Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju

Wielkość: px
Rozpocząć pokaz od strony:

Download "Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju"

Transkrypt

1 Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych sprowdz się jednk do cłek n przedzile nieskończonym lub cłek z funkcji nieogrniczonych. Poniżej zdefiniujemy cłki niewłściwe pierwszego i drugiego rodzju, które spełniją te wymgni. W obu przypdkch korzystmy z fktu, że cłkę oznczoną możemy określić n dowolnym przedzile domkniętym, n którym dn funkcj jest cłkowln w sensie Riemnn. 3.. Cłki niewłściwe I rodzju Cłki niewłściwe pierwszego rodzju, to cłki n przedzile nieogrniczonym, to znczy n przedzile [, ) lub (, b] lub też (, ). Cłki te definiujemy nstępująco: Definicj 3. Rozwżmy funkcję f(x) określoną n przedzile [, ) i cłkowlną w sensie Riemnn w kżdym przedzile domkniętym [, b] [, ), (b > ). Jeśli istnieje grnic f(x), b to grnicę tę nzywmy cłką niewłściwą Riemn I rodzju funkcji f n przedzile [, ) i oznczmy symbolem f(x). 85

2 86 ROZDZIAŁ 3. CAŁKI NIEWŁAŚCIWE Ztem f(x) = b f(x). (3.) W przypdku, gdy grnic b b f(x) istnieje mówmy, że cłk jest zbieżn, funkcję f(x) nzywmy cłkowlną w przedzile nieskończonym [, ). Gdy grnic nie istnieje lub jest niewłściw, mówimy, że cłk jest rozbieżn. x 4 = = 4+ x 4+ + C = x C Przykłd 3. Obliczyć cłkę Rozwiąznie x 4. b = x 4 = x4 b b b 3 x 3 = ( ) 3 b b 3 3 = 3. Rozwżn cłk okzł się zbieżn (do 3 ). Zupełnie nlogicznie definuje się cłki niewłściwe pierwszego rodzju n przedzile lewostronnie nieogrniczonym (, b]. Definicj 3.2 Rozwżmy funkcję f(x) określoną n przedzile (, b] i cłkowlną w sensie Riemnn w kżdym przedzile domkniętym [, b] (, b], (b > ). Jeśli istnieje grnic f(x), to grnicę tę nzywmy cłką niewłściwą Riemn I rodzju funkcji f n przedzile (, b] i oznczmy symbolem f(x). Ztem f(x) = f(x). (3.2) e x = e x + C Przykłd 3.2 Obliczyć cłkę ex.

3 3.. WPROWADZENIE 87 Rozwiąznie e x = e x = ex ( = e e ) = e =. Wykres funkcji y = e x. Nsz cłk jest więc zbieżn (do ). Definicj 3.3 Rozwżmy funkcję f(x) określoną n przedzile (, ) i cłkowlną w sensie Riemnn w kżdym przedzile domkniętym [, b], (b > ). Cłkę niewłściwą funkcji f(x) n przedzile (, ) definujemy z pomocą równości f(x) = f(x) + f(x). (3.3) x ex = dl dowolnego R, zkłdjąc, że obie cłki po prwej stronie równości istnieją. Uwg 3. Powyższ definicj nie zleży od wyboru R. Przykłd 3.3 Obliczyć cłkę +x 2. Rozwiąznie Skorzystmy ze wzoru 3.3 przyjmując w nim =. Otrzymmy Poniewż + x 2 = +x 2 = rctgx + C, to + x x 2. Wykres funkcji y = x. x (rctgx) = π 2 x (rctgx) = π 2 + x 2 = (rctgx) = (rctg rctg) = ( π 2 ) = π 2 + x 2 = b (rctgx) b = b (rctgb rctg) = π 2 = π 2. Ztem osttecznie + x 2 = π 2 + π 2 = π.

