Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I"

Transkrypt

1 Mtemtyk finnsow r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1

2 Mtemtyk finnsow r. 1. Złóżmy, że lini lotnicz musi zkupić bryłek ropy n koniec miesięcy, dl Aby zbezpieczyć się przed ryzykiem zmin ceny ropy lini lotnicz kupuje kontrkt swp, n mocy, którego lini lotnicz będzie płcił stłą cenę z bryłkę ropy w momentch jej dostwy. Proszę wyznczyć (podć njbliższą odpowiedź) zkłdjąc dl poniższe ceny forwrd n bryłkę ropy orz ceny obligcji zerokuponowych o nominłch 0 i terminie wykupu z miesięcy : A) 3.80 B) 4.00 C) 4.20 D) 4.40 E) 4.0 2

3 Mtemtyk finnsow r. 2. Inwestor w chwili może zinwestowć cłe swoje środki w instrument finnsowy lub też wpłcić je n loktę dwuletnią. W przypdku wpłceni środków n loktę stop zwrotu w pierwszym roku wynosi w drugim ntomist Inwestor nie m możliwości wypłceni środków z lokty do końc inwestycji, czyli do chwili W przypdku inwestycji w instrument stop zwrotu w okresie roku jest relizcją zmiennej losowej. W chwili środki są wypłcne i ntychmist reinwestowne w instrument finnsowy lub n rocznej lokcie o stopie zwrotu. W przypdku inwestycji w instrument stop zwrotu w okresie roku jest relizcją zmiennej losowej Wektor ( m rozkłd ciągły z gęstością: [ ] [ ] { O wysokości inwestor dowiduje się w chwili (przed chwilą reinwestycji), o wysokości w chwili (moment końc inwestycji). Inwestor stosuje strtegię inwestycyjną mjącą zmksymlizowć oczekiwną dwuletnią stopę zwrotu. Stop t jest njbliższ wrtości: A) 8.1% B) 8.7% C) 9.4% D).0% E).% 3

4 Mtemtyk finnsow r. 3. Z jednorzową skłdkę klient wykupił od firmy ABC sześcioletnią polisę, któr gwrntuje mu: wypłtę kwoty n koniec -tego roku inwestycji lub wypłtę kwoty w przypdku rezygncji n koniec -tego roku inwestycji, dl Firm ABC szcuje roczne prwdopodobieństwo rezygncji klient n % (rezygncj może nstąpić jedynie n koniec okresów,,5.) Firm ABC stosuje nstępującą strtegię zrządzni ktywmi i psywmi: n początku inwestycji (początek roku ), z kwotę firm kupuje obligcje zerokuponowe orz, przy czym wolumen obligcji kżdego typu dobrny jest tk, by ich wrtość rynkow był równ wrtości oczekiwnej ciągu płtności wynikjących z polisy orz by durtion portfel obligcji był równ durtion ciągu oczekiwnych płtności wynikjących z polisy, n początku roku, o ile klient nie zrezygnowł do tego czsu, firm sprzedje obligcje orz po cenie rynkowej, otrzymując kwotę, nstępnie kupuje świeżo wyemitowne obligcje orz z kwotę tk, by ich wrtość rynkow był równ wrtości oczekiwnej ciągu płtności wynikjących z dlszego trwni polisy orz by durtion portfel obligcji był równ durtion ciągu oczekiwnych płtności wynikjących z dlszego trwni polisy, n początku roku o ile klient nie zrezygnowł do tego czsu, firm powtrz procedurę z, otrzymując kwotę i płcąc. Dl obligcje są obligcjmi 3-letnimi o nominle 0, obligcje są obligcjmi 7-letnimi o nominle 0. Wiedząc, że -letni stop spot, n początku roku wynosi: i klient nie zrezygnowł do końc polisy proszę wyznczyć njbliższą wrtość): (podć A) 500 B) 700 C) 900 D) 1 0 E)

5 Mtemtyk finnsow r. 4. Rozwżmy zpdjący z 2 lt instrument o nstępującej funkcji wypłty: { gdzie ozncz cenę niepłcącej dywidendy kcji n moment zpdlności tego instrumentu. Przy stndrdowych złożenich modelu Blck-Scholes wycenić ten instrument wiedząc, że: roczn intensywność oprocentowni wynosi 0.05, roczn zmienność ceny kcji wynosi 30%, cen kcji w momencie wyceny instrumentu wynosi 120 PLN. Wrtość instrumentu przy podnych złożenich wynosi (podć njbliższą odpowiedź): A) PLN B) PLN C) PLN D) PLN E) PLN 5

6 Mtemtyk finnsow r. 5. Niech dny będzie nieskończony ciąg rent wieczystych. Rent wieczyst strtując w roku wypłc kwotę n koniec kżdego roku. Roczn stop dyskontow. Niech ozncz wrtość obecną renty wyznczoną n początek pierwszego roku. Sum wrtości obecnych wszystkich rent, czyli, wynosi (podć njbliższą odpowiedź): A) 20 B) C) 5 D) 3 E) 1

7 Mtemtyk finnsow r.. Rozwżmy rynek, n którym w chwili 1 możliwe są jedynie dw stny: I lub II. N tym rynku dostępne są dw ktyw A i B orz dw ktyw jednostkowe. Funkcje wypłty wymienionych ktywów, w zleżności od stnu, w którym znjduje się rynek podje tbel: Wypłt Aktywo A Aktywo B Aktywo jednostkowe stnu I Aktywo jednostkowe stnu II Stn I Stn II 2 x 0 1 Pondto, widomo, że: w chwili 0 cen ktyw A wynosi 3, cen ktyw B wynosi 4, jednookresow stop woln od ryzyk wynosi, rynek nie dopuszcz rbitrżu. Przy tkich złożenich wrtość wypłty ktyw B w stnie II opisnego rynku (oznczon w powyższej tbeli przez x), wynosi (podć njbliższą odpowiedź): A) 0, B), C) 1 D), E) 3 7

8 Mtemtyk finnsow r Kredyt o wrtości S będzie spłcony w ciągu 20 lt, rtmi płtnymi w odstępch rocznych, przy czym widomo, że: pierwsz rt o wrtości R zostnie zpłcon po upływie dwóch lt od dni przyznni kredytu, kżd z nstępnych rt zwiększ się w porównniu do poprzedniej o X, ż do osiągnięci mksymlnej wysokości, po czym kolejne rty zmniejszją się o X i osiągją n końcu roku ponownie wrtość R, w nstępnych 5 ltch, kżd rt jest równ poprzedniej, w osttnich 5 ltch kżd rt jest większ od poprzedniej o tę smą wrtość, rt zpłcon n końcu 20 letniego okresu spłty jest równ mksymlnej rcie zpłconej w okresie pierwszych lt, stop oprocentowni wynosi j, odpowidjący jej czynnik dyskontowy równy jest. Wskzć, który z poniższych wzorów wyrż wrtość X. A) ,8 0,8 ) ( R j S B) ,8 2 0,8 ) ( R j S C) ,8 0,8 2 ) ( R j S D) ,8 4,8 2 ) ( R j S E) ,8 2 4,8 ) ( R j S

9 Mtemtyk finnsow r. 8. Zkłd ubezpieczeń wycenijąc rezerwy techniczno-ubezpieczeniowe ustlił, że z ciążących n nim w chwili obecnej zobowiązń wynikną nstępujące świdczeni: świdczenie jednorzowe w kwocie płtne po 5 ltch, świdczenie jednorzowe w kwocie płtne po ltch, 20-letni rent pewn ntychmist płtn o płtnościch dokonywnych n końcu kżdego roku, przy czym pierwsz rt wynosi , kżd nstępn jest większ od poprzedniej o Zkłd ubezpieczeń zmierz zpewnić pokrycie powyższych zobowiązń nstępującymi ktywmi: obligcje 20-letnie z kuponem rocznym w wysokości 7% wrtości wykupu równej wrtości nominlnej wynoszącej 000, obligcje 5-letnie z kuponem rocznym w wysokości 4% wrtości wykupu równej wrtości nominlnej wynoszącej Jki procent środków przeznczonych n pokrycie powyższych zobowiązń zkłd ubezpieczeń powinien zinwestowć w obligcje 5-letnie, by przy stopie procentowej 5% durtion ktywów był równ durtion zobowiązń? Podć njbliższą wrtość. A) 38% B) 40% C) 42% D) 44% E) 4% 9

10 Mtemtyk finnsow r. 9. Wrunki spłty kredytu w okresie 25 lt, rtmi płtnymi n końcu kżdego roku są nstępujące: pierwsz rt równ jest p, kżd nstępn, w okresie pierwszych 15 lt jest mniejsz od poprzedniej o q, w okresie osttnich lt kżd rt jest większ od poprzedniej o 7%, oprocentownie kredytu wynosi 4%. Widomo, że sum odsetek zpłconych w rcie 5 i rcie 20 stnowi 0% wrtości sumy spłt kpitłów w tych rtch. Obliczyć ile wynosi stosunek p/q. Podć njbliższą wrtość. A) 30 B) 32 C) 34 D) 3 E) 38

