Podstawy fizyki sezon 1 VII. Ruch drgający

Podobne dokumenty
Fizyka 11. Janusz Andrzejewski

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

RUCH HARMONICZNY. sin. (r.j.o) sin

Drgania i fale II rok Fizyk BC

Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.

Wykład 6 Drgania. Siła harmoniczna

Fizyka 12. Janusz Andrzejewski

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

Siła sprężystości - przypomnienie

Kinematyka: opis ruchu

DRGANIA OSCYLATOR HARMONICZNY

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

Drgania wymuszone - wahadło Pohla

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

VII. Drgania układów nieliniowych

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

Podstawy fizyki sezon 1 III. Praca i energia

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

drgania h armoniczne harmoniczne

ver b drgania harmoniczne

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia

Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu

MECHANIKA II. Drgania wymuszone

Drgania. O. Harmoniczny

2.6.3 Interferencja fal.

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

a = (2.1.3) = (2.1.4)

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Podstawy fizyki wykład 7

Fizyka 2 Wróbel Wojciech

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi

Kinematyka: opis ruchu

Fizyka Elementarna rozwiązania zadań. Część 20, 21 i 22 Przygotowanie: Grzegorz Brona,

Prawa ruchu: dynamika

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice

Wykład FIZYKA I. 9. Ruch drgający swobodny

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Fale mechaniczne i akustyka

PRZYKŁADY RUCHU HARMONICZNEGO. = kx

Wykład FIZYKA I. 9. Ruch drgający swobodny. Dr hab. inż. Władysław Artur Woźniak

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Laboratorium Mechaniki Technicznej

Drgania układu o wielu stopniach swobody

TEORIA DRGAŃ Program wykładu 2016

Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

Podstawy fizyki sezon 1 VIII. Ruch falowy

Zjawisko interferencji fal

Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15

Siła elektromotoryczna

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,

Zjawisko interferencji fal

, to: Energia całkowita w ruchu harmonicznym prostym jest proporcjonalna do kwadratu amplitudy.

Zjawisko interferencji fal

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.

Fale cz. 1. dr inż. Ireneusz Owczarek CMF PŁ 2012/13

MECHANIKA II. Drgania wymuszone

2. Rodzaje fal. Fale te mogą rozchodzić się tylko w jakimś ośrodku materialnym i podlegają prawom Newtona.

ANALIZA HARMONICZNA DŹWIĘKU SKŁADANIE DRGAŃ AKUSTYCZNYCH DUDNIENIA.

II. RUCH DRGAJĄCY I FALOWY

Podstawy fizyki sezon 1 II. DYNAMIKA

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

I. DYNAMIKA PUNKTU MATERIALNEGO

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium

Ruch drgający i falowy

Wykład FIZYKA I. 5. Energia, praca, moc. Dr hab. inż. Władysław Artur Woźniak

Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1

II. RUCH DRGAJĄCY I FALOWY

Człowiek najlepsza inwestycja FENIKS

1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

Zadanie domowe z drgań harmonicznych - rozwiązanie trzech wybranych zadań

Natomiast dowolny ruch chaotyczny, np. ruchy Browna, czy wszelkie postacie ruchu postępowego są przykładami ruchu nie będącego ruchem drgającym.

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

gdzie x jest wychyleniem z położenia równowagi. Współczynnik k jest tutaj współczynnikiem proporcjonalności.

Ć W I C Z E N I E N R M-2

3 Podstawy teorii drgań układów o skupionych masach

Kinematyka: opis ruchu

Metody Lagrange a i Hamiltona w Mechanice

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona

Transkrypt:

Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Ruch skutkiem działania siły Przypominamy: ruch ciała spowodowany jest (nie-)działaniem siły. Można znaleźć położenie, prędkość i przyspieszenie ciała, jeżeli znamy siłę, która na ciało działa. Do tej pory pokazano dwa przykłady: F g = mg m dv dt = mg a(t) = g v(t) = v 0 + at x t ruch ciała w polu siły ciężkości Rozwiązujemy: = x 0 + v 0 t + 1 2 at2 m dv(t) dt = F(r, v, t) ruch ciała w polu siły ciężkości z oporem powietrza F op = bv m dv dt = mg bv v t = mg b (1 e b m t ) sprawdzam!: 2

Siła harmoniczna Załóżmy, że chcemy opisać ruch pod wpływem siły postaci: F x = kx i. Jaką sytuację fizyczną opisuje taka siła? Jest to siła proporcjonalna do przemieszczenia i skierowana przeciwnie do przemieszczenia SIŁA HARMONICZNA ii. iii. iv. Napiszmy równania ruchu: Rozwiążmy równania ruchu: Zinterpretujmy rozwiązania. m dv dt = kx m d2 x = kx dt2 x t v t a t = A cos ωt + φ = Aω sin ωt + φ = Aω 2 cos (ωt + φ) A- amplituda, ω częstość, φ - faza początkowa 3