4 88 ROZDZIAŁ 3. CAŁKI NIEWŁAŚCIWE 3..2 Cłki niewłściwe II rodzju Cłki niewłściwe drugiego rodzju, to cłki funkcji nieogrniczonej n przedzile ogrniczonym [, b]. Zdefiniujemy tką cłkę w trzech możliwych przypdkch, gdy:. funkcj jest nieogrniczon w pewnym lewostronnym sąsiedztwie punktu b, 2. funkcj jest nieogrniczon w pewnym prwostronnym sąsiedztwie punktu, 3. funkcj jest nieogrniczon w pewnym prwostronnym sąsiedztwie punktu i w pewnym lewostronnym sąsiedztwie punktu b. Definicj 3.4 Rozwżmy funkcję f(x) określoną n przedzile [, b), < b i nieogrniczoną w pewnym lewostronnym sąsiedztwie punktu b, tkże ogrniczoną i cłkowlną w sensie Riemnn w kżdym przedzile domkniętym [, b ] [, b), < < b. Jeśli istnieje grnic f(x), to grnicę tę nzywmy cłką niewłściwą Riemn II rodzju funkcji f n przedzile [, b] i oznczmy symbolem Ztem f(x). f(x) = f(x). (3.4) Przykłd 3.4 Obliczyć cłkę 3 x Rozwiąznie Funkcj podcłkow 3 x = x 3 jest nieogrniczon w lewostronnym sąsiedztwie punktu x =. Ztem nsz cłk jest cłką niewłściwą drugiego rodzju, więc Poniewż 3 = x 3 x. 3 = 3 = x x C = 2 x C, to 3

5 3.. WPROWADZENIE 89 3 = x 3 = 3 x 2 x 3 2 = = 3 2 ( ) 3 2 ( ) 3 2 = 3 }{{}}{{} 2. = Definicj 3.5 Rozwżmy funkcję f(x) określoną n przedzile (, b], < b i nieogrniczoną w pewnym prwostronnym sąsiedztwie punktu, orz ogrniczoną i cłkowlną w sensie Riemnn w kżdym przedzile domkniętym [ +, b] (, b], < < b. Jeśli istnieje grnic f(x), + to grnicę tę nzywmy cłką niewłściwą Riemn II rodzju funkcji f n przedzile [, b] i oznczmy symbolem f(x). Ztem f(x) = f(x). (3.5) + Przykłd 3.5 Obliczyć cłkę x. Rozwiąznie Funkcj podcłkow jest nieogrniczon w pewnym prwostronnym sąsiedztwie punktu x =, więc nsz cłk jest cłką niewłściwą drugiego rodzju, stąd x = + + = x ln x + + = +(ln ln()) =. ln = ln x = + Cłk x jest ztem rozbieżn do nieskończoności. Przykłd 3.6 Obliczyć cłkę ln x. Rozwiąznie Poniewż funkcj podcłkow ln x jest nieogrniczon w prwostronnym sąsiedztwie punktu x =, to nsz cłk jest cłką niewłściwą drugiego rodzju, czyli I = ln x = ln x. + + Wykres funkcji y = ln x.

6 9 ROZDZIAŁ 3. CAŁKI NIEWŁAŚCIWE Njpierw, stosując metodę cłkowni przez części, obliczmy cłkę nieoznczoną f(x) = ln x g (x) = I = ln x = f (x) = x g(x) = x = ln x x x x = = x ln x x + C = x(ln x ) + C. Wobec tego I = ln x = = [x(ln x )] = = [ (ln ) (ln )] = ln. + + Poniewż ln =, to wyrżenie (ln ) dl dążącego do zer jest wyrżeniem nieoznczonym typu. Do obliczeni grnicy tego wyrżeni nie możemy zstosowć reguły de l Hospitl. Regułę tę możn bowiem stosowć tylko do wyrżeń nieoznczonych typu orz. Przeksztłcmy więc nsze wyrżenie do postci ln = ln które jest wyrżeniem typu, nstępnie stosujemy regułę otrzymując ln ln = + + Osttecznie, nsz cłk jest zbieżn do. H (ln ) = ( ) = I = (ln ) = + = =. +( ) Definicj 3.6 Rozwżmy funkcję f(x) określoną n przedzile (, b), < b i nieogrniczoną w pewnym prwostronnym sąsiedztwie punktu i w pewnym lewostronnym sąsiedztwie punktu b, tkże ogrniczoną i cłkowlną w sensie Riemnn w kżdym przedzile domkniętym [ +, b 2 ] (, b). Jeśli dl dowolnego punktu c (, b) istnieją cłki niewłściwe c f(x) orz Guillume Frncois Antoin de l Hospitl, mtemtyk frncuski (66-74). Był utorem pierwszego podręcznik rchunku różniczkowego i cłkowego Anlyse des infinitement petits pour l intelligence des lignes courbes wydnego w Pryżu, roku 696.