11 Mtemtyk finnsow r.. Rent wieczyst wypłc n początku pierwszego roku kwotę , nstępnie n końcu kżdego roku kwotę, gdzie Niech R() ozncz wrtość obecną tej renty obliczoną przy zstosowniu czynnik dyskontującego. Jk jest wrtość, jeżeli widomo, że R() = 0 000? Podć njbliższą wrtość. A) B) C) D) 0.90 E)

12 Mtemtyk finnsow r. Egzmin dl Akturiuszy z mrc 2014 r. Mtemtyk finnsow Arkusz odpowiedzi * Imię i nzwisko:... Pesel:... OZNACZENIE WERSJI TESTU... Zdnie nr Odpowiedź Punktcj 1 C 2 E 3 B 4 B 5 D D 7 B 8 A 9 B D * Ocenine są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi. Wypełni Komisj Egzmincyjn. 12

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Dodatkowe informacje i objaśnienia. Zakres zmian wartości grup rodzajowych środków trwałych, wnip oraz inwestycji długoterminowych Zwieksz Stan na.

Dodatkowe informacje i objaśnienia. Zakres zmian wartości grup rodzajowych środków trwałych, wnip oraz inwestycji długoterminowych Zwieksz Stan na. STOWARZYSZENIE RYNKÓW FINANSOWYCH ACI POLSKA Afiliowne przy ACI - The Finncil Mrkets Assocition Dodtkowe informcje i objśnieni Wrszw, 21 mrzec 2014 1.1 szczegółowy zkres zmin wrtości grup rodzjowych środków

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł TRZECI SEMESTR LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRACA KONTROLNA Z MATEMATYKI ROZSZERZONEJ O TEMACIE: Liczby rzeczywiste i wyrżeni lgebriczne Niniejsz prc kontroln skłd się z zdń zmkniętych ( zdń)

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Matematyka finansowa 17.05.2003

Matematyka finansowa 17.05.2003 1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

WNIOSEK O USTALENIE PRAWA DO ŚWIADCZENIA PIELĘGNACYJNEGO Część I. Dane osoby ubiegającej się o ustalenie prawa do świadczenia pielęgnacyjnego

WNIOSEK O USTALENIE PRAWA DO ŚWIADCZENIA PIELĘGNACYJNEGO Część I. Dane osoby ubiegającej się o ustalenie prawa do świadczenia pielęgnacyjnego Miejski Ośrodek Pomocy Rodzinie ul. Strzelców Bytomskich 16, 41-902 Bytom Dził Świdczeń Rodzinnych ul. Strzelców Bytomskich 21, 41-902 Bytom tel. 32 388-86-07 lub 388-95-40; e-mil: sr@mopr.bytom.pl WNIOSEK

Bardziej szczegółowo

WNIOSEK o przyznanie pomocy na zalesianie

WNIOSEK o przyznanie pomocy na zalesianie Agencj Restrukturyzcji i Modernizcji Rolnictw WNIOSEK o przyznnie pomocy n zlesinie 1) rok Potwierdzenie przyjęci wniosku przez Biuro Powitowe ARiMR /pieczęć/... Dt przyjęci i podpis... Znk sprwy - Schemt

Bardziej szczegółowo

PEUGEOT OFERTA FINANSOWANIA DLA SZKÓŁ JAZDY

PEUGEOT OFERTA FINANSOWANIA DLA SZKÓŁ JAZDY PEUGEOT OFERT FINNSOWNI DL SZKÓŁ JZDY KIM JESTEŚMY? PS Finance - obecna na polskim rynku od 2001 roku Reprezentowana - dwie spółki, których 100% udziałowcem jest Banque PS Finance z siedzibą w Paryżu:

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. RozwaŜmy

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

WNIOSEK O USTALENIE PRAWA DO SPECJALNEGO ZASIŁKU OPIEKUŃCZEGO. Dane osoby ubiegającej się o ustalenie prawa do specjalnego zasiłku opiekuńczego.

WNIOSEK O USTALENIE PRAWA DO SPECJALNEGO ZASIŁKU OPIEKUŃCZEGO. Dane osoby ubiegającej się o ustalenie prawa do specjalnego zasiłku opiekuńczego. Miejski Ośrodek Pomocy Rodzinie ul. Strzelców Bytomskich 16, 41-902 Bytom Dził Świdczeń Rodzinnych ul. Strzelców Bytomskich 21, 41-902 Bytom tel. 32 388-86-07 lub 388-95-40; e-mil: sr@mopr.bytom.pl WNIOSEK

Bardziej szczegółowo

4. Składkę ubezpieczeniową zaokrągla się do pełnych złotych.

4. Składkę ubezpieczeniową zaokrągla się do pełnych złotych. . Stwki tryfowe n dwunstomiesięczny okres ubezpieczeni, dl kżdego z rodzjów ubezpieczeń, określone są w kolejnych częścich tryfy. 2. Stwki podne w poszczególnych tbelch są stwkmi minimlnymi, z zstrzeżeniem

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

WYJAŚNIENIA TREŚCI SIWZ

WYJAŚNIENIA TREŚCI SIWZ WYJAŚNIENIA TREŚCI SIWZ W postępowniu o udzielenie i obsługę długoterminowego u bnkowego w wysokości 172 zł 1 Zświdczenie o ndniu NIP Gminy Znjduje się pod ogłoszeniem o zmówieniu n udzielenie długoterminowego

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r.

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Wrszw, dni 22 lutego 2012 r. Pozycj 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych

Bardziej szczegółowo

Matematyka finansowa 25.01.2003 r.

Matematyka finansowa 25.01.2003 r. Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),

Bardziej szczegółowo

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia

Bardziej szczegółowo

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym Kurs e-lerningowy Giełd Ppierów Wrtościowych i rynek kpitłowy V edycj Struktur kpitłu, wrtość rynkow przedsiębiorstw n rynku kpitłowym 2010 SPIS TREŚCI I. Wstęp 3 II. Podstwowy miernik rentowności kpitłu

Bardziej szczegółowo

U M O W A. 2 Nr dowodu osobistego. zam... zam...

U M O W A. 2 Nr dowodu osobistego. zam... zam... U M O W A Zwrt w Pile w dniu. pomiędzy : Publicznym Przedszkolem Nr 12 w Pile ul. Rej 11, reprezentownym przez Brbrę Miszczk Dyrektor Przedszkol, zwnym dlej Zleceniobiorcą / Przedszkolem, rodzicmi/ opiekunmi

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych Dz.U.2012.204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych (Dz. U. z dni 22 lutego 2012 r.) N podstwie rt. 22 ust. 2 pkt 1 ustwy

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

I. INFORMACJE OGÓLNE O PROJEKCIE 1. Tytuł projektu. 2. Identyfikacja rodzaju interwencji

I. INFORMACJE OGÓLNE O PROJEKCIE 1. Tytuł projektu. 2. Identyfikacja rodzaju interwencji MINISTERSTWO ROZWOJU REGIONALNEGO Progrm Opercyjny Innowcyjn Gospodrk Wniosek o dofinnsownie relizcji projektu 8. Oś Priorytetow: Społeczeństwo informcyjne zwiększnie innowcyjności gospodrki Dziłnie 8.2:

Bardziej szczegółowo

Formularz ofertowy. w odpowiedzi na ogłoszenie w procedurze przetargowej prowadzonej w trybie przetargu nieograniczonego na

Formularz ofertowy. w odpowiedzi na ogłoszenie w procedurze przetargowej prowadzonej w trybie przetargu nieograniczonego na Złącznik nr 1 do SIWZ Wzór formulrz ofertowego Formulrz ofertowy w odpowiedzi n ogłoszenie w procedurze przetrgowej prowdzonej w trybie przetrgu nieogrniczonego n dostwę elektrycznej czynnej dl grupy zkupowej

Bardziej szczegółowo

Egzamin dla Aktuariuszy z 16 listopada 1996 r.

Egzamin dla Aktuariuszy z 16 listopada 1996 r. Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 16 listopada 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:.... Czas egzaminu: l OO minut Ośrodek Doskonalenia

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik nr 3 Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: POKL.05.02.01 00../..

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Wszystkim życzę Wesołych Świąt :-)

Wszystkim życzę Wesołych Świąt :-) Poniższe zdni pochodzą ze zbiorów: ) J. Rutkowski, Algebr bstrkcyjn w zdnich b) M. Bryński, J. Jurkiewicz, Zbiór zdń z lgebry Do kolokwium proszę też przejrzeć zdni z ćwiczeń. Wszystkim życzę Wesołych

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r.

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r. Typ/orgn wydjący Rozporządzenie/Minister Infrstruktury Tytuł w sprwie szczegółowych wrunków i trybu wydwni zezwoleń n przejzdy pojzdów nienormtywnych Skrócony opis pojzdy nienormtywne Dt wydni 16 grudni

Bardziej szczegółowo

PRZEPŁYWY FINANSOWE BUDŻETU GMINY JABŁONKA W LATACH Tabela główna

PRZEPŁYWY FINANSOWE BUDŻETU GMINY JABŁONKA W LATACH Tabela główna PRZEPŁYWY FINANSOWE BUDŻETU GMINY JABŁONKA W LATACH 2011-2018 Tbel główn lp. Wyszczególnienie 2011 2012 2013 2014 2015 2016 2017 2018 I Dochody 56 461 195 49 316 909 52 433 458 49 114 584 50 244 219 51

Bardziej szczegółowo

Matematyka finansowa 04.10.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

Matematyka finansowa 04.10.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Komisa Egzaminacyna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowane:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Lista 4 Deterministyczne i niedeterministyczne automaty

Lista 4 Deterministyczne i niedeterministyczne automaty Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Zadanie 3

Zadanie 1. Zadanie 2. Zadanie 3 Zadanie 1 Inwestor rozważa nabycie obligacji wieczystej (konsoli), od której będzie otrzymywał na koniec każdego półrocza kupon w wysokości 80 zł. Wymagana przez inwestora stopa zwrotu w terminie do wykupu

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

NOWE NIŻSZE CENY. Ceny spiral introligatorskich DOUBLE-LOOP WIRE. www.radpor.pl

NOWE NIŻSZE CENY. Ceny spiral introligatorskich DOUBLE-LOOP WIRE. www.radpor.pl Rok złożeni 1994 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, RADPOR 81-854-2860 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, 81-854-2860 www.rdpor.pl Ceny spirl introligtorskic DOUBLE-LOOP

Bardziej szczegółowo

DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW

DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW 1 Nzw progrmu opercyjnego Regionlny Progrm Opercyjny Województw Łódzkiego n lt 2007-2013. 2 Numer i nzw osi priorytetowej Oś priorytetow III: Gospodrk,

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych 17 marca 2008 r.

Matematyka ubezpieczeń życiowych 17 marca 2008 r. 1. Niech oznacza przeciętne dalsze trwanie życia w ciągu najbliższego roku obliczone przy założeniu hipotezy interpolacyjnej o stałym natężeniu wymierania między wiekami całkowitymi. Podobnie niech oznacza

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu. ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.

Bardziej szczegółowo

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r.

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Formularz wyliczenia należności za wycofane zboże Izb_P6_f2

Formularz wyliczenia należności za wycofane zboże Izb_P6_f2 Stron: 1/5 I Z B 0 6 0 2 V 8 F 1. Tu proszę nkleić nlepkę identyfikcyjną /Jeżeli przedsiębiorc nie posid nlepki identyfikcyjnej proszę wpisć poniżej numer rejestrcyjny otrzymny w ARR/ * Pieczątk kncelrii

Bardziej szczegółowo

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej.

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej. Kod uczni... MAŁOPOLSKI KONKURS MATEMATYCZNY dl uczniów gimnzjów Rok szkolny 03/0 ETAP SZKOLNY - 5 pździernik 03 roku. Przed Tobą zestw zdń konkursowych.. N ich rozwiąznie msz 90 minut. Piętnście minut

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Wykaz zmian do Taryfy prowizji i opłat dla firm w ramach bankowości detalicznej mbanku S.A. (dawny MultiBank)

Wykaz zmian do Taryfy prowizji i opłat dla firm w ramach bankowości detalicznej mbanku S.A. (dawny MultiBank) Wykz zmin do Tryfy prowizji i opłt dl firm w rmch bnkowości dlicznej mbnku S.A. (dwny MultiBnk) Modyfikcje dotyczą: - Zminy przypisu w części, II. Rchunki pomocnicze;. Rchunek pomocniczy, rchunek lokcyjny

Bardziej szczegółowo

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r.

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

REGULAMIN usług oferowanych z[ pośrednictwem serwisu internetowego Przygody i Nagrody prowadzonego pod adresem internetowym http://przygodynagrody.pl/ przez Annę Samson-Zoń działającą pod firmą Emotio

Bardziej szczegółowo

WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO

WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO WNIOSEK O PRZYZNANIE STYPENDIUM SZKOLNEGO w roku szkolnym... I. Dne osoowe uczni / słuchcz Nzwisko..... Imion...... Imię ojc i mtki...... PESEL uczni / słuchcz Dt i miejsce urodzeni... II. Adres zmieszkni

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:...klucz odpowiedzi... Czas egzaminu:

Bardziej szczegółowo

4.3. Przekształcenia automatów skończonych

4.3. Przekształcenia automatów skończonych 4.3. Przeksztłceni utomtów skończonych Konstrukcj utomtu skończonego (niedeterministycznego) n podstwie wyrżeni regulrnego (lgorytm Thompson). Wejście: wyrżenie regulrne r nd lfetem T Wyjście : utomt skończony

Bardziej szczegółowo

Obligacje. nazywamy papier warto sciowy maj acy, po_zyczki przez instytucj e, obligacj e, u jej nabywcy.

Obligacje. nazywamy papier warto sciowy maj acy, po_zyczki przez instytucj e, obligacj e, u jej nabywcy. Obligacje De nicja Obligacj nazywamy papier warto sciowy maj acy, charakter wierzycielski. Obligacj jest zaci agni, eciem, po_zyczki przez instytucj e, sprzedaj ac, obligacj e, u jej nabywcy. Sprzedaj

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI

BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI Kwestionriusz gospodrstw domowego Numer ewidencyjny: Dził 0. REALIZACJA WYWIADU. Łączn liczb wizyt nkieter w wylosownym mieszkniu. Wylosowne mieszknie Proszę

Bardziej szczegółowo

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza 1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym

Bardziej szczegółowo

WNIOSEK O USTALENIE PRAWA DO ŚWIADCZEŃ Z FUNDUSZU ALIMENTACYJNEGO. okres świadczeniowy.. /.. Część I 1. Dane osoby ubiegającej się o świadczenia 2)

WNIOSEK O USTALENIE PRAWA DO ŚWIADCZEŃ Z FUNDUSZU ALIMENTACYJNEGO. okres świadczeniowy.. /.. Część I 1. Dane osoby ubiegającej się o świadczenia 2) Miejski Ośrodek Pomocy Rodzinie ul. Strzelców Bytomskich 16, 41-902 Bytom Dził Świdczeń Alimentcyjnych i Dochodzeni Nleżności ul. Strzelców Bytomskich 21, 41-902 Bytom tel. 32 388-86-07 lub 388-95-40;

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

SPRAWOZDANIE O KSZTAŁTOWANIU SIĘ WIELOLETNIEJ PROGNOZY FINANSOWEJ MIASTA KATOWICE NA LATA 2012 2035

SPRAWOZDANIE O KSZTAŁTOWANIU SIĘ WIELOLETNIEJ PROGNOZY FINANSOWEJ MIASTA KATOWICE NA LATA 2012 2035 PREZYDENT MIASTA KATOWICE SPRAWOZDANIE O KSZTAŁTOWANIU SIĘ WIELOLETNIEJ PROGNOZY FINANSOWEJ MIASTA KATOWICE NA LATA 2012 2035 ZA 2012 ROK Ktowice, mrzec 2013 roku SPRAWOZDANIE O KSZTAŁTOWANIU SIĘ WIELOLETNIEJ

Bardziej szczegółowo

WNIOSEK O USTALENIE PRAWA DO ZASIŁKU PIELĘGNACYJNEGO. Część I. Dane osoby ubiegającej się o ustalenie prawa do zasiłku pielęgnacyjnego.

WNIOSEK O USTALENIE PRAWA DO ZASIŁKU PIELĘGNACYJNEGO. Część I. Dane osoby ubiegającej się o ustalenie prawa do zasiłku pielęgnacyjnego. Miejski Ośrodek Pomocy Rodzinie ul. Strzelców Bytomskich 16, 41-902 Bytom Dził Świdczeń Rodzinnych ul. Strzelców Bytomskich 21, 41-902 Bytom tel. 32 388-86-07 lub 388-95-40; e-mil: sr@mopr.bytom.pl WNIOSEK

Bardziej szczegółowo

Pakiet aplikacyjny. Specjalista ds. rozliczeń i administracji [Pomorze] ADM/2011/01

Pakiet aplikacyjny. Specjalista ds. rozliczeń i administracji [Pomorze] ADM/2011/01 Pkiet plikcyjny Stnowisko: Nr referencyjny: Specjlist ds. rozliczeń i dministrcji [Pomorze] ADM/2011/01 Niniejszy pkiet zwier informcje, które musisz posidć zgłszjąc swoją kndydturę. Zwier on: List do

Bardziej szczegółowo