Metody Lagrange a i Hamiltona w Mechanice

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody Lagrange a i Hamiltona w Mechanice"

Transkrypt

1 Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15

2 Przestrzeń konfigurcyjn Zbiór współrzędnych uogólnionych q = (q 1, q 2,..., q n ) wygodnie jest trktowć jko punkt w n-wymirowej przestrzeni konfigurcyjnej. Pozycj punktu w przestrzeni konfigurcyjnej w pełni określ konfigurcję ukłdu poprzez relcje: r i = r i ( q), i = 1,..., N Pochodne czsowe q = ( q 1, q 2,..., q n ) nzywmy uogólnionymi prędkościmi ukłdu S. O x P 1 θ θ q Q P 2 x Poniewż r i = r i ( q) orz q = q(t), więc prędkości cząstek ukłdu są liniowymi kombincjmi prędkości uogólnionych: r i = r i q r i r i q n = q j q 1 q n q j Przyspieszeni cząstek ukłdu dne są przez: [ ( ) d ri r i = q j + r ] i q j = dt q j q j j,k=1 2 r i q j q k q j q k + r i q j q j M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 2 / 15

3 Energi kinetyczn we współrzędnych uogólnionych Przykłd: Energi kinetyczn ukłdu puktów P 1 i P 2 Poniewż prędkości punktów są odpowiednio równe: v 1 = ẋ i orz v 2 = ẋ i + ( cos θ i + sin θ k) θ więc energi kinetyczn ukłdu wyrż się przez: T = 1 2 m( v 1 v 1 )+ 1 2 m( v 2 v 2 ) = mẋ m2 θ2 +m cos θ ẋ θ O x P 1 θ P 2 Energi kinetyczn ukłdu cząstek jest jednorodną formą kwdrtową w zmiennych q 1,..., q n : ( T = 1 N m i ( v i v i ) = 1 N n ) m i r i q j r i q k = jk ( q) q j q k 2 2 q j q k gdzie jk ( q) = 1 2 N ( ri m i r ) i. q j q k k=1 j,k=1 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 3 / 15

4 Zsd D Alembert Równni Newton dl dowolnego ukłdu S: m i vi = F S i + F C i i = 1,..., N gdzie F S to siły przyłożone, F C to więzy. Wirtulnym przesunieciem nzywmy kżde przesuniecie zgodne z nłożonymi więzmi, w ustlonej chwili czsu: r i δ r i = δq j q j Zsd d Alembert: zkłdjąc, że więzy nie wykonują wirtulnej prcy, tzn. N Fi C δ r i = 0 mmy: N ( F i S m i vi ) δ r i = 0 Wirtuln prc wykonn przy przesunięciu δ r i wynosi: N N δw = F i S δ r i = F i S r i δq j = Q j δq j q j N gdzie Q j = F i S r i to tzw. uogólnione siły. q j M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 4 / 15 P v F C Σ v

5 Równni Lgrnge Ukłdem stndrdowym nzywmy ukłd który jest holonomiczny i w którym więzy nie wykonują wirtulnej prcy. Możn pokzć, że dl tkiego ukłdu: N N m i vi δ r i = m i vi r ( i d δq j = q j dt T T q j q j ) δq j W ten sposób otrzymujemy równni Lgrnge dl ukłdu stndrdowego opisnego z pomocą współrzędnych uogólnionych q, energii kinetycznej T ( q, q) orz uogólnionych sił {Q j }: d T T = Q j dt q j q j j = 1,..., n W przypdku ukłdów zchowwczych Q j = V i równni Lgrnge q j przyjmują postć, gdzie V ( q) jest energią potencjlną ukłdu: d T T = V dt q j q j q j j = 1,..., n M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 5 / 15