7 3.2. ZADANIA ROZWIĄZANE 9 c f(x), to cłkę niewłściwą funkcji f(x) n przedzile [, b] definiujemy nstępująco: c f(x) = f(x) + f(x). (3.6) c Uwg 3.2 Powyższ definicj nie zleży od wyboru punktu c (, b). Przykłd 3.7 Obliczyć cłkę x 2. Rozwiąznie Widzimy, że funkcj podcłkow x jest nieogrniczon zrówno w pewnym 2 prwostronnym sąsiedztwie punktu x =, jk i w pewnym lewostronnym sąsiedztwie punktu x =. Jest więc sumą cłek niewłściwych drugiego rodzju w przedziłch [, c] orz [c, ] dl dowolnego c (, ). Przyjmując c = i oznczjąc obliczną cłkę przez I mmy I = x 2 = x 2 } {{ } I + Pmiętjąc, że x = rcsinx + C mmy kolejno 2 x 2 } {{ } I 2 I = = (rcsin rcsin( + )) = + + x 2 + ( ( = π )) = π 2 2. I 2 = + ( ) π = 2 = π 2. x 2 = (rcsin( ) rcsin ) = +. Ztem I = I + I 2 = π 2 + π 2 = π. 3.2 Zdni rozwiązne Zdnie 3. Oblicz cłkę e x ln x. Rozwiąznie Njpierw obliczymy cłkę nieoznczoną x ln x

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I. RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki

Bardziej szczegółowo

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1) Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x

Bardziej szczegółowo

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii Wydził Mtemtyki Stosownej Zestw zdń nr 6 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 9 listopd 8r. Cłk oznczon i cłk niewłściw Zstosowni rchunku cłkowego w geometrii

Bardziej szczegółowo

Całka Riemanna Dolna i górna suma całkowa Darboux

Całka Riemanna Dolna i górna suma całkowa Darboux Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Całka oznaczona

Analiza matematyczna i algebra liniowa Całka oznaczona Anliz mtemtyczn i lgebr liniow Cłk oznczon Wojciech Kotłowski Instytut Informtyki Politechniki Poznńskiej emil: imię.nzwisko@cs.put.poznn.pl pok. 2 (CW) tel. (61)665-2936 konsultcje: piątek 15:10-16:40

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Ciągi liczbowe Definicj. Rzeczywistym nieskończonym ciągiem liczbowym nzywmy funkcję określoną n zbiorze liczb nturlnych o wrtościch w zbiorze liczb rzeczywistych f : N R, n n. Ciąg

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem

Bardziej szczegółowo

Analiza Matematyczna (część II)

Analiza Matematyczna (część II) Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)

Bardziej szczegółowo

1 Rachunek zdań 3. 2 Funkcje liczbowe 6

1 Rachunek zdań 3. 2 Funkcje liczbowe 6 Spis treści 1 Rchunek zdń 3 2 Funkcje liczbowe 6 3 Ciągi liczbowe 9 3.1 Grnic włściw ciągu 10 3.2 Grnic niewłściw ciągu 11 3.3 Grnice pewnych ciągów 12 4 Grnice funkcji 13 4.1 Podstwowe definicje 13 4.2

Bardziej szczegółowo

CAŁKA OZNACZONA JAKO SUMA SZEREGU

CAŁKA OZNACZONA JAKO SUMA SZEREGU CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o

Bardziej szczegółowo

III. Rachunek całkowy funkcji jednej zmiennej.

III. Rachunek całkowy funkcji jednej zmiennej. III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,

Bardziej szczegółowo

Pochodne i całki, macierze i wyznaczniki

Pochodne i całki, macierze i wyznaczniki Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk

Bardziej szczegółowo

Matematyka dla biologów Zajęcia nr 7.