Z.Kąkol Ruch harmoniczny - interpretacja Położenie, prędkość i przyspieszenie ciała są okresowymi funkcjami czasu! x max = A v max = Aω a max = Aω 2 Ruch pod wpływem siły harmonicznej nazywamy ruchem harmonicznym. Nie każdy ruch okresowy jest ruchem harmonicznym. 4

http://efizyka.net.pl/energia-w-ruchu-harmonicznym_8048 Energia drgań Energia kientyczna i potencjalna w ruchu harmonicznym: E k t = 1 2 mv2 t = 1 2 ma2 ω 2 sin 2 (ωt + φ) E p t = 1 2 mx2 t = 1 2 ka2 cos 2 (ωt + φ) Energia całkowita: E c = E p t + E k t = ω = k m 1 2 ka2 cos 2 (ωt + φ)+sin 2 (ωt + φ) = 1 2 ka2 Energia kinetyczna i potencjalna zmieniają się okresowo z czasem, całkowita energia jest stała 5

Ruch drgający w przykładach Oscylator harmoniczny masa zawieszona na sprężynie. Ruch masy m spowodowany jest siłą sprężystości sprężyny x t v t a t = A cos ωt + φ = Aω sin ωt + φ = Aω 2 cos (ωt + φ) T = 2π ω = 2π m k 6

http://efizyka.net.pl/ Ruch drgający w przykładach Wahadło matematyczne Wahadło fizyczne T = 2π l g wyprowadzam! Ruch wahadła matematycznego i fizycznego jest harmoniczny TYLKO dla MAŁYCH WYCHYLEŃ, tzn. takich, że: sin φ = φ 7

Drgania tłumione Załóżmy teraz, że masa drgająca na sprężynie zanurzona jest w gęstej cieczy. Obserwujemy tłumienie drgań ruch odbywa się pod wpływem siły sprężystości F s = kx i siły tłumiącej F tł = bv: II Zas.Dyn.New: m d2 x dx = kx b dt2 dt Rozwiązanie równania ruchu oscylatora tłumionego: x t = Ae bt 2m cos(ω t + φ) ω = k m b2 4m 2 sprawdzam! Energia: E t = 1 2 ka e bt 2m 8

Drgania tłumione w zależności od tłumienia Rozwiązanie równania ruchu oscylatora tłumionego: x t = Ae bt 2m cos(ω t + φ) amplituda drgań tłumionych W zależności od współczynnika tłumienia: gdy b 2 < 4mk drgania tłumione, ω = k m b2 4m 2 = ω 0 2 β 2 częstość kołowa drgań tłumionych częstość kołowa drgań własnych β = b 2m współczynnik tłumienia gdy b 2 = 4mk tłumienie krytyczne, gdy b 2 > 4mk aperiodyczny powrót do stanu równowagi β β = b 2m = 1 τ β współczynnik tłumienia, τ - stała czasowa 9

Drgania z siłą wymuszającą Tłumienie drgań można kompensować działając siłą wymuszającą, np. okresową: F z = F 0 sin ωt II Z.D.N: m d2 x dx + b dt2 dt + kx = F 0 sin ωt β = b 2m = 1 τ ; ω 0 = k m ; α 0 = F 0 m Rozwiązujemy? d 2 x dt 2 + 1 τ dx dt + ω 0 x = α 0 sin ωt Załóżmy, że rozwiązanie jest postaci: x t = A 0 ω sin( ωt + φ(ω)) co oznacza drgania niegasnące, ale zarówno amplituda, jak i przesunięcie fazowe są funkcją częstości siły wymuszającej ω 10

Drgania z siłą wymuszającą Pokazać można, że amplituda drgań z siłą wymuszającą wynosi: A 0 ω = α 0 ω 02 ω 2 2 + 4β 2 1/ 2 a przesunięcie fazowe: tg φ = 2βω ω 02 ω 2 Gdy częstość siły wymuszającej ω będzie w pobliżu częstości drgań własnych ω 0, a tłumienie β nie będzie za duże: amplituda wzrośnie do maksimum! Może dojść do zjawiska REZONANSU 11

Rezonans Częstość rezonansowa (obliczymy ją poprzez znalezienie maksimum A 0 (ω)): ω r = ω 02 2β 2 Odpowiada ona amplitudzie rezonansowej: A r = α 0 2β ω 02 2β 2 Dla drgań swobodnych, dla których: ω r = ω 0 przesunięcie fazowe φ pomiędzy siłą a wychyleniem wynosi: φ = π. 2 Oznacza to, że siła wymuszająca jest przesunięta o π 2 wychylenia. w stosunku do Ale za to prędkość (policz!) jest w fazie z siłą wymuszającą! Moc zależy od prędkości, zatem w warunkach rezonansu dochodzi do maksymalnej absorbcji mocy przez oscylator znaczenie przy rezonansie elektrycznym 12