6 Zstosowni równń Lgrnge Przykłd: Blok zsuwjący się bez trci po równi, któr tkże może się poruszć bez trci po poziomej powierzchni. Jko współrzędne uogólnione wybiermy x orz y jk n rysunku. Obliczmy energie kinetyczną i potencjlną ukłdu: T = 1 2 Mẋ m ( ẋ 2 + ẏ 2 + 2ẋẏ cos α ) V = mgy sin α Obliczmy wielkości potrzebne do równń Lgrnge : T T ẋ T ẏ V V x = 0, = (M + m)ẋ + m cos α ẏ, T y = 0, = m cos α ẋ + mẏ, Równni Lgrnge przyjmują postć: d dt d dt x x = 0. y M = mg sin α. [(M + m)ẋ + m cos α ẏ] 0 = 0 [m cos α ẋ + mẏ] 0 = mg sin α Po zróżniczkowniu i rozwiązniu ukłdu równń otrzymujemy: mg sin α cos α (M + m)g sin α ẍ = M + m sin 2 ÿ = α M + m sin 2 α M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 6 / 15 y ẋ m α ẏ ẋ

7 Zstosowni równń Lgrnge Przykłd: Znjdź równni Lgrnge dl ukłdu przedstwionego n rysunku. Punkt P 1 ślizg się bez trci. Brk siły grwitcji. N punkt P 2 dził sił F (t). Jko współrzędne uogólnione wybiermy x orz θ jk n rysunku. Sił zleżn od czsu nie może być przedstwion z pomocą potencjłu. W tej sytucji musimy obliczyć siły uogólnione z definicji. Poniewż F S 1 = 0, F S 2 = F (t) i, r 1 = x i, r 2 = (x + sin θ) i cos θ k więc: Q x = F S 1 r 1 x + F S 2 r 2 x = 0 + F (t) i i = F (t) Q θ = F S 1 r 1 θ + F S 2 r 2 θ = 0 + F (t) i ( cos θ i + sin θ k) = cos θ F (t) Energi kinetyczn ukłdu T = mẋ 2 + (m cos θ)ẋ θ m θ 2 d [ Równni Lgrnge : 2mẋ + (m cos θ) dt θ ] = F (t) d [ (m cos θ)ẋ + m dt θ ] [ (m sin θ)ẋ θ ] = ( cos θ)f (t) M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 7 / 15 O x m P 1 θ m P 2 F (t)

8 Ukłdy stndrdowe z ruchomymi więzmi Teorię równń Lgrnge możn rozszerzyć n klsę problemów z więzmi zleżnymi od czsu. Konfigurcj ukłdu określon jest z pomocą relcji: r i = r i ( q, t) Prędkości cząstek dne są przez: r i = i = 1,..., N r i q j + r i q j t Ntomist energi kinetyczn jest niejednorodną formą kwdrtową: T ( q, q, t) = jk ( q, t) q j q k + b j ( q, t) q j + c( q, t) j,k=1 Poniewż ruchome więzy wykonują prcę nd ukłdem, więc cłkowit energi T + V nie jest zchown. Jednk wykonn przez więzy prc wirtuln N więc spełnione są równni Lgrnge. Rozwżmy whdło, którego punkt zwieszeni porusz się w zdny sposób, np. Z(t) = Z 0 cos pt. Wektor wodzący punktu P : r = ( sin θ) i + (Z(t) + cos θ) k F C i ( r i / q j )δq j = 0, z Z(t) M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 8 / 15 k i A O θ Z(t) P θ

9 Ukłdy stndrdowe z ruchomymi więzmi Energi kinetyczn i potencjln ukłdu dne są odpowiednio przez: T = 1 ( 2 m 2 θ2 + Ż2 2 θż ) sin θ V = mg(z + cos θ) Równnie Lgrnge dl współrzędnej θ m postć: d dt m( θ Ż sin θ) + m θż cos θ = mg sin θ Wprowdzjąc oznczenie Ω 2 = g/ orz θ/θ 0 przymując Z(t) = Z 0 cos pt dostjemy: 1 θ + (Ω 2 + Z 0p 2 ) cos pt sin θ = 0 W celu znlezieni rozwiązń numerycznych wprowdzmy bezwymirowe prmetry: τ = pt, p/ω orz Z 0 /: d 2 ( θ Ω 2 dτ 2 + p 2 + ( ) ) Z0 cos τ sin θ = 0 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 9 / 15 θ/2π τ /2 π τ/2π