Matematyka dla biologów Zajęcia nr 7. Mtemtyk dl biologów Zjęci nr 7. Driusz Wrzosek 21 listopd 2018 Mtemtyk dl biologów Zjęci 7. 21 listopd 2018 1 / 20 Przypomnienie: funkcj pierwotn Niech F : D, gdzie D to odcinek otwrty lub cł prost ).

Bardziej szczegółowo

9. Całkowanie. I k. sup

9. Całkowanie. I k. sup 9. Cłkownie Zcznijmy od podstwowego dl teorii cłki pojęci podziłu. Podziłem odcink [, b] R nzywmy kżdy skończony zbiór P [, b] zwierjący ob końce odcink. Niech będą punktmi podziłu P. Odcinki = x < x

Bardziej szczegółowo

Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag.

Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag. Mtemtyk Cłk oznczon Aleksnder Denisiuk denisjuk@euh-e.edu.pl Elblsk Uczelni Humnistyczno-Ekonomiczn ul. Lotnicz 2 82-3 Elblg Mtemtyk p. 1 Cłk oznczon Njnowsz wersj tego dokumentu dostępn jest pod dresem

Bardziej szczegółowo

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:

Bardziej szczegółowo

nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P.

nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P. Rozdził 10 Cłk Drboux 10.1 Doln i górn sum Drboux Definicj podziłu. Niech, b R, < b. Kżdy skończony ciąg P postci (10.1) P = (x 0,..., x n ), gdzie n N, = x 0 < x 1

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew Pbisek Adm Wostko Wprowdzenie

Bardziej szczegółowo

Analiza Matematyczna. Całka Riemanna

Analiza Matematyczna. Całka Riemanna Anliz Mtemtyczn. Cłk Riemnn Aleksnder Denisiuk denisiuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych Wydził Informtyki w Gdńsku ul. Brzegi 55 8-45 Gdńsk 29 kwietni 217 1 / 2 Cłk Riemnn

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

MATEMATYKA 1 MACIERZE I WYZNACZNIKI

MATEMATYKA 1 MACIERZE I WYZNACZNIKI MATEMATYKA 1 MACIERZE I WYZNACZNIKI Definicj 1. Niech A i B będą dowolnymi zbiormi. Zbiór A B = {(, b) : A b B} wszystkich pr uporządkownych (, b) tkich, że A i b B nzywmy iloczynem krtezjńskim zbiorów

Bardziej szczegółowo

Całka oznaczona funkcji jednej zmiennej rzeczywistej. Autorzy: Witold Majdak

Całka oznaczona funkcji jednej zmiennej rzeczywistej. Autorzy: Witold Majdak Cłk oznczon funkcji jednej zmiennej rzeczywistej Autorzy: Witold Mjdk 6 Spis treści Definicj cłki oznczonej Riemnn Włsności cłki Riemnn Twierdzenie o średniej cłkowej funkcji Pierwsze zsdnicze twierdzenie

Bardziej szczegółowo

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2 Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,

Bardziej szczegółowo

Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk

Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk Anliz Mtemtyczn Cłk Riemnn Alexnder Denisjuk denisjuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych zmiejscowy ośrodek dydktyczny w Gdńsku ul. Brzegi 55 80-045 Gdńsk Anliz Mtemtyczn p.

Bardziej szczegółowo

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się

Bardziej szczegółowo

< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)

< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1) Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,

Bardziej szczegółowo

Całki niewłaściwe. Funkcje Γ i B Eulera oraz ich zastosowania

Całki niewłaściwe. Funkcje Γ i B Eulera oraz ich zastosowania Rozdził Cłki niewłściwe. Funkcje Γ i B Euler orz ich zstosowni W tym rozdzile omówimy pojęcie cłki niewłściwej. Zjmiemy się też dwom brdzo wżnymi konkretnymi typmi tkich cłek: funkcjmi Γ (gmm i B (bet

Bardziej szczegółowo

O SZEREGACH FOURIERA. T (x) = c k e ikx

O SZEREGACH FOURIERA. T (x) = c k e ikx O SZEREGACH FOURIERA Funkcję postci. Wielominy i szeregi trygonometryczne. T x = N k= N c k e ikx nzywmy wielominem trygonometrycznym. Jk widć, wielomin trygonometryczny jest funkcją okresową o podstwowym

Bardziej szczegółowo

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami) List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f

Bardziej szczegółowo

Materiały do kursu Matematyka na kierunku Informatyka studia stacjonarne

Materiały do kursu Matematyka na kierunku Informatyka studia stacjonarne Mteriły do kursu Mtemtyk n kierunku Informtyk studi stcjonrne Ryszrd Rębowski 9 mrc 09 Wstęp Przedstwiony poniżej mterił nleży rozumieć jko uzupełnienie do wykłdu z Mtemtyki w rmch kursu Mtemtyk przeprowdzonego

Bardziej szczegółowo

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika w Toruniu

Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Mikołj Kopernik w Toruniu Wydził Mtemtyki i Informtyki Krzysztof Frączek Anliz Mtemtyczn I Wykłd dl studentów I roku kierunku informtyk Toruń 206 Spis treści Liczby rzeczywiste 2 Ciągi liczbowe

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Mrin Gewert Zigniew Skoczls ANALIZA MATEMATYCZNA Definicje, twierdzeni, wzor Wdnie osiemnste powiększone GiS Oficn Wdwnicz GiS Wrocłw 6 Mrin Gewert Wdził Mtemtki Politechnik Wrocłwsk

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1 Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)

Bardziej szczegółowo

WYKŁAD 11: CAŁKOWANIE

WYKŁAD 11: CAŁKOWANIE MATEMATYCZNE PODSTAWY KOGNITYWISTYKI WYKŁAD 11: CAŁKOWANIE KOGNITYWISTYKA UAM, 2016 2017 JERZY POGONOWSKI Zkłd Logiki i Kognitywistyki UAM pogon@mu.edu.pl Początki systemtycznego rchunku różniczkowego

Bardziej szczegółowo

Wykład 3: Transformata Fouriera

Wykład 3: Transformata Fouriera Rchunek prwdopodobieństw MAP64 Wydził Elektroniki, rok kd. 28/9, sem. letni Wykłdowc: dr hb. A. Jurlewicz Wykłd 3: Trnsformt Fourier Złóżmy, że f(t) jest określon n R, ogrniczon, okresow o okresie 2T i

Bardziej szczegółowo

Niewymierność i przestępność Materiały do warsztatów na WWW6

Niewymierność i przestępność Materiały do warsztatów na WWW6 Niewymierność i przestępność Mteriły do wrszttów n WWW6 Piotr Achinger 23 sierpni 2010 1 Wstęp 1.1 Liczby wymierne i niewymierne Pytnie 1. Czy istnieją liczby niewymierne? Zdnie 1. Wykzć, że 1. 2 / Q,

Bardziej szczegółowo

2. Analiza Funkcje niepustymi zbiorami. Funkcja

2. Analiza Funkcje niepustymi zbiorami. Funkcja 2. Anliz Kresy: infim i suprem Wprowdzmy oznczenie dl rozszerzonej prostej rzeczywistej: R = R {, + }, przy czym w zbiorze tym zchowujemy nturlny porzdek w R orz przyjmujemy, że < < dl R. Niech A R. Ogrniczeniem

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx

Bardziej szczegółowo

Metody numeryczne. Całkowanie. Janusz Szwabiński. nm_slides-4.tex Metody numeryczne Janusz Szwabiński 23/10/ :07 p.

Metody numeryczne. Całkowanie. Janusz Szwabiński. nm_slides-4.tex Metody numeryczne Janusz Szwabiński 23/10/ :07 p. Metody numeryczne Cłkownie Jnusz Szwbiński szwbin@ift.uni.wroc.pl nm_slides-4.tex Metody numeryczne Jnusz Szwbiński 23/10/2002 10:07 p.1/69 Cłkownie numeryczne 1. Kilk uwg ogólnych 2. Kwdrtury Newton Cotes

Bardziej szczegółowo

f(x) dx = F (x) + const, (9.1)

f(x) dx = F (x) + const, (9.1) Rozdził 9 Cłk W tym rozdzile zjmujemy się cłkowniem. Jest to, obok różniczkowni i znjdowni wszelkich grnic, jedn z njwżniejszych opercji w cłej nlizie mtemtycznej. Mówiąc niezbyt precyzyjnie, cłkownie

Bardziej szczegółowo

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2014)

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2014) Prce Koł Mt. Uniw. Ped. w Krk. 1 014), 1-5 edgogicznego w Krkowie PKoło Mtemtyków Uniwersytetu Prce Koł Mtemtyków Uniwersytetu Pedgogicznego w Krkowie 014) Bet Gwron 1 Kwdrtury Newton Cotes Streszczenie.

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):

Bardziej szczegółowo

Matematyka dla biologów wykład 10.

Matematyka dla biologów wykład 10. Mtemtyk dl biologów wykłd 10. Driusz Wrzosek 13 grudni 2016 Cłki i krzywe Cłki przypomnienie Cłki zstosowni Zstosowni cłek: obliczni pól i objętości figur, długości krzywych; rozwizywnie równń różniczkowych

Bardziej szczegółowo

2 Całka oznaczona-cd Rozdrobnienia podziałów Warunki równoważne całkowalności Własności funkcji całkowalnych...

2 Całka oznaczona-cd Rozdrobnienia podziałów Warunki równoważne całkowalności Własności funkcji całkowalnych... Spis treści Uzupełnieni do wykłdu. (4 III 200) 2. Jednostjn ciągłość funkcji.................... 2.2 Cłk Riemnn (heurez)..................... 3.3 Cłk Riemnn -konstrukcj................... 4.4 Przykłdy

Bardziej szczegółowo

Kombinowanie o nieskończoności. 4. Jak zmierzyć?

Kombinowanie o nieskończoności. 4. Jak zmierzyć? Kombinownie o nieskończoności.. Jk zmierzyć? Projekt Mtemtyk dl ciekwych świt spisł: Michł Korch 9 kwietni 08 Trochę rzeczy z wykłdu Prezentcj multimediln do wykłdu. Nieskończone sumy Będzie nm się zdrzć

Bardziej szczegółowo

Wariacje Funkcji, Ich Własności i Zastosowania

Wariacje Funkcji, Ich Własności i Zastosowania Środowiskowe Studi Doktornckie z Nuk Mtemtycznych Uniwersytet Mrii Curie-Skłodowskiej w Lublinie Józef Bnś Ktedr Mtemtyki Politechnik Rzeszowsk Wricje Funkcji, Ich Włsności i Zstosowni Lublin 2014 Spis

Bardziej szczegółowo

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d

Bardziej szczegółowo

Analiza matematyczna ISIM II

Analiza matematyczna ISIM II Anliz mtemtyczn ISIM II Ryszrd Szwrc Spis treści Cłki niewłściwe 3. Cłki niewłściwe z funkcji nieujemnych............ 9.2 Cłki i szeregi........................... 2.3 Cłki niewłściwe z osobliwością w

Bardziej szczegółowo

PEWNIK DEDEKINDA i jego najprostsze konsekwencje

PEWNIK DEDEKINDA i jego najprostsze konsekwencje PEWNIK DEDEKINDA i jego njprostsze konsekwencje W rozdzile ósmym stwierdziliśmy, że z podnych tm pewników nie wynik istnienie pierwistków z liczb rzeczywistych. Uzupe lnimy terz liste pewników jeszcze

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

Piotr Stefaniak. Materiały uzupełniające do wykładu Matematyka

Piotr Stefaniak. Materiały uzupełniające do wykładu Matematyka Zchodniopomorski Uniwersytet Technologiczny w Szczecinie Piotr Stefnik Mteriły uzupełnijące do wykłdu Mtemtyk dl studentów Wydziłu Nuk o Żywności i Rybctwie Szczecin, 3 grudni 208 Spis treści Mcierze i

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

Wartość bezwzględna. Proste równania i nierówności.

