwi 100 europejskich opcji kupn n kcję spółki A z ceną wykonni PLN 34 i zpdlnością z 3 miesiące. W celu zbezpieczeni tej pozycji w opcjch inwestor chce zstosowć równocześnie strtegię delthedging (strtegię delt-neutrlną) orz gmm-hedging (strtegię gmm-neutrlną) poprzez zjęcie odpowiedniej pozycji w n europejskich opcjch kupn n kcję spółki A wystwionych z ceną wykonni PLN 38 i zpdlnością z 3 miesiące orz poprzez zjęcie odpowiedniej pozycji w k kcjch spółki A. Przyjmujemy kpitlizcję ciągłą. Zkłdmy idelną podzielność ktywów i brk kosztów trnskcji. Przyjmujemy, że spełnione są złożeni modelu Blck- Scholes wyceny opcji finnsowych. Wskż, któr z poniższych odpowiedzi opisuje strtegię inwestor: A) Nbycie n = opcji kupn i kupno k = kcji B) Nbycie n = opcji kupn i sprzedż k = kcji C) Nbycie n = 100 opcji kupn i sprzedż k = kcji D) Wystwienie n = 100 opcji kupn i kupno k = kcji E) Nie istnieje strtegi delt-gmm-neutrln spełnijące zdne wrunki. (*) Wskzówk: jest dystrybuntą stndrdowego rozkłdu normlnego; ( ), gdzie - cen kcji w chwili t ; -cen wykonni; - zmienność ceny kcji; -stop woln od ryzyk; - moment wykonni opcji. Prmetr gmm opcji wskźnik wrżliwości, drug pochodn ceny opcji względem ceny kcji (instrumentu bzowego). 6

7 Mtemtyk finnsow r. 6. Przy złożenich odnośnie rynku finnsowego zgodnych z modelem Blck-Scholes dne są: i. oznczjące proces ceny kcji zleżny od czsu, gdzie { } jest procesem Wiener przy mierze neutrlnej względem ryzyk. ii., iii. jest zmiennością procesu ceny kcji i jest stłe równe 0.4, iv. dl kcj płci stopę dywidendy, kwot dywidendy wynosi w okresie czsu między v. wyrżenie ozncz dryf (przesunięcie) procesu i jest stłe równe 0.08, gdzie ozncz wolną od ryzyk stopę procentową, vi. widomo, że zminę procesu ceny kcji opisuje równnie:, tzn. krótkoterminowy wzrost ceny kcji jest proporcjonlny do obecnego poziomu cen średnio w stosunku 0.08 orz zmienność ceny jest proporcjonln do jej obecnego poziomu, Rozwżmy instrument pochodny, który wypłc { { } } w momencie i nie wypłc nic w kżdym innym momencie. Zkłdmy kpitlizcje ciągłą. Podj przedził, w jkim mieści się cen tego instrumentu pochodnego w momencie : A) B) C) D) E) Wskzówk: Procesem (stndrdowym) Wiener nzywmy proces { } z czsem ciągłym spełnijący wrunki: 1) 2) przyrosty procesu są niezleżne, czyli dl dowolnego n i dowolnego ciągu, zmienne losowe,, są niezleżne; 3) dl dowolnych przyrost m rozkłd gussowski, dokłdniej: ; 4) proces jest ciągły, tzn. prwie wszystkie trjektorie procesu są funkcjmi ciągłymi. 7

8 Mtemtyk finnsow r. 7. Kredyt hipoteczny o wrtości może być spłcony n dw sposoby rtmi płtnymi n końcu kżdego roku: 25 letni rent o rtch tworzących ciąg rytmetyczny, którego wyrz pierwszy równy jest P różnic wynosi X, przy stopie oprocentowni 7%, 30 letni rent o rtch tworzących ciąg rytmetyczny, którego wyrz pierwszy równy jest P, różnic wynosi Y, przy stopie oprocentowni 5%. Widomo również, że kredyt o wrtości może zostć spłcony przy pomocy 20 letniej renty ciągłej o stłej rocznej intensywności równej P + 10X 15Y, przy stopie oprocentowni 6%. Oblicz ile wynosi sum P + X + Y. Podj njbliższą wrtość. A) B) C) D) E)

9 Mtemtyk finnsow r. 8. Zkłd ubezpieczeń posid w chwili obecnej nstępujące zobowiązni: świdczenie jednorzowe w kwocie płtne po 2 ltch, świdczenie jednorzowe w kwocie płtne po 3 ltch, świdczenie jednorzowe w kwocie płtne po 10 ltch, 5-letni rent pewn ntychmist płtn o płtnościch dokonywnych n końcu kżdego roku, 10-letni rent pewn ntychmist płtn o płtnościch dokonywnych n końcu kżdego roku. Zkłd ubezpieczeń zkupił nstępujące ktyw n pokrycie powyższych zobowiązń: obligcje 10-letnie z kuponem rocznym w wysokości 6% wrtości wykupu równej wrtości nominlnej wynoszącej 5000 orz obligcje 2-letnie z kuponem rocznym w wysokości 4% wrtości wykupu równej wrtości nominlnej wynoszącej Jki procent środków przeznczonych n pokrycie powyższych zobowiązń zkłd ubezpieczeń powinien zinwestowć w obligcje 2-letnie, by przy stopie procentowej 5% durtion ktywów był równ durtion zobowiązń. Podj njbliższą wrtość. A) 45% B) 47% C) 49% D) 51% E) 53% 9

10 Mtemtyk finnsow r. 9. Spłt kredytu 75 rtmi płtnymi n koniec kżdego kwrtłu odbyw się w nstępujący sposób: pierwsze 25 rt orz osttnie 25 rt m stłą wrtość R, pozostłe rty mją stłą wrtość X. Widomo, że sumryczn kwot odsetek zpłconych w pierwszych 25 rtch jest tk sm, jk sumryczn kwot odsetek zpłconych w nstępnych 25 rtch. Oblicz ile wynosi stosunek X/R, jeżeli kwrtln stop procentow jest równ 5%. Podj njbliższą wrtość. A) 4.0 B) 4.2 C) 4.4 D) 4.6 E)

11 Mtemtyk finnsow r. 10. Pożyczk jest spłcn z pomocą 20 rt płtnych n końcu kżdego roku. Rty tworzą nstępujący ciąg: 29, 27, 25,, 13, 11, 11, 12, 13,, 19, 20. Stop procentow jest równ i. Wyzncz stosunek wrtości kpitłu pożyczki spłconego w 6 rcie do wrtości kpitłu spłconego w rcie 12. Wskż włściwy wzór. A) B) C) D) E)

12 Mtemtyk finnsow r. Egzmin dl Akturiuszy z 12 mrc 2012 r. Mtemtyk finnsow Arkusz odpowiedzi * Imię i nzwisko:... Pesel:... OZNACZENIE WERSJI TESTU... Zdnie nr Odpowiedź Punktcj 1 B 2 B 3 A 4 C 5 A 6 C 7 D 8 C 9 A 10 E * Ocenine są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi. Wypełni Komisj Egzmincyjn. 12

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo

Dodatkowe informacje i objaśnienia. Zakres zmian wartości grup rodzajowych środków trwałych, wnip oraz inwestycji długoterminowych Zwieksz Stan na.

Dodatkowe informacje i objaśnienia. Zakres zmian wartości grup rodzajowych środków trwałych, wnip oraz inwestycji długoterminowych Zwieksz Stan na. STOWARZYSZENIE RYNKÓW FINANSOWYCH ACI POLSKA Afiliowne przy ACI - The Finncil Mrkets Assocition Dodtkowe informcje i objśnieni Wrszw, 21 mrzec 2014 1.1 szczegółowy zkres zmin wrtości grup rodzjowych środków

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

PEUGEOT OFERTA FINANSOWANIA DLA SZKÓŁ JAZDY

PEUGEOT OFERTA FINANSOWANIA DLA SZKÓŁ JAZDY PEUGEOT OFERT FINNSOWNI DL SZKÓŁ JZDY KIM JESTEŚMY? PS Finance - obecna na polskim rynku od 2001 roku Reprezentowana - dwie spółki, których 100% udziałowcem jest Banque PS Finance z siedzibą w Paryżu:

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

WYJAŚNIENIA TREŚCI SIWZ

WYJAŚNIENIA TREŚCI SIWZ WYJAŚNIENIA TREŚCI SIWZ W postępowniu o udzielenie i obsługę długoterminowego u bnkowego w wysokości 172 zł 1 Zświdczenie o ndniu NIP Gminy Znjduje się pod ogłoszeniem o zmówieniu n udzielenie długoterminowego

Bardziej szczegółowo

Matematyka finansowa 25.01.2003 r.