Drgania, rezonanse i życie 13

Składanie drgań harmonicznych Zasada superpozycji jeżeli ciało podlega jednocześnie dwóm drganiom, to jego wychylenie jest sumą wychyleń wynikających z każdego ruchu z osobna. Składanie drgań zachodzących w tych samych kierunkach: x 1 t = A 1 cos (ω 1 t + φ 1 ) x 2 t = A 2 cos (ω 2 t + φ 2 ) x w t = x 1 t + x 2 (t) Składanie drgań w kierunkach wzajemnie prostopadłych: x t = A x cos (ω x t + φ x ) y t = A y cos (ω y t + φ y ) y(x) 14

Składanie drgań (jeden kierunek) Skłądamy drgania o tej samej (lub nie) amplitudzie i częstości. Drgania są przesunięte względem siebie o fazę : x 1 t = A cos ωt ; x 2 t = A cos(ωt + φ) W wyniku złożenia otrzymujemy (do policzenia, zwykła trygonometria!): x w t = x 1 t + x 2 t = 2A cos φ 2 cos ωt + φ 2 Są to drgania o amplitudzie wypadkowej zależnej od fazy φ: dla φ = π; x w = 0 całkowite wygaszenie drgań, dla φ = 2π; x w = 2Acos ωt dwukrotny wzrost amplitudy drgań - wzmocnenie, amplituda wypadkowa φ = 2π Jeżeli różnica faz pozostaje stała w czasie drgania koherentne 15

Dudnienia Nakładanie się drgań o bardzo zbliżonych częstościach: x 1 (t) = A sin(ω + ω 2 )t x 2 t = A sin(ω ω 2 )t x w t = x 1 t + x 2 t = A sin(ω ω 2 )t + sin(ω + ω 2 )t Korzystając z tożsamości trygonometrycznych: x w t = 2A cos ωt sin ωt wolnozmieniająca się amplituda wypadkowa sin α + β 2A cos ωt = sin α cos β + cos α sin β Efekt sumowania drgania z pierwotną częstością, ale obwiednia zmienia się powoli w czasie (efekty dźwiękowe, elektrotechnika) sin ωt 16

Składanie niekoherentne Jeżeli różnica faz drgań składowych zmienia się z upływem czasu w dowolny sposób, to również amplituda drgań wypadkowych zmienia się z czasem niekoherentne składanie drgań. Drgania wypadkowe typu: x t nazywamy modulowanymi, gdy: = A t cos ωt + φ(t) A = const; φ t - modulowana jest faza FM φ = const; da dt ωamax - modulowana amplituda - AM 17

Analiza harmoniczna Analiza harmoniczna metoda przedstawienia złożonych drgań modulowanych w postaci szeregu prostych drgań harmonicznych G.Fourier dowolne drganie można przedstawić jako sumę prostych drgań harmonicznych o wielokrotnościach pewnej podstawowej częstości kątowej ω: N x t = n=0 A n sin(n ωt + φ n ) Pierwszy wyraz szeregu częstotliwość podstawowa ω, następne częstotliwości harminiczne- pierwsza, druga, itp. W ten sposób można za pomocą prostych drgań harminicznych przedstawić drganie o dowolnym kształcie, np. piłokształtnym, trójkątnym, prostokątnym.. 18

http://www.if.pw.edu.pl/~bibliot/archiwum/adamczyk/wykladyfo Analiza harmoniczna Analiza harmoniczna metoda przedstawienia złożonych drgań modulowanych w postaci szeregu prostych drgań harmonicznych G.Fourier (1807) dowolne drganie można przedstawić jako sumę prostych drgań harmonicznych o wielokrotnościach pewnej podstawowej częstości kątowej ω: N x t = n=0 An sin(n ωt + φ n ) Pierwszy wyraz szeregu częstotliwość podstawowa ω, następne częstotliwości harminiczne- pierwsza, druga, itp. W ten sposób można za pomocą prostych drgań harminicznych przedstawić drganie o dowolnym kształcie, np. piłokształtnym, trójkątnym, prostokątnym.. 19

Krzywe Lissajous Składania drgań harmonicznych o tych samych częstościach ω w kierunkach wzajemnie protopadłych: x t = A x sin(ωt) y t = A y sin(ωt + φ) Jules Lissajous (1857) - demonstracja wyniku, gdy: φ = 0, 90, 180 φ = 0 : y x = A y A x x - linia prosta φ = 180 : y x = A y A x x - linia prosta φ = 90 : x t = A x sin(ωt) y t = A y cos(ωt) x 2 A x 2 + y2 A y 2 = 1 elipsa, okrąg 20

Krzywe Lissajous dowolna faza Inne różnice faz, ale te same częstości elipsy, ale w kierunkach innych niż osie ukł. współrzędnych. Przypadek ogólny dowolne fazy, częstości, amplitudy krzywe Lissajous: 21

Podsumowanie Rozwiązanie równania ruchu pod wpływem siły o zadanej postaci pozwala na wyznaczenie położenia, prędkości i przyspieszenia. Ruch pod wpływem siły harmonicznej rozwiązanie, parametry, przykłady: prosty oscylator harmoniczny, wahadło matematyczne, wahadło fizyczne. Ruch z tłumieniem równanie, rozwiązanie, interpretacja. Ruch drgający pod wpływem siły wymuszającej. