Minimalizacja automatu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Minimalizacja automatu"

Transkrypt

1 Minimlizj utomtu Minimlizj utomtu to minimlizj lizy stnów. Jest to trnsformj utomtu o nej tliy przejśćwyjść n równowżny mu (po wzglęem przetwrzni sygnłów yfrowyh) utomt o mniejszej lizie stnów wewnętrznyh. Jest to prwie zwsze możliwe, gyż w proesie pierwotnej speyfikji zęsto wprowzne są stny nmirowe lu równowżne. Minimlizj lizy stnów S x Z S S S S S S S S S S S S S S S S S S S B B B B zysty zysk zmist trzeh przerzutników tylko w!

2 nformj l zinteresownyh syntezą logizną Mterił z tego wykłu jest prezentowny również w rmh wykłu prof. M. erkowskiego EE Design o sequentil iruits w ortln Stte Uniersity Jest to wykł oszerniejszy niż nsz o oejmuje wyłąznie ukły sekwenyjne Z

3 Minimlizj lizy stnów Relj zgonośi n ziorze stnów S: (pry stnów zgonyh) Mksymlne ziory stnów zgonyh (Mksymlne Klsy Zgonośi) Selekj ziorów zgonyh spełnijąyh tzw.: wrunek pokryi wrunek zmknięi Z

4 ojęi postwowe Dw stny wewnętrzne Si, Sj są zgone, jeżeli l kżego wejśi mją one niesprzezne stny wyjść, ih stny nstępne są tkie sme lu niesprzezne. x S Stny zgone wrunkowo Stny zgone Stny sprzezne Z Dw stny wewnętrzne S i, S j są zgone wrunkowo, jeżeli ih stny wyjść są niesprzezne orz l pewnego V pr stnów nstępnyh o S i, S j (ozn. S k, S l ): (S i, S j ) (S k, S l ) Stny Si, Sj są sprzezne, jeżeli l pewnego V ih stny wyjść są sprzezne.

5 Relj zgonośi Ze wzglęu n zgoność wrunkową w olizenih (wszystkih!) pr zgonyh posługujemy się tzw. tlią trójkątną. li trójkątn zwier tyle krtek, ile jest wszystkih możliwyh pr stnów. N przykł l utomtu o stnh: Z

6 li trójkątn x (i,j) Krtki tliy wypełnimy symolmi: jeżeli pr stnów jest zgon, x jeżeli pr stnów jest sprzezn, lu (i,j) prą (prmi stnów nstępnyh), jeżeli jest to pr zgon wrunkowo. Z

7 Z li trójkątn przykł,;,

8 li trójkątn przykł o wypełnieniu tliy sprwzmy, zy pry stnów sprzeznyh (zznzone ) nie występują przypkiem jko pry stnów nstępnyh. Jeśli są tkie pry, to nleży je skreślić (zyli zznzyć ). roes ten trze powtrzć tk ługo, ż sprwzone zostną wszystkie krzyżyki.,, szystkie krtki niewykreślone opowiją prom zgonym: (,); (,); (,); (,); (,); (,); (,); (,); (,).,,,;, Z 8

9 Oliznie MKZ o wyznzenie zioru pr stnów zgonyh, przystępujemy o olizeni: mksymlnyh ziorów stnów zgonyh. Mksymlne klsy zgonośi (MKZ)...znmy o njmniej trzy metoy olizni MKZ! Z 9

10 ...wrmy o przykłu ry zgone: (,); (,); (,); (,); (,); (,); (,); (,); (,),,,,,,,,, MKZ:,,,,,,,,,,,,,, MKZ = {{,,,}, {,}, {,}, {,}} Z

11 lgorytm minimlizji ) yznzenie pr stnów zgonyh, ) Olizenie mksymlnyh ziorów stnów zgonyh (MKZ), ) Selekj ziorów spełnijąyh tzw. wrunek pokryi () i zmknięi (): ) kży stn musi whozić o njmniej o jenej klsy; ) l kżej litery wejśiowej wszystkie nstępniki (stny nstępne) nej klsy muszą whozić o jenej klsy. Z

12 Z runek pokryi przykł MKZ = {{,,,}, {,}, {,},,}} y spełnić wrunek pokryi wystrzy wyrć klsy: {,,,}, {,}

13 Z runek zmknięi przykł Dl wyrnyh kls {,,,},{,}} olizmy ih nstępniki:,,,, Nie jest spełniony wrunek zmknięi!,,,,,,!,!

14 Z runek pokryi i zmknięi rug pró,, B, MKZ = {{,,,}, {,}, {,}, {,}} yór: B B B B {,}, {,}, {,},, O.K.

15 Z Jeszze jeen przykł

16 Jeszze jeen przykł ry zgone:,,,,8,,,,,,,,8,,8 MKZ:,,8,,,,,,,,,,,8 Z

17 Jeszze jeen przykł.. 8 MKZ:,,8,,,,,,,,,,,8 8,,8,,,,,,,,,,,8 δ(,s i ) δ(,s i ) Z

18 8 Z Jeszze jeen przykł δ(,s i ) δ(,s i ),8,,,,,,,,,,,,8 B B B X S B utomt minimlny:

19 Detektor sekwenji Zprojektowć ukł sekwenyjny Mely ego o jenym wejśiu inrnym i jenym wyjśiu inrnym. Ukł m ć kolejne trójki symoli wejśiowyh. Sygnł wyjśiowy pojwijąy się pozs trzeiego skoku ukłu m wynosić, gy trójk m postć,, gy trójk jest innej posti. Sygnł pojwijąy się pozs pierwszego i rugiego skoku ukłu może yć nieokreślony. / / / / / / / / / / / / / / Z 9

20 Z Detektor sekwenji / / / / / / / / / / / / / / / / / / / / / / / / / / S S

21 Minimlizj etektor sekwenji S X,,,,,, Brzo użo pr zgonyh! Do wyznzeni MKZ wykorzystmy pry sprzezne, któryh jest znznie mniej (wie). Z

22 Minimlizj etektor sekwenji ry sprzezne zpisujemy w posti wyrżeni oolowskiego typu ilozyn (koniunkj) wuskłnikowyh sum. etektorze sekwenji pry sprzezne są: (, ); (, ). N tej postwie zpisujemy wyrżenie: ( ) ( ), które po wymnożeniu uzyskuje postć: ( ) ( ) = Z Oejmują o zioru S = {,,,, } wszystkih stnów ziory zpisne w poszzególnyh skłnikh uzyskujemy rozinę wszystkih MKZ. {,,,, } {, } = {,, } {,,,, } {, } = {,, } {,,,, } {, } = {,, } {,,,, } {, } = {,, }

23 Minimlizj etektor sekwenji X S S MKZ: {,, }, {,, }, {,, }, {,, } X Klsy {,, }, {,, } spełniją wrunek pokryi, Funkj przejść l wszystkih MKZ le nie spełniją wrunku zmkniętośi stny nstępne: {,,}! Dokłmy klsę {,,} Z Klsy: {,,}, {,, }, {,, } spełniją wrunek pokryi i zmkniętośi S X B S X B B

24 ... to już yło S X B B Uzyskny utomt ył już relizowny n przerzutnikh i rmkh wykł z, plnsze o. Omówiliśmy ły proes syntezy! Zprojektowć ukł sekwenyjny Mely ego o jenym wejśiu inrnym i jenym wyjśiu inrnym. Ukł m ć kolejne trójki symoli wejśiowyh. Sygnł wyjśiowy pojwijąy się pozs trzeiego skoku ukłu m wynosić, gy trójk m postć,, gy trójk jest innej posti. Sygnł pojwijąy się pozs pierwszego i rugiego skoku ukłu może yć nieokreślony. x x Y LK Q Q Q Q Z

Technika Cyfrowa 1. Wykład 5: Synteza automatów sekwencyjnych III UKŁADY SEKWENCYJNE C.D.

Technika Cyfrowa 1. Wykład 5: Synteza automatów sekwencyjnych III UKŁADY SEKWENCYJNE C.D. JS TC III UKŁADY SEKWENCYJNE C.D. JS TC Tehnik Cyfrow Wykł 5: Syntez utomtów sekwenyjnyh r inż. Jrosłw Sugier Jroslw.Sugier@pwr.wro.pl IIAR, pok. 227 C-3 4 GRAF AUTOMATU, TABELE PRZEJŚĆ / WYJŚĆ Opis sekwenyjnego

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie

Bardziej szczegółowo

a a a ; ; ; (1.2) przez [ a ij ], czyli zbiór elementów w i-tym wierszu i w j-tej kolumnie. Wymiary ( n m) stanowią stopień macierzy.

a a a ; ; ; (1.2) przez [ a ij ], czyli zbiór elementów w i-tym wierszu i w j-tej kolumnie. Wymiary ( n m) stanowią stopień macierzy. . PODSWY LGEBY CIEZY.. Ukły równń liniowyh Ukł n równń o m niewiomyh x K x m m L L L L L x K x n nm m n możn zpisć w posti tli liz (mierzy): (.) x x x x x x x x x x zpisć w posti mierzowej. Wprowzją nstępująe

Bardziej szczegółowo

4.3. Przekształcenia automatów skończonych

4.3. Przekształcenia automatów skończonych 4.3. Przeksztłceni utomtów skończonych Konstrukcj utomtu skończonego (niedeterministycznego) n podstwie wyrżeni regulrnego (lgorytm Thompson). Wejście: wyrżenie regulrne r nd lfetem T Wyjście : utomt skończony

Bardziej szczegółowo

JĘZYKI FORMALNE I AUTOMATY SKOŃCZONE

JĘZYKI FORMALNE I AUTOMATY SKOŃCZONE ZBIÓR ZADAŃ do WYKŁADU prof. Tdeusz Krsińskiego JĘZYKI FORMALNE I AUTOMATY SKOŃCZONE rozdził 2. Automty skończone i języki regulrne Wyrżeni i języki regulrne Zdnie 2.1. Wypisz wszystkie słow nleżące do

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Mtemtyczne Podstwy Informtyki dr inż. Andrzej Grosser Instytut Informtyki Teoretycznej i Stosownej Politechnik Częstochowsk Rok kdemicki 2013/2014 Podstwowe pojęci teorii utomtów I Alfetem jest nzywny

Bardziej szczegółowo

Modele abstrakcyjne w weryfikacji

Modele abstrakcyjne w weryfikacji Modele strkyjne w weryfikji Krzysztof Nozderko kn201076@students.mimuw.edu.pl 16 mj 2006 Modele strkyjne w weryfikji Bisymulj jko gr Weżmy dw modele. Żey rozstrzygnć, zy s one z punktu widzeni oserwtor

Bardziej szczegółowo

4.6. Gramatyki regularne

4.6. Gramatyki regularne 4.6. Grmtyki regulrne G = < N,T,P,Z > jest grmtyką prwostronnie liniową, jeśli jej produkcje mją postć: ( i) U xv x T * U,V N ( ii) U x G = < N,T,P,Z > jest grmtyką prwostronnie regulrną, jeśli jej produkcje

Bardziej szczegółowo

4.2. Automat skończony

4.2. Automat skończony 4.2. Automt skończony Przykłd: Rozwżmy język nd lfetem inrnym T = {0, } skłdjący się z łńcuchów zero-jedynkowych o tej włsności, że licz zer w kżdym łńcuchu jest przyst i licz jedynek w kżdym łńcuchu też

Bardziej szczegółowo

Przekształcenia automatów skończonych

Przekształcenia automatów skończonych Przeksztłceni utomtów skończonych Teori utomtów i języków formlnych Dr inŝ. Jnusz Mjewski Ktedr Informtyki Konstrukcj utomtu skończonego n podstwie wyrŝeni regulrnego (lgorytm Thompson) Wejście: wyrŝenie

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie

Bardziej szczegółowo

Rys Wyrównanie spostrzeżeń zawarunkowanych jednakowo dokładnych C. KRAKOWIANY

Rys Wyrównanie spostrzeżeń zawarunkowanych jednakowo dokładnych C. KRAKOWIANY Rys. 9.. Wyrównnie spostrzeżeń zwrunkownyh jednkowo dokłdnyh C. KRAKOWIANY 9.9. Informje wstępne o krkowinh Krkowin jest zespołem liz rozmieszzonyh w prostokątnej teli o k kolumnh i w wierszh, dl którego

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń

Bardziej szczegółowo

Sprawozdanie z pomocy doraźnej i ratownictwa medycznego za 2010 r.

Sprawozdanie z pomocy doraźnej i ratownictwa medycznego za 2010 r. GŁÓWNY URZĄD STATYSTYCZNY, l. Niepoległośi 208, 00-925 Wrszw www.stt.gov.pl Nzw i res jenostki sprwozwzej Numer inentyfikyjny REGON ZD-4 Sprwoznie z pomoy orźnej i rtownitw z 200 r. Portl sprwozwzy GUS

Bardziej szczegółowo

5. Zadania tekstowe.

5. Zadania tekstowe. 5. Zni tekstowe. Przykł. Kolrz połowę rogi pokonł ze śrenią prękością 0 km/, rugą połowę z prękością 50 km /. Wyzncz śrenią prękość kolrz n cłej trsie. nliz : pierwsz połow rogi rug połow rogi 0 km/ prękość

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa

Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa Projekt pn. Wzmonienie potenjłu dydktyznego UMK w Toruniu w dziedzinh mtemtyzno-przyrodnizyh relizowny w rmh Poddziłni 4.1.1 Progrmu Operyjnego Kpitł Ludzki Wprowdzenie do Siei Neuronowyh Łńuhy Mrkow Mj

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. best in training PRE TEST

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. best in training PRE TEST Projekt współfinnsowny przez Unię Europejską w rmh Europejskiego Funuszu Społeznego est in trining E-Pr@ownik ojrzłe kry społezeństw informyjnego n Mzowszu Numer Projektu: POKL.08.01.01-14-217/09 PRE TEST

Bardziej szczegółowo

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny!

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny! TEZA CHURCHA-TURINGA Mzyn Turing: m końzenie wiele tnów zpiuje po jenym ymolu n liniowej tśmie Co możn zroić z pomoą mzyny Turing? Wzytko! Mzyn Turing potrfi rozwiązć kży efektywnie rozwiązywlny prolem

Bardziej szczegółowo

Kombinacyjne układy logiczne (A 2)

Kombinacyjne układy logiczne (A 2) POLITECHNIKA LSKA W GLIWICACH WYDZIAŁ INYNIERII RODOWISKA I ENERGETYKI INSTYTUT: MASZYN I URZDZE ENERGETYCZNYCH Kominyjne ukłdy logizne Lortorium utomtyki (A 2) Oprowł: mgr in. Dniel Wel Sprwdził: dr in.

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

, 0 Informatyka w Zarządzaniu - test zaliczeniowy Zarządzanie III rok NS 7 Kwietnia 2013

, 0 Informatyka w Zarządzaniu - test zaliczeniowy Zarządzanie III rok NS 7 Kwietnia 2013 , 0 Informtyk w Zrzązniu - test zlizeniowy Zrząznie III rok NS 7 Kwietni 2013 imię i nzwisko... nr lumu... 1. Systemy Bk Offie. to m.in. Księgowość. to m.in. płe. to m.in. gospork mteriłow. to MS Exel

Bardziej szczegółowo

ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE

ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE DAS Deterministyczny Automt Skończony Zdnie Niech M ędzie DAS tkim że funkcj przejści: Q F ) podj digrm stnów dl M ) które ze słów nleżą do język kceptownego

Bardziej szczegółowo

Metody generowania skończonych modeli zachowań systemów z czasem

Metody generowania skończonych modeli zachowań systemów z czasem Metody generowni skońzonyh modeli zhowń systemów z zsem Rozprw doktorsk npisn pod kierunkiem do. dr hb. Wojieh Penzk IPI PAN, 5.02.05 p./24 Cel pry Oprownie nowyh, efektywnyh metod generowni modeli bstrkyjnyh

Bardziej szczegółowo

MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna WIELOMIANY SZACHOWE

MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna  WIELOMIANY SZACHOWE MAEMAYKA DYKENA (0/0) r h. iż. Młgorzt ter mlgorzt.ster@s.put.poz.pl www.s.put.poz.pl/mster/ WIELOMIANY ZACHOWE Mtemtyk Dyskret Młgorzt ter B WIELOMIANY ZACHOWE Wielomiy szhowe opisują lizę możliwyh rozmieszzeń

Bardziej szczegółowo

Szkice rozwiązań zadań zawody rejonowe 2019

Szkice rozwiązań zadań zawody rejonowe 2019 XVI Śląski Konkurs Mtemtyzny Szkie rozwiązń zdń zwody rejonowe 9 Zdnie. Znjdź wszystkie lizy pierwsze p, dl któryh liz pp+ + też jest lizą pierwszą. Rozwiąznie Jeżeli p, to pp+ + 3 + i jest to liz złożon.

Bardziej szczegółowo

1 Wprowadzenie do automatów

1 Wprowadzenie do automatów Dr inż. D.W. Brzeziński - Automty skończone, mszyn Turing. Lingwistyk mtemtyczn - ćwiczeni. Mteriły pomocnicze. Prowdzący: dr inż. Driusz W Brzeziński 1 Wprowdzenie do utomtów Automty skończone to urządzeni

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa

Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa Wprowdzenie do Siei Neuronowyh Łńuhy Mrkow Mj Czoków, Jrosłw Piers 213-1-14 1 Przypomnienie Łńuh Mrkow jest proesem stohstyznym (iągiem zmiennyh losowyh), w którym rozkłd zmiennej w hwili t zleży wyłąznie

Bardziej szczegółowo

4.5 Deterministyczne i zupełne automaty Moore a i Mealy ego

4.5 Deterministyczne i zupełne automaty Moore a i Mealy ego 4.5 Deterministyczne i zupełne utomty Moore i Mely ego Automty Moore i Mely ego ędziemy rozwżć tylko w rsji deterministycznej i zupełnej. W definicjch tych utomtów nie pojwi się pojęcie ów końcowych, z

Bardziej szczegółowo

Elementy układów techniki cyfrowej

Elementy układów techniki cyfrowej POLITEHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYZNYH LABORATORIUM ELEKTRYZNE Elementy ukłdów tehniki yfrowej (E 10) Oprowł: Dr inż. Włodzimierz OGULEWIZ

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzmin mturlny mj 009 INFORMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Informtyk poziom podstwowy CZ I Nr zdni Nr podpunktu Mks. punktj z z zdni Mks. punktj z zdnie 1. Z poprwne uzupe nienie

Bardziej szczegółowo

ZD-4 Sprawozdanie z pomocy doraźnej i ratownictwa medycznego za 2013 r.

ZD-4 Sprawozdanie z pomocy doraźnej i ratownictwa medycznego za 2013 r. GŁÓWNY URZĄD STATYSTYCZNY, l. Niepoległośi 208, 00-925 Wrszw Nzw i res jenostki sprwozwzej Numer inentyfikyjny REGON ZD-4 Sprwoznie z pomoy orźnej i rtownitw meyznego z 203 r. Portl sprwozwzy GUS www.stt.gov.pl

Bardziej szczegółowo

PROJEKT: Technologie multimedialne drogą do przyjaznej edukacji przyszłości realizowany w Szkole Podstawowej nr 11 w Będzinie

PROJEKT: Technologie multimedialne drogą do przyjaznej edukacji przyszłości realizowany w Szkole Podstawowej nr 11 w Będzinie Posumowni nkity wluyjnj l złonków Ry Pgogiznj po zkońzniu projktu Ersmus+: Thnologi multimiln rogą o przyjznj ukji przyszłośi. Ankit skłł się z 10 pytń, w tym jngo otwrtgo. Zostł przprowzon pozs szkolniowj

Bardziej szczegółowo

Lista 4 Deterministyczne i niedeterministyczne automaty

Lista 4 Deterministyczne i niedeterministyczne automaty Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym

Bardziej szczegółowo

Ź ń Ś Ś ń Ó ń Ó Ó ń Ę ć ń ć ń ń Ó Ą ń Ó ń ń Ż Ć ń Ś ŚĆ ź ń ń ń ń ń Ó ń Ć Ż Ć ń ń ń Ś Ż Ś ń ć ń Ą Ż ń Ó Ś Ż Ż Ś ŻĆ Ś Ó ć ń ć Ą ń ń Ś ń ń Ś Ż ź Ż ń Ś Ź Ż Ś ź Ę ć ź ć ź ń Ę ń ń Ę Ę Ę Ę Ę Ę Ę Ę Ź Ę Ę Ę Ń ć

Bardziej szczegółowo

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci

Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci ensor f liniow jenoron funkj: wektor wektor =f f f f W nm ukłie współręnh i,j,k - tensor jko mier f ˆ ˆ i j kˆ f ˆ i f ˆ j f kˆ le f iˆ [ˆ if ˆ i ˆjf ˆ i kf ˆ ˆ] i ˆ [ˆ ˆ ˆ ˆ ˆ f j if j jf j kf ˆ] j f

Bardziej szczegółowo

AKADEMIA MORSKA W GDYNI

AKADEMIA MORSKA W GDYNI AKAEMIA MORSKA W GYNI TEMAT: Blok rytmetyzne PROWAZĄCY :... t wykonn ćwzen... t on srwozn... Wykonwy: Rok Oen Gr. Uwg 1. Zuowć ukł ółsumtor, oć tlę stnów. 4 5 2 1 6 3 1 2 s -Tel stnów wyełnć s 0 0 0 1

Bardziej szczegółowo

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,

Bardziej szczegółowo

ZD-4 Sprawozdanie z pomocy doraźnej i ratownictwa medycznego za 2011 r.

ZD-4 Sprawozdanie z pomocy doraźnej i ratownictwa medycznego za 2011 r. GŁÓWNY URZĄD STATYSTYCZNY, l. Niepoległośi 208, 00-925 Wrszw Nzw i res jenostki sprwozwzej Numer inentyfikyjny REGON ZD-4 Sprwoznie z pomoy orźnej i rtownitw meyznego z 20 r. Portl sprwozwzy GUS www.stt.gov.pl

Bardziej szczegółowo

RÓWNOWAGA CHEMICZNA. Reakcje chemiczne: nieodwracalne ( praktycznie nieodwracalne???) reakcje wybuchowe, np. wybuch nitrogliceryny: 2 C H 2

RÓWNOWAGA CHEMICZNA. Reakcje chemiczne: nieodwracalne ( praktycznie nieodwracalne???) reakcje wybuchowe, np. wybuch nitrogliceryny: 2 C H 2 RÓWNOWG CHEMICZN N O 4 NO Rekje hemizne: nieowrlne ( rktyznie nieowrlne???) rekje wyuhowe, n. wyuh nitroglieryny: C 3 H 5 N 3 O 9 6 CO + 3 N + 5 H O + / O rekje rozu romieniotwórzego, n. roz urnu gy jeen

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, utomty i oliczeni Wykłd 5: Wricje n temt utomtów skończonych Słwomir Lsot Uniwersytet Wrszwski 25 mrc 2015 Pln Automty dwukierunkowe (Niedeterministyczny) utomt dwukierunkowy A = (A,,, Q, I, F,

Bardziej szczegółowo

Momenty bezwładności figur płaskich - definicje i wzory

Momenty bezwładności figur płaskich - definicje i wzory Moment ezwłnośi figu płski - efinije i wzo Dn jest figu płsk o polu oz postokątn ukł współzęn Momentem ezwłnośi figu wzglęem osi jest Momentem ezwłnośi figu wzglęem osi jest Momentem ewijnm figu wzglęem

Bardziej szczegółowo

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni

Bardziej szczegółowo

Podstawy układów logicznych

Podstawy układów logicznych Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.

Bardziej szczegółowo

Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu

Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu 9. 5. WŁASNOŚCI MIAROWE CZWOROKĄTÓW Trpez w trpezie przynmniej jen pr oków jest równoległ δ γ, postwy trpezu c h c, - rmion trpezu α β h wysokość trpezu + 80 α δ β + γ 80 x `Ocinek łączący śroki rmion

Bardziej szczegółowo

OWAcoustic premium. OWAconstruct. EN 13501 Europejska Norma. Sufity podwieszane OWAcoustic: Odporność ogniowa i Reakcja na ogień

OWAcoustic premium. OWAconstruct. EN 13501 Europejska Norma. Sufity podwieszane OWAcoustic: Odporność ogniowa i Reakcja na ogień OWAcoustic premium OWAconstruct EN 13501 Europejsk Norm Sufity powieszne OWAcoustic: Oporność ogniow i Rekcj n ogień Europejskie Normy Zhrmonizowne Europejskie Normy Pożrowe są zbiorem ujenoliconych proceur

Bardziej szczegółowo

PEWNIK DEDEKINDA i jego najprostsze konsekwencje

PEWNIK DEDEKINDA i jego najprostsze konsekwencje PEWNIK DEDEKINDA i jego njprostsze konsekwencje W rozdzile ósmym stwierdziliśmy, że z podnych tm pewników nie wynik istnienie pierwistków z liczb rzeczywistych. Uzupe lnimy terz liste pewników jeszcze

Bardziej szczegółowo

Zbiory wyznaczone przez funkcje zdaniowe

Zbiory wyznaczone przez funkcje zdaniowe pojęci zbioru i elementu RCHUNEK ZIORÓW zbiór zwier element element nleży do zbioru jest elementem zbioru ( X zbiór wszystkich przedmiotów indywidulnych, których dotyczy dn nuk zbiór pełny (uniwerslny

Bardziej szczegółowo

bezkontekstowa generujac X 010 0X0.

bezkontekstowa generujac X 010 0X0. 1. Npisz grmtyke ezkontekstow generujc jezyk : L 1 = { 0 i 10 j 10 p : i, j, p > 0, i + j = p } Odpowiedź. Grmtyk wygląd tk: Nieterminlem strtowym jest S. S 01X0 0S0 X 010 0X0. Nieterminl X generuje słow

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 7

Semantyka i Weryfikacja Programów - Laboratorium 7 Semntyk i Weryfikj Progrmów - Lortorium 7 Weryfikj twierdzeń logiznyh Cel. Celem ćwizeni jest zpoznnie się z metodą utomtyznego dowodzeni twierdzeń, tzn. weryfikji, zy dne twierdzenie jest tutologią (twierdzenie

Bardziej szczegółowo

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera /9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE HAMILTONA w grfh kierownh Dl grfu kierownego D = ( V, A ) rogą wierhołk 0 V o V nwm iąg (npremienn) wierhołków i łuków grfu: ( 0,,,,...,,, ), pełniją wrunek i = ( i, i ) l i =,..., rogę nwm

Bardziej szczegółowo

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny Dr Glin Criow Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne.

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Dnyh. Gry. Drzwo rozpinj. Minimln rzwo rozpinj. Bożn Woźn-Szzśnik wozn@gmil.om Jn Długosz Univrsity, Poln Wykł 9 Bożn Woźn-Szzśnik (AJD) Algorytmy i Struktury Dnyh. Wykł 9 1 / 4 Pln

Bardziej szczegółowo

GRANIASTOSŁUPY

GRANIASTOSŁUPY .. GRANIASTOSŁUPY. Grnistosłupy H Postwy grnistosłup - w równoległe i przystjąe wielokąty Śin ozn - równoległook Grnistosłup prosty grnistosłup, w którym wszystkie krwęzie ozne są prostopłe o postw. W

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb.

Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb. Rchuek prwopoobieństw MA1181 Wyził T, MS, rok k. 2013/14, sem. zimowy Wykłowc: r hb. A. Jurlewicz Wykł 9: Róże rozje zbieżości ciągów zmieych losowych. rw wielkich liczb. Zbieżość z prwopoobieństwem 1:

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

Instrukcje dotyczące systemu Windows w przypadku drukarki podłączonej lokalnie

Instrukcje dotyczące systemu Windows w przypadku drukarki podłączonej lokalnie Stron 1 z 7 Połązni Instrukj otyzą systmu Winows w przypku rukrki połązonj loklni Uwg: Przy instlowniu rukrki połązonj loklni, jśli ysk CD-ROM Oprogrmowni i okumntj ni osługuj ngo systmu opryjngo, nlży

Bardziej szczegółowo

Temat: Do czego służą wyrażenia algebraiczne?

Temat: Do czego służą wyrażenia algebraiczne? Projekt współfinnsowny przez Unię Europejską w rm Europejskiego Funduszu Społeznego Spotknie 14 Temt: Do zego służą wyrżeni lgerizne? Pln zjęć 1. Jkie wyrżenie nzywmy lgeriznym? Czym wyrżenie lgerizne

Bardziej szczegółowo

Gramatyki regularne. Teoria automatów i języków formalnych. Dr inż. Janusz Majewski Katedra Informatyki

Gramatyki regularne. Teoria automatów i języków formalnych. Dr inż. Janusz Majewski Katedra Informatyki Grmtyki regulrne Teori utomtów i języków formlnych Dr inż. Jnusz Mjewski Ktedr Informtyki Grmtyki regulrne G = < V,Σ,P, > jest grmtyką prwostronnie liniową, jeśli jej produkcje mją postć: ( i ) U xw (

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

3. F jest lewostronnie ciągła

3. F jest lewostronnie ciągła Def. Zmienną losową nzywmy funkcję X: tką, że x R : { : X( ) < x }. Ozn.: zmist pisd A = { : X( ) < x } piszemy A = { X < x } zdrzenie poleg n tym, że X( )

Bardziej szczegółowo

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku

Bardziej szczegółowo

ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZESPOŁU SZKÓŁ

ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZESPOŁU SZKÓŁ ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZEOŁU SZKÓŁ Bni nkietowe zostły przeprowzono w rmh relizji projektu eukyjnego Nie wyrzuj jk lei. Celem tyh ń yło uzysknie informji n temt świomośi ekologiznej uzniów

Bardziej szczegółowo

1 Ułamki zwykłe i dziesiętne

1 Ułamki zwykłe i dziesiętne Liczby wymierne i niewymierne Liczby wymierne i niewymierne - powtórzenie Ułmki zwykłe i dziesiętne. Rozszerznie ułmków Rozszerz ułmki b c b c 6 8. Skrcnie ułmków c b c b 8 0 Liczby wymierne i niewymierne

Bardziej szczegółowo

1Coulomb 1Volt. Rys. 1. Schemat kondensatora płaskiego. Jednostką pojemności w układzie SI, jest Farad (F):

1Coulomb 1Volt. Rys. 1. Schemat kondensatora płaskiego. Jednostką pojemności w układzie SI, jest Farad (F): POJEMNOŚĆ ELEKTRYZNA Konenstor służy o mgzynowni energii potencjlnej w polu elektrycznym. Typowy konenstor płski, skł się z wóch równoległych, przewozących okłek o polu przekroju S umieszczonych w oległości

Bardziej szczegółowo

Roztwory rzeczywiste (1) Roztwory rzeczywiste (2) Funkcje nadmiarowe. Również w temp. 298,15K, ale dla CCl 4 (A) i CH 3 OH (B).

Roztwory rzeczywiste (1) Roztwory rzeczywiste (2) Funkcje nadmiarowe. Również w temp. 298,15K, ale dla CCl 4 (A) i CH 3 OH (B). Roztwory rzezywiste (1) Również w tep. 98,15K, le dl CCl 4 () i CH 3 OH (). 15 Τ S 5 H,,4,6,8 1-5 - -15 G - Che. Fiz. TCH II/1 1 Roztwory rzezywiste () Ty rze dl (CH 3 ) CO () i CHCl 3 (). 15 5 Τ S -5,,4

Bardziej szczegółowo

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny 1 Grfy hmiltonowski, problm komiwojżr lgorytm optymlny Wykł oprcowny n postwi książki: M.M. Sysło, N.Do, J.S. Kowlik, Algorytmy optymlizcji yskrtnj z progrmmi w języku Pscl, Wywnictwo Nukow PWN, 1999 2

Bardziej szczegółowo

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu.

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu. Osob prowdząc wykłd i ćwiczeni: dr inż. Mrek werwin Instytut terowni i ystemów Informtycznych Uniwersytet Zielonogórski e-mil : M.werwin@issi.uz.zgor.pl tel. (prc) : 68 328 2321, pok. 328 A-2, ul. prof.

Bardziej szczegółowo

Zbiory rozmyte. logika rozmyta

Zbiory rozmyte. logika rozmyta Ziory rozmyte logik rozmyt Rozwiąznie Fuzzy Set Theory L. Zdeh (965) Logik rozmyt i reguły rozmyte Informj którą przetwrzją ludzie zęsto (zwsze) jest niepreyzyjn, mimo to potrfimy poprwnie wnioskowć! Np.

Bardziej szczegółowo

Załącznik nr 2 LISTA SPRAWDZAJĄCA DO WERYFIKACJI ADMINISTRACYJNEJ WNIOSKU O PŁATNOŚĆ

Załącznik nr 2 LISTA SPRAWDZAJĄCA DO WERYFIKACJI ADMINISTRACYJNEJ WNIOSKU O PŁATNOŚĆ Minimlny zkrs pytń. List moż yć rozszrzn przz KK w zlżnośi o wymgń ngo progrmu EWT LISTA SPRAWDZAJĄCA DO WERYFIKACJI ADMINISTRACYJNEJ WNIOSKU O PŁATNOŚĆ lp. Nr projktu Tytuł projktu Nzw nfijnt Okrs rlizji

Bardziej szczegółowo

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu. ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.

Bardziej szczegółowo

TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM

TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zkres GIMNAZJUM LICZBY Lizy turle: 0,1,,,4, Koleje lizy turle zwsze różią się o 1, zpis, +1, +, gdzie to dowol liz turl ozz trzy koleje lizy turle, Lizy pierwsze:

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Definicje. r r r r. Struktura kryształu. Sieć Bravais go. Baza

Definicje. r r r r. Struktura kryształu. Sieć Bravais go. Baza Definije Sieć Brvis'go - Nieskońzon sieć punktów przestrzeni tkih, że otozenie kżdego punktu jest identyzne Nieskońzon sieć punktów przestrzeni otrzymnyh wskutek przesunięi jednego punktu o wszystkie możliwe

Bardziej szczegółowo

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się

Bardziej szczegółowo

Przepisy Hokeja na Trawie Hala

Przepisy Hokeja na Trawie Hala Przepisy Hokej n Trwie Hl Stn n 1 listop 2014 Tłumzenie: Anrzej Busz, Szymon Dolt 2 Spis treśi I Słownizek... 3 II Gr... 5 1 Boisko... 5 2 Skł rużyn... 5 3 Kpitnowie... 8 4 Uiór i wyposżenie zwonik...

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Od wzorów skróconego mnoŝenia do klasycznych nierówności

Od wzorów skróconego mnoŝenia do klasycznych nierówności Hery Pwłowsi IV LO Toruń O wzorów sróoego moŝei o lsyzyh ierówośi Uzą w szole wzorów sróoego moŝei zzymy o owozei wóh toŝsmośi: () ( ) () ( ) Nstępie uŝywmy ih o przesztłi wyrŝeń Tym rzem zrómy z ih iy

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

ŚCIĄGACZE I AKCESORIA

ŚCIĄGACZE I AKCESORIA ŚIĄGZE I KESORI INSTRUKJ UŻYTKOWNI Rmion powinny yć zwsze mono umiejsowione wewnątrz korpusu. Śru musi yć zwsze wyśrokown i prostopł o elementu. W przypku użyi wystjąej śruy poz orys, uwżj y nie przekręić

Bardziej szczegółowo

Hipoteza Černego, czyli jak zaciekawić ucznia teorią grafów

Hipoteza Černego, czyli jak zaciekawić ucznia teorią grafów Młodzieżowe Uniwersytety Mtemtyczne Projekt współfinnsowny przez Unię Europejską w rmch Europejskiego Funduszu Społecznego Hipotez Černego, czyli jk zciekwić uczni teorią grfów Adm Romn, Instytut Informtyki

Bardziej szczegółowo

Logika rozmyta - wprowadzenie

Logika rozmyta - wprowadzenie Metody Sztuznej Inteligenji w Sterowaniu Ćwizenie 4 Logika rozmyta - wprowadzenie Przygotował: mgr inż. Marin Peli Instytut Tehnologii Mehaniznej Politehnika Poznańska Poznań, 2011 1 Logika rozmyta Logika

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP

PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP CZAKI THERMO-PRODUCT ul. 19 Kwietni 58 05-090 Rszyn-Ryie tel. (22) 7202302 fx. (22) 7202305 www.zki.pl hndlowy@zki.pl PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP-201-10 INSTRUKCJA OBSŁUGI GWARANCJA Spis treśi 1.

Bardziej szczegółowo

Połączenie (1) Optymalizacja poleceń SQL Część 3. Algorytm nested loops. Połączenie (2)

Połączenie (1) Optymalizacja poleceń SQL Część 3. Algorytm nested loops. Połączenie (2) Połązenie () Optymlizj poleeń SQL zęść. Metody połązeń, metody sortowni, wskzówki Operj inrn zwsze udził iorą dwie tele, jedn zostje nzwn telą zewnętrzną, drug telą wewnętrzną. W przypdku poleeni łąząego

Bardziej szczegółowo

Etyka procesów sieci Petriego w wietle teorii ladów

Etyka procesów sieci Petriego w wietle teorii ladów U n i w e r s y t e t W r s z w s k i Wydził Mtemtyki, Informtyki i Mehniki Etyk proesów siei Petriego w wietle teorii ldów rozprw doktorsk Jonn Jółkowsk Uniwersytet Mikołj Kopernik w Toruniu Wydził Mtemtyki

Bardziej szczegółowo

KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI. Temat: Do czego służą wyrażenia algebraiczne?

KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI. Temat: Do czego służą wyrażenia algebraiczne? KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI Temt: Do czego służą wyrżeni lgebriczne? Prowdzący: Agnieszk Smborowicz Liczb jednostek lekcyjnych: 1 2 (w zleżności od zespołu) Cele ogólne Utrwlenie widomości

Bardziej szczegółowo

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =

Bardziej szczegółowo