Matematyka finansowa 25.01.2003 r. Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 17.05.2003

Matematyka finansowa 17.05.2003 1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik nr 3 Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: POKL.05.02.01 00../..

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

WNIOSEK O USTALENIE PRAWA DO ŚWIADCZENIA PIELĘGNACYJNEGO Część I. Dane osoby ubiegającej się o ustalenie prawa do świadczenia pielęgnacyjnego

WNIOSEK O USTALENIE PRAWA DO ŚWIADCZENIA PIELĘGNACYJNEGO Część I. Dane osoby ubiegającej się o ustalenie prawa do świadczenia pielęgnacyjnego Miejski Ośrodek Pomocy Rodzinie ul. Strzelców Bytomskich 16, 41-902 Bytom Dził Świdczeń Rodzinnych ul. Strzelców Bytomskich 21, 41-902 Bytom tel. 32 388-86-07 lub 388-95-40; e-mil: sr@mopr.bytom.pl WNIOSEK

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

SPRAWOZDANIE O KSZTAŁTOWANIU SIĘ WIELOLETNIEJ PROGNOZY FINANSOWEJ MIASTA KATOWICE NA LATA 2012 2035

SPRAWOZDANIE O KSZTAŁTOWANIU SIĘ WIELOLETNIEJ PROGNOZY FINANSOWEJ MIASTA KATOWICE NA LATA 2012 2035 PREZYDENT MIASTA KATOWICE SPRAWOZDANIE O KSZTAŁTOWANIU SIĘ WIELOLETNIEJ PROGNOZY FINANSOWEJ MIASTA KATOWICE NA LATA 2012 2035 ZA 2012 ROK Ktowice, mrzec 2013 roku SPRAWOZDANIE O KSZTAŁTOWANIU SIĘ WIELOLETNIEJ

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL Złącznik nr 5 Krt oceny merytorycznej Krt oceny merytorycznej wniosku o dofinnsownie projektu innowcyjnego testującego skłdnego w trybie konkursowym w rmch PO KL NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

O PEWNYCH MODELACH DECYZJI FINANSOWYCH

O PEWNYCH MODELACH DECYZJI FINANSOWYCH DECYZJE nr 1 czerwiec 2004 37 O PEWNYCH MODELACH DECYZJI FINANSOWYCH Krzysztof Jjug Akdemi Ekonomiczn we Wrocłwiu Wprowdzenie modele teorii finnsów Teori finnsów, zwn również ekonomią finnsową, jest jednym

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie I. ZASADY OGÓLNE PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnzjum nr 2 im. ks. Stnisłw Konrskiego nr 2 w Łukowie 1. W Gimnzjum nr 2 w Łukowie nuczne są: język ngielski - etp educyjny III.1 język

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem.

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem. KSIĘGA ZNAKU KSIĘGA ZNAKU Poniżej przedstwion jest chrkterystyk znku 7 lt Uniwersytetu Łódzkiego. Wszystkie proporcje i sposób rozmieszczeni poszczególnych elementów są ściśle określone. Wprowdznie jkichkolwiek

Bardziej szczegółowo

Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości.

Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości. Zmienne Po nieco intuicyjnych początkch, zjmiemy się obiektmi, n których opier się progrmownie są to zmienne. Zmienne Progrmy operują n zmiennych. Ndwnie im wrtości odbyw się poprzez instrukcję podstwieni.

Bardziej szczegółowo

WNIOSEK o przyznanie pomocy na zalesianie

WNIOSEK o przyznanie pomocy na zalesianie Agencj Restrukturyzcji i Modernizcji Rolnictw WNIOSEK o przyznnie pomocy n zlesinie 1) rok Potwierdzenie przyjęci wniosku przez Biuro Powitowe ARiMR /pieczęć/... Dt przyjęci i podpis... Znk sprwy - Schemt

Bardziej szczegółowo

BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI

BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI Kwestionriusz gospodrstw domowego Numer ewidencyjny: Dził 0. REALIZACJA WYWIADU. Łączn liczb wizyt nkieter w wylosownym mieszkniu. Wylosowne mieszknie Proszę

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

Twoje zdrowie -isamopoczucie

Twoje zdrowie -isamopoczucie Twoje zdrowie -ismopoczucie Kidney Disese nd Qulity of Life (KDQOL-SF ) Poniższ nkiet zwier pytni dotyczące Pn/Pni opinii o włsnym zdrowiu. Informcje te pozwolą nm zorientowć się, jkie jest Pn/Pni smopoczucie

Bardziej szczegółowo

Matematyka finansowa 04.10.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

Matematyka finansowa 04.10.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Komisa Egzaminacyna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowane:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

WNIOSEK O USTALENIE PRAWA DO SPECJALNEGO ZASIŁKU OPIEKUŃCZEGO. Dane osoby ubiegającej się o ustalenie prawa do specjalnego zasiłku opiekuńczego.

WNIOSEK O USTALENIE PRAWA DO SPECJALNEGO ZASIŁKU OPIEKUŃCZEGO. Dane osoby ubiegającej się o ustalenie prawa do specjalnego zasiłku opiekuńczego. Miejski Ośrodek Pomocy Rodzinie ul. Strzelców Bytomskich 16, 41-902 Bytom Dził Świdczeń Rodzinnych ul. Strzelców Bytomskich 21, 41-902 Bytom tel. 32 388-86-07 lub 388-95-40; e-mil: sr@mopr.bytom.pl WNIOSEK

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

IZBA KSIĘGARSTWA POLSKIEGO Sprawozdanie finansowe za rok 2011 - dodatkowe informacje i objaśnienia

IZBA KSIĘGARSTWA POLSKIEGO Sprawozdanie finansowe za rok 2011 - dodatkowe informacje i objaśnienia NOTA nr 1 ZMIANY W STANIE WARTOŚCI NIEMATERIALNYCH I PRAWNYCH - WARTOŚĆ BRUTTO Koszt zkończonych prc rozwojowych Wrtość firmy Inne wrtości niemterilne i utorskie prw mjątkowe, prw pokrewne, licencje, koncesje

Bardziej szczegółowo

CARGO ZARABIAJ NA WZROSTACH KOSZTÓW TRANSPORTU MORSKIEGO

CARGO ZARABIAJ NA WZROSTACH KOSZTÓW TRANSPORTU MORSKIEGO CARGO ZARABIAJ NA WZROSTACH KOSZTÓW TRANSPORTU MORSKIEGO ZASTRZEŻENIE Przedstwione w niniejszym dokumencie opisy produktowe nie stnowią oferty w rozumieniu rt. 66 Kodeksu cywilnego, mją one chrkter wyłącznie

Bardziej szczegółowo

Przygotowanie kart RUP

Przygotowanie kart RUP Przygotownie krt RUP Bnk Gospodrstw Krjowego, Al. Jerozolimskie 7, 00-955 Wrszw Stron nr 1 z 18 Spis Treści 1. WPROWADZENIE... 3 2. PRZYGOTOWANIE KART RUP... 3 2.1 KARTA RUP_L_0151 Depozyt do sygntury

Bardziej szczegółowo

Obligacje. nazywamy papier warto sciowy maj acy, po_zyczki przez instytucj e, obligacj e, u jej nabywcy.

Obligacje. nazywamy papier warto sciowy maj acy, po_zyczki przez instytucj e, obligacj e, u jej nabywcy. Obligacje De nicja Obligacj nazywamy papier warto sciowy maj acy, charakter wierzycielski. Obligacj jest zaci agni, eciem, po_zyczki przez instytucj e, sprzedaj ac, obligacj e, u jej nabywcy. Sprzedaj

Bardziej szczegółowo

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH Michł PAWŁOWSKI 1 1. WSTĘP Corz większy rozwój przemysłu energetycznego, w tym siłowni witrowych stwi corz większe wymgni woec producentów przekłdni zętych jeśli

Bardziej szczegółowo

WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO

WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO w roku szkolnym... I. Dne osoowe uczni / słuchcz Nzwisko..... Imion...... Imię ojc i mtki...... PESEL uczni / słuchcz Dt i miejsce urodzeni... II. Adres zmieszkni

Bardziej szczegółowo

Metoda kropli wosku Renferta

Metoda kropli wosku Renferta Metod kropli wosku Renfert Metod Renfert zwn jest tkże techniką K+B. Jej podstwowym złożeniem jest dążenie do prwidłowego odtworzeni powierzchni żujących zęów ocznych podczs rtykulcji. Celem jest uzysknie

Bardziej szczegółowo

Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości.

Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości. Zmienne: W progrmie operuje się n zmiennych. Ndwnie im wrtości odbyw się poprzez instrukcję podstwieni. Interpretcj tej instrukcji jest nstępując: zmiennej znjdującej się z lewej strony instrukcji podstwieni

Bardziej szczegółowo

PROJEKT BUDOWLANY. Obiekt: Budynek istniejący C Na terenie kompleksu szpitalnego Przy ul. Staszica 16 73-110 Stargard Szczeciński

PROJEKT BUDOWLANY. Obiekt: Budynek istniejący C Na terenie kompleksu szpitalnego Przy ul. Staszica 16 73-110 Stargard Szczeciński PROJEKT BUDOWLANY Relizcj etpu przebudowy i modernizcji 3 piętr Oddziłu Rehbilitcyjnego polegjącego n budowie szybu windowego, montżu windy szpitlnej orz niezbędnej rozbudowie obiektu budynku C znjdującego

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik 3 Krt oceny merytorycznej wniosku o dofinnsownie konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA WNIOSEK:. NUMER KONKURSU 2/POKL/8.1.1/2010 TYTUŁ PROJEKTU:... SUMA KONTROLNA

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r.

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r. Typ/orgn wydjący Rozporządzenie/Minister Infrstruktury Tytuł w sprwie szczegółowych wrunków i trybu wydwni zezwoleń n przejzdy pojzdów nienormtywnych Skrócony opis pojzdy nienormtywne Dt wydni 16 grudni

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych Dz.U.2012.204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych (Dz. U. z dni 22 lutego 2012 r.) N podstwie rt. 22 ust. 2 pkt 1 ustwy

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość

do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość Projekt współfinnsowny przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Złącznik nr do Regulminu przyznwni środków finnsowych n rozwój przedsięiorczości w projekcie Dojrzł przedsięiorczość

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

4. Składkę ubezpieczeniową zaokrągla się do pełnych złotych.

4. Składkę ubezpieczeniową zaokrągla się do pełnych złotych. . Stwki tryfowe n dwunstomiesięczny okres ubezpieczeni, dl kżdego z rodzjów ubezpieczeń, określone są w kolejnych częścich tryfy. 2. Stwki podne w poszczególnych tbelch są stwkmi minimlnymi, z zstrzeżeniem

Bardziej szczegółowo

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym Kurs e-lerningowy Giełd Ppierów Wrtościowych i rynek kpitłowy V edycj Struktur kpitłu, wrtość rynkow przedsiębiorstw n rynku kpitłowym 2010 SPIS TREŚCI I. Wstęp 3 II. Podstwowy miernik rentowności kpitłu

Bardziej szczegółowo

Pakiet aplikacyjny. Specjalista ds. rozliczeń i administracji [Pomorze] ADM/2011/01

Pakiet aplikacyjny. Specjalista ds. rozliczeń i administracji [Pomorze] ADM/2011/01 Pkiet plikcyjny Stnowisko: Nr referencyjny: Specjlist ds. rozliczeń i dministrcji [Pomorze] ADM/2011/01 Niniejszy pkiet zwier informcje, które musisz posidć zgłszjąc swoją kndydturę. Zwier on: List do

Bardziej szczegółowo

Regulamin oferty Dobry bilet

Regulamin oferty Dobry bilet Regulmin oferty Dobry bilet I. Podstwowe informcje 1. Do odwołni n wybrnych odcinkch sieci kolejowej wprowdz się ofertę Dobry bilet. 2. W ofercie wystwi się bilety: ) jednorzowy n przejzd tm (w dowolnym

Bardziej szczegółowo

Załącznik nr 3 do PSO z matematyki

Załącznik nr 3 do PSO z matematyki Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących

Bardziej szczegółowo

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami.

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami. KARTY PRACY 1 CZĘŚĆ KARTA PRACY NR 1 IMIĘ:... DATA: STRONA 1 1. Jkie są twoje oczekiwni i postnowieni związne z kolejnym rokiem szkolnym? Npisz list do nuczyciel, uzupełnijąc luki w tekście. miejscowość

Bardziej szczegółowo

Forward Rate Agreement

Forward Rate Agreement Forward Rate Agreement Nowoczesne rynki finansowe oferują wiele instrumentów pochodnych. Należą do nich: opcje i warranty, kontrakty futures i forward, kontrakty FRA (Forward Rate Agreement) oraz swapy.

Bardziej szczegółowo

FORMULARZ CENOWY OPIS PRZEDMIOTU ZAMÓWIENIA

FORMULARZ CENOWY OPIS PRZEDMIOTU ZAMÓWIENIA 5 Wojskowy Szpitl Kliniczny z Polikliniką Smodzielny Publiczny Zkłd Opieki Zdrowotnej w Krkowie Sekcj Zmówień Publicznych (budynek nr 45) Tel. (012) 630 80 57, (012) 630 80 58, tel/fx (012) 630 80 59 Godziny

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

I. INFORMACJE OGÓLNE O PROJEKCIE 1. Tytuł projektu. 2. Identyfikacja rodzaju interwencji

I. INFORMACJE OGÓLNE O PROJEKCIE 1. Tytuł projektu. 2. Identyfikacja rodzaju interwencji MINISTERSTWO ROZWOJU REGIONALNEGO Progrm Opercyjny Innowcyjn Gospodrk Wniosek o dofinnsownie relizcji projektu 8. Oś Priorytetow: Społeczeństwo informcyjne zwiększnie innowcyjności gospodrki Dziłnie 8.2:

Bardziej szczegółowo

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych Edwrd Musił Oddził Gdński SEP Zokrąglnie i zpisywnie wyników obliczeń przybliżonych Inżynier wykonuje nieml wyłącznie obliczeni przybliżone i powinien mieć nieustnnie n względzie dokłdność, jką chce uzyskć

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 006/7 3. Liczby nturlne i rzeczywiste; funkcje elementrne.. Funkcje. Niech X i Y będą zbiormi. Definicj.. Funkcją (inczej: odwzorowniem) z X do Y nzyw się przyporządkownie

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r.

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Wrszw, dni 22 lutego 2012 r. Pozycj 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych

Bardziej szczegółowo

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy KOMPENDIUM MATURZYSTY Mtemtyk poziom podstwowy Publikcj dystrybuown bezpłtnie Dostępn n stronie: Kompendium do pobrni n stronie: SPIS TREŚCI. Potęgi i pierwistki... W tym:. Wykorzystnie wzorów;. Przeksztłcnie

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL Złącznik 3 Krt oceny merytorycznej wniosku o dofinnsownie Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL INSTYTUCJA PRZYJMUJĄCA WNIOSEK:... NUMER KONKURSU:... NUMER WNIOSKU

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

a Komisją Zakładową NSZZ Solidarność Uniwersytetu im. Adama Mickiewicza w Poznaniu, reprezentowaną przez: mgr Krystynę Andrzejewską

a Komisją Zakładową NSZZ Solidarność Uniwersytetu im. Adama Mickiewicza w Poznaniu, reprezentowaną przez: mgr Krystynę Andrzejewską POROZUMIENIE zwrte w dniu 11 czerwc 2015 roku w sprwie zsd zwiększeni wyngrodzeń prcowników Uniwersytetu im. Adm Mickiewicz w Poznniu od 1 styczni 2015 roku pomiędzy: Uniwersytetem im. Adm Mickiewicz w

Bardziej szczegółowo

II ETAP EGZAMINU EGZAMIN PISEMNY

II ETAP EGZAMINU EGZAMIN PISEMNY II ETAP EGZAMINU NA DORADCĘ INWESTYCYJNEGO EGZAMIN PISEMNY 20 maja 2012 r. Warszawa Treść i koncepcja pytań zawartych w teście są przedmiotem praw autorskich i nie mogą być publikowane lub w inny sposób

Bardziej szczegółowo