10 Lgrngin i zsd Hmilton Poniewż dl ukłdów zchowwczych mmy T = T ( q, q) orz V = V ( q), więc równni Lgrnge mozn zpisć w postci: ( ) d T T = d ( ) V V j = 1,..., n dt q j q j dt q j q j Wprowdzjąc tzw. lgrngin L( q, q) = T ( q, q) V ( q), możemy równni Lgrnge zpisć w postci: ( ) d L L = 0 j = 1,..., n dt q j q j W przypdku więzów ruchomych jedyną zminą jest to, ze terz L = L( q, q, t). Zsd Hmilton: Spośród wszystkich możliwych dróg, po których ukłd dynmiczny może przejść z jednego punktu w przestrzeni konfigurcyjnej do innego, w zdnym przedzile czsu, relizown jest t drog, któr odpowid wrtości stcjonrnej dziłni czyli cłki po czsie z lgrnginu ukłdu: t2 δ L( q, q, t)dt t 1 Równni Euler odpowidjące powyższemu problemowi wricyjnemu, są identyczne z równnimi Lgrnge. M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 10 / 15

11 Energi potencjln zleżn od prędkości Istnieją ukłdy w których przyłożone siły nie są zchowwcze (tzn. nie istnieje energi potencjln), mimo to możn zpisć równni ruchu z pomocą równń Lgrnge. Jest to możliwe w sytucji kiedy uogólnione siły dje zpisć w postci: Q j = d U U j = 1,..., n dt q j q j gdzie U( q, q, t) jest energią potencjlną zleżną od prędkości. W tej sytucji mozn zbudowć Lgrngin: L( q, q, t) = T ( q, q, t) U( q, q, t) Przykłd: Lgrngin cząstki nłdownej poruszjącej się w sttycznym polu elektrycznym i sttycznym polu mgnetycznym. Możn pokzć, że siłę Lorentz F = e E + e v B dje się wyprowdzić z równń Lgrnge wprowdzjąc energię potencjlną zleżną od prędkości U = eφ( r) e r A( r) gdzie φ i A to tzw. petencjły sklrny i wektorowy, z których mozn skonstruowć pol E = grdφ orz B = rot A. Sm Lgrngin cząstki przyjmuje postć: L = 1 2 m r r eφ( r) + e r A( r) M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 11 / 15

12 Równni Lgrnge - przykłd Przykłd: Cząstk o msie m ślizg się po wewnętrznej powierzchni stożk (rysunek). Znjdź równnie ruchy cząstki. Jko współrzędne uogólnione wybiermy współrzędne cylindryczne r, θ orz z. Korzystjąc z równni więzów z = r/tnα możemy wyeliminowć jedną ze współrzędnych. Energi kinetyczn: 1 2 mv2 = 1 2 m(ṙ2 + r 2 θ2 + ż 2 ) = 1 2 m(ṙ2 + r 2 θ2 + ṙ 2 ctg 2 α) = ṙ 2 / sin 2 α + r2 θ 2 Energi potencjln (V (z = 0) = 0): V = mgz = mgr ctg α Lgrngin: L = 1 2 m(ṙ2 / sin 2 α + r 2 θ2 ) mgr ctg α Poniewż L nie zleży bezpośrednio od θ więc mmy: L θ = mr2 θ = const moment pędu wokół osi z. Równnie ruchu dl współrzędnej r: r r θ 2 sin 2 α + g sin α cos α = 0 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 12 / 15 z θ α r r

13 Równni Lgrnge - przykłd Przykłd: Znjdź okres młych drgń whdł mtemtycznego umieszczonego w wgonie poruszjącym się z przyspieszeniem w kierunku osi x. Wrunki początkowe: x(0) = 0, ẋ(0) = v 0. Pozycj i prędkość msy m: x = v 0 t t2 + l sin θ ẋ = v 0 + t + l θ sin θ y = l cos θ ẏ = l θ cos θ Lgrngin: L = T V = 1 2 m(v 0 + t + l θ cos θ) m(l θ sin θ) 2 + mgl cos θ Równnie ruchu dl współrzędnej θ: θ = g l sin θ l cos θ Znjdujemy punkt równowgi θ = θ e żądjąc by θ = 0: 0 = g sin θ e + cos θ e tg θ e = g Rozwżmy młe drgni wokół punktu równowgi, tzn. θ = θ e + η gdzie η jest młe: θ = η = g l sin (θ e + η) l cos (θ e + η) () θ e (b) θ m M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 13 / 15