Wartość bezwzględna. Proste równania i nierówności. Wrtość bezwzględn Proste równni i nierówności Dl liczb rzeczywistych możemy zdefiniowć opercję zwną wrtością bezwzględną lub modułem liczby Definicj 7,, Sens powyższej definicji jest nstępujący Jeżeli

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki krzywoliniowe

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki krzywoliniowe Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki krzywoliniowe 8.04.018 1. efinicj cłki krzywoliniowej nieskierownej Rozwżmy nstępujący problem. ny jest przewód elektryczny n którym rozmieszczone

Bardziej szczegółowo

3. F jest lewostronnie ciągła

3. F jest lewostronnie ciągła Def. Zmienną losową nzywmy funkcję X: tką, że x R : { : X( ) < x }. Ozn.: zmist pisd A = { : X( ) < x } piszemy A = { X < x } zdrzenie poleg n tym, że X( )

Bardziej szczegółowo

Matematyka II dla Wydziału Zarządzania

Matematyka II dla Wydziału Zarządzania Mtemtyk II dl Wydziłu Zrządzni nottki do użytku wewnętrznego dr Leszek Rudk Uniwersytet Wrszwski Wydził Zrządzni Podręczniki. Bżńsk T., Krwowsk I., Nykowsk M., Zdni z mtemtyki. Podręcznik dl studiów ekonomicznych,

Bardziej szczegółowo

MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element

MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element MATEMATYKA Wykłd 4 (Funkcje) Pisząc f : (,b) R rozumiemy Ŝe kŝdemu (, b) przyporządkowny zostł dokłdnie jeden element y R. Wykresem funkcji nzywmy zbiór pr (,f()) n płszczyźnie skłdjącej się ze wszystkich

Bardziej szczegółowo

f(g(x))g (x)dx = 6) x 2 1

f(g(x))g (x)dx = 6) x 2 1 Mtemtyk -. rok Trnsport, stcjonrne. stopie«przykªdowe zdni n kolokwium nr.cªki nieoznczone - cªkownie przez cz ±ci, cªkownie przez podstwienie Denicj F () = f(), f()d = F () + C Cªkownie przez cz ±ci:

Bardziej szczegółowo

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 006/7 3. Liczby nturlne i rzeczywiste; funkcje elementrne.. Funkcje. Niech X i Y będą zbiormi. Definicj.. Funkcją (inczej: odwzorowniem) z X do Y nzyw się przyporządkownie

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

Plan wykładów z Matematyki, I 2014/2015 semestr zimowy. (a) Podstawowe funkcje: pierwiastki, funkcja potęgowa, logarytm.

Plan wykładów z Matematyki, I 2014/2015 semestr zimowy. (a) Podstawowe funkcje: pierwiastki, funkcja potęgowa, logarytm. Pln wykłdów z Mtemtyki, I 014/015 semestr zimowy 1. Powtórk i widomości wstępne. () Podstwowe funkcje: pierwistki, funkcj potęgow, logrytm. (b) Trygonometri. (c) Dwumin Newton, przystość funkcji.. Rchunek

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

MATEMATYKA DLA I ROKU BIOCHEMII I BIOTECHNOLOGII

MATEMATYKA DLA I ROKU BIOCHEMII I BIOTECHNOLOGII MATEMATYKA DLA I ROKU BIOCHEMII I BIOTECHNOLOGII PAWEŁ ZAPAŁOWSKI Spis treści Litertur. Pojęci wstępne.. Kwntyfiktory.. Zbiory. Dziłni n zbiorch. Elementy lgebry liniowej 3.. Mcierze. Dziłni n mcierzch

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Mtemtyk 1 Šuksz Dwidowski Instytut Mtemtyki, Uniwersytet l ski Cªk oznczon Niech P = [, b] R b dzie przedziªem. Podziªem przedziªu P b dziemy nzywli k»d sko«czon rodzin Π = {P 1, P 2,..., P m } tkich przedziªów,»e

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 2 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy bz dnych" 1 Pojęcie krotki - definicj Definicj. Niech dny będzie skończony zbiór U := { A 1, A 2,..., A n }, którego

Bardziej szczegółowo

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b, WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz

Bardziej szczegółowo

Całkowanie numeryczne przy użyciu kwadratur

Całkowanie numeryczne przy użyciu kwadratur Cłkownie numeryczne przy użyciu kwdrtur Pln wykłdu: 1. Kwdrtury Newton-Cotes ) wzory: trpezów, prbol etc. b) kwdrtury złożone. Ekstrpolcj ) Ekstrpolcj Richrdson b) Metod Romberg c) Metody dptcyjne 3. Kwdrtury

Bardziej szczegółowo

Wzory uproszczonego mno zenia: (a + b) 2 = a 2 + 2ab + b 2, (a b) 2 = a 2 2ab + b 2, a 2 b 2 = (a b) (a + b).

Wzory uproszczonego mno zenia: (a + b) 2 = a 2 + 2ab + b 2, (a b) 2 = a 2 2ab + b 2, a 2 b 2 = (a b) (a + b). Wzory uproszczonego mno zeni: ( + b) = + b + b, ( b) = b + b, b = ( b) ( + b). Dzi ni n pot ¾egch: Dl ; y R orz ; b > 0 (dl pewnych wyk dników ; y z o zeni o ; b mog¾ być os bine w zle zności od sytucji)

Bardziej szczegółowo

W. Guzicki Zadanie 19 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 19 z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zdnie 19 z Informtor turlnego poziom rozszerzony 1 Zdnie 19. Rmię D trpezu D (w którym D) przedłużono do punktu E tkiego, że E 3 D. unkt leży n podstwie orz 4. Odcinek E przecin przekątną D

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki Mtemtyk Poziom podstwowy zestaw DO ĆWICZEŃ z mtemtyki poziom podstwowy rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1 Uzsdnij, że pole romu o przekątnych p i q wyrż się wzorem P = 1 pq Rozwiąznie: Przyjmij

Bardziej szczegółowo

Redukcja układów sił działających na bryły sztywne

Redukcja układów sił działających na bryły sztywne 1 Redukcj ukłdów sił dziłjących n bryły sztywne W zdnich tego rozdziłu wykorzystuje się zsdy redukcji ukłdów sił wykłdne w rmch mechniki ogólnej i powtórzone w tomie 1 podręcznik. Zdnie 1 Zredukowć ukłd

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania

Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania Zdi z lizy mtemtyczej - sem. II Cłki ozczoe i zstosowi Defiicj. Niech P = x x.. x będzie podziłem odcik [ b] części ( N przy czym x k = x k x k gdzie k δ(p = mx{ x k : k } = x < x

Bardziej szczegółowo

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx& LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy

Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy http://wwwiiuniwrocpl/ sle/teching/n-wdrpdf Anliz numeryczn Stnisłw Lewnowicz Styczeń 008 r Cłownie numeryczne Definicje, twierdzeni, lgorytmy 1 Pojęci wstępne Niech IF IF [, b] ozncz zbiór wszystich funcji

Bardziej szczegółowo

Zestaw wybranych wzorów matematycznych

Zestaw wybranych wzorów matematycznych Zestw wybrnych wzorów mtemtycznych mtemtyk elementrn pochodne cłki geometri nlityczn w 3D elementy trygonometrii sferycznej Piotr Choczyński p.j.choczynski@wp.pl www.e-korepetycje.net/pjchocz 9.0.07 v.

Bardziej szczegółowo

Analiza Matematyczna II

Analiza Matematyczna II Uniwersytet Jn Kochnowskiego w Kielcch Wydził Mtemtyczno-Przyrodniczy Instytut Mtemtyki Dr hb. prof. UJK Grzegorz Łysik Anliz Mtemtyczn II Skrypt wykłdów Kielce, 212. 1 1 Funkcje wielu zmiennych 1.1 Przestrzeń

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Wykład z matematyki dla studentów Inżynierii Środowiska. Wykład 1. Literatura PRZEGLĄD FUNKCJI ELEMENTARNYCH

Wykład z matematyki dla studentów Inżynierii Środowiska. Wykład 1. Literatura PRZEGLĄD FUNKCJI ELEMENTARNYCH Wykłd z mtemtyki dl studentów Inżynierii Środowisk Wykłd. Litertur. Gewert M., Skoczyls Z.: Anliz mtemtyczn, Oficyn Wydwnicz GiS, Wrocłw, 0.. Jurlewicz T., Skoczyls Z.: Algebr liniow, Oficyn Wydwnicz GiS,

Bardziej szczegółowo

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy

Bardziej szczegółowo