14 Równni Lgrnge - przykłd Przykłd: Znjdź okres młych drgń whdł mtemtycznego umieszczonego w wgonie poruszjącym się z przyspeiszeniem w kierunku osi x. Zchowując wiodące wyrzy w rozwinięciu sin η i cos η otrzymujemy równnie: η = 1 l (g cos θ 2 + g e sin θ e )η η = 2 η l l Rozwiązniem tego równi jest ruch hrmoniczny o okresie T = 2π g 2 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 14 / 15

15 Funkcj energii h Rozwżmy ukłd opisny z pomocą lgrnżjnu L( q, q, t) Pomnóżmy j-te równnie Lgrnge obustronnie przez q j i wysumujmy po indeksie j: [ ( d L 0 = dt q j = d dt gdzie h = ) L q j ( ) L q j q j ] q j = L + L t = dh dt + L t [ ( ) d L q j L q j L ] q j = dt q j q j q j ( ) L q j L nzywmy funkcją energii ukłdu S, któr jest q j uogólnieniem pojęci energii. Interpretcj funkcji energii h: L = L( q, q, t) orz L/ t 0; h nie jest zchowne orz h T + V L = L( q, q) wtedy L/ t = 0; h jest stłe, S jest stndrdowym ukłdem zchowwczym: h jest zchowne i równe energii cłkowitej ukłdu T + V. M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 15 / 15

mechanika analityczna 2 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 2 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechnik nlityczn niereltywistyczn L.D.Lndu, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-8.06.07 środek msy w różnych ukłdch inercjlnych v = v ' u m v = P= P ' u m v ' m m u trnsformcj pędu istnieje

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I. RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1 Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

Elementy rachunku wariacyjnego

Elementy rachunku wariacyjnego Wykłd 13 Elementy rchunku wricyjnego 13.1 Przykłdowe zgdnieni Rchunek wricyjny zjmuje się metodmi wyznczni wrtości ekstremlnych funkcjonłów określonych n pewnych przestrzenich funkcyjnych. Klsyczn teori

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki INSTYTUT MATEMATYKI POLITECHNIKA KRAKOWSKA Dr Mrgret Wicik e-mi: mwicik@pk.edu.p Równni różniczkowe cząstkowe - metod Fourier. Przykłdowe rozwiązni i wskzówki zd.1. Wyznczyć funkcję opisującą drgni podłużne

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy

Bardziej szczegółowo

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):

Bardziej szczegółowo

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9 ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii Wydził Mtemtyki Stosownej Zestw zdń nr 6 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 9 listopd 8r. Cłk oznczon i cłk niewłściw Zstosowni rchunku cłkowego w geometrii

Bardziej szczegółowo

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato Struktur energetyczn cił stłych-cd Fizyk II dl Elektroniki, lto 011 1 Fizyk II dl Elektroniki, lto 011 Przybliżenie periodycznego potencjłu sieci krystlicznej model Kronig- Penney potencjł rzeczywisty

Bardziej szczegółowo

Wykład Indukcja elektromagnetyczna, energia pola magnetycznego

Wykład Indukcja elektromagnetyczna, energia pola magnetycznego Wykłd 3 3. ndukcj eektromgnetyczn, energi po mgnetycznego 3. ndukcyjność 3.. Trnsformtor Gdy dwie cewki są nwinięte n tym smym rdzeniu (często jedn n drugiej) to prąd zmienny w jednej wywołuje SEM indukcji

Bardziej szczegółowo

Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA

Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA Część 2 7. METODA MIESZANA 7. 7. METODA MIESZANA Metod mieszn poleg n jednoczesnym wykorzystniu metody sił i metody przemieszczeń przy rozwiązywniu ukłdów sttycznie niewyznczlnych. Nwiązuje on do twierdzeni

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

Prawo Coulomba i pole elektryczne

Prawo Coulomba i pole elektryczne Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

III. Rachunek całkowy funkcji jednej zmiennej.

III. Rachunek całkowy funkcji jednej zmiennej. III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

Modelowanie układów dynamicznych

Modelowanie układów dynamicznych Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 11 Równania Eulera-Lagrange a Rozważmy układ p punktów materialnych o współrzędnych uogólnionych q i i zdefiniujmy lagranżian

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych M O D E L O W A N I E I S Y M U L A C J A

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych M O D E L O W A N I E I S Y M U L A C J A POLTECHNKA GDAŃSKA Wydził Elektrotechniki i Automtyki Ktedr Energoelektroniki i Mszyn Elektrycznych M O D E L O W A N E S Y M U L A C J A S Y S T E M Ó W M E C H A T O N K Kierunek Automtyk i obotyk Studi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx& LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.

Bardziej szczegółowo

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2014)

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2014) Prce Koł Mt. Uniw. Ped. w Krk. 1 014), 1-5 edgogicznego w Krkowie PKoło Mtemtyków Uniwersytetu Prce Koł Mtemtyków Uniwersytetu Pedgogicznego w Krkowie 014) Bet Gwron 1 Kwdrtury Newton Cotes Streszczenie.

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

Pochodne i całki, macierze i wyznaczniki

Pochodne i całki, macierze i wyznaczniki Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

Symetrie i prawa zachowania Wykład 6

Symetrie i prawa zachowania Wykład 6 Symetrie i prawa zachowania Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/29 Rola symetrii Największym

Bardziej szczegółowo

cz. 2 dr inż. Zbigniew Szklarski

cz. 2 dr inż. Zbigniew Szklarski Wykłd 11: Elektrosttyk cz. 2 dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://lyer.uci.gh.edu.pl/z.szklrski/ Pole elektryczne przewodnik N powierzchni metlicznej (przewodzącej) cły łdunek gromdzi się n

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

a a a b M. Przybycień Matematyczne Metody Fizyki I

a a a b M. Przybycień Matematyczne Metody Fizyki I Relcje równowr wnowżności i klsy Definicj: Relcją określoną n zbiorze A nzywmy dowolny test porównwczy pomiędzy uporządkownymi prmi elementów elementów zbioru A. Jeśli pr (, b) œ A ä A spełni ten test,

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnik Gdńsk Wydził Elektrotechniki i Automtyki Ktedr Inżynierii Systemów Sterowni Teori sterowni Sterowlność i obserwowlność liniowych ukłdów sterowni Zdni do ćwiczeń lbortoryjnych termin T Oprcownie:

Bardziej szczegółowo

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami) List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini sierpień 0 Poziom Podstwowy Schemt ocenini sierpień Poziom podstwowy Klucz punktowni zdń zmkniętych Nr zdni 4 5 6 7 8 9 0 4 5 6 7 8 9 0 4 5 Odpowiedź

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7 Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem

Bardziej szczegółowo

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się

Bardziej szczegółowo

Niewymierność i przestępność Materiały do warsztatów na WWW6

Niewymierność i przestępność Materiały do warsztatów na WWW6 Niewymierność i przestępność Mteriły do wrszttów n WWW6 Piotr Achinger 23 sierpni 2010 1 Wstęp 1.1 Liczby wymierne i niewymierne Pytnie 1. Czy istnieją liczby niewymierne? Zdnie 1. Wykzć, że 1. 2 / Q,

Bardziej szczegółowo

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć

Bardziej szczegółowo

f(g(x))g (x)dx = 6) x 2 1

f(g(x))g (x)dx = 6) x 2 1 Mtemtyk -. rok Trnsport, stcjonrne. stopie«przykªdowe zdni n kolokwium nr.cªki nieoznczone - cªkownie przez cz ±ci, cªkownie przez podstwienie Denicj F () = f(), f()d = F () + C Cªkownie przez cz ±ci:

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew

Bardziej szczegółowo

Podstawy robotyki wykład VI. Dynamika manipulatora

Podstawy robotyki wykład VI. Dynamika manipulatora Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy

Bardziej szczegółowo

Wykład 3: Transformata Fouriera

Wykład 3: Transformata Fouriera Rchunek prwdopodobieństw MAP64 Wydził Elektroniki, rok kd. 28/9, sem. letni Wykłdowc: dr hb. A. Jurlewicz Wykłd 3: Trnsformt Fourier Złóżmy, że f(t) jest określon n R, ogrniczon, okresow o okresie 2T i

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową

Bardziej szczegółowo

Zadanie 5. Kratownica statycznie wyznaczalna.

Zadanie 5. Kratownica statycznie wyznaczalna. dnie 5. Krtownic sttycznie wyznczln. Wyznczyć wrtości sił w prętch krtownicy sttycznie wyznczlnej przedstwionej n Rys.1: ). metodą nlitycznego równowżeni węzłów, ). metodą gricznego równowżeni węzłów;

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki krzywoliniowe

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki krzywoliniowe Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki krzywoliniowe 8.04.018 1. efinicj cłki krzywoliniowej nieskierownej Rozwżmy nstępujący problem. ny jest przewód elektryczny n którym rozmieszczone

Bardziej szczegółowo

Wykład 8: Całka oznanczona

Wykład 8: Całka oznanczona Wykłd 8: Cłk ozczo dr Mriusz Grządziel grudi 28 Pole trójkt prboliczego Problem. Chcemy obliczyć pole s figury S ogriczoej prostą y =, prostą = i wykresem fukcji f() = 2. Rozwizie przybliżoe. Dzielimy

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

Temat 1. Afiniczne odwzorowanie płaszczyzny na płaszczyznę. Karol Bator. GGiIŚ, II rok, niestac. grupa 1

Temat 1. Afiniczne odwzorowanie płaszczyzny na płaszczyznę. Karol Bator. GGiIŚ, II rok, niestac. grupa 1 Temt Afiniczne odwzorownie płszczyzny n płszczyznę Krol Btor GGiIŚ, II rok, niestc. grp SPRAWOZDANIE DANE FORMALNO-PRAWNE:. Zleceniodwc: Akdemi Górniczo-Htnicz Wydził Geozdezji Górniczej i Inżynierii Środowisk.

Bardziej szczegółowo

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu w postaci

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

Zapis wskaźnikowy i umowa sumacyjna

Zapis wskaźnikowy i umowa sumacyjna Zpis wskźnikow i mow smcjn Pokzć, że e ikm e ikm Pokzć, że e e δ ikm jkm Dn jest mcierzow reprezentcj tensor 7 7 7 ), ), c) 7 7 Podć dziewięć skłdowch d zdefiniownch związkiem: Wrnki nierozdzielności możn

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 4 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności

Bardziej szczegółowo

Analiza Matematyczna (część II)

Analiza Matematyczna (część II) Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

CAŁKA OZNACZONA JAKO SUMA SZEREGU

CAŁKA OZNACZONA JAKO SUMA SZEREGU CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE)

TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE) 1. TEORIA PŁYT CIENKOŚCIENNYCH 1 1. 1. TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE) Płyt jest to ukłd ogrniczony dwom płszczyznmi o młej krzywiźnie. Odległość między powierzchnimi ogrniczjącymi tę wysokość płyty

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1) Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x

Bardziej szczegółowo

Praca, potencjał i pojemność

Praca, potencjał i pojemność Prc, potencjł i pojemność Mciej J. Mrowiński 1 listopd 2010 Zdnie PPP1 h Wyzncz wrtość potencjłu elektrycznego w punkcie oddlonym o h od cienkiego, jednorodnie nłdownego łdunkiem Q pierścieni o promieniu.

Bardziej szczegółowo

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b, WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)

< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1) Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności

Bardziej szczegółowo

Piotr Stefaniak. Materiały uzupełniające do wykładu Matematyka

Piotr Stefaniak. Materiały uzupełniające do wykładu Matematyka Zchodniopomorski Uniwersytet Technologiczny w Szczecinie Piotr Stefnik Mteriły uzupełnijące do wykłdu Mtemtyk dl studentów Wydziłu Nuk o Żywności i Rybctwie Szczecin, 3 grudni 208 Spis treści Mcierze i

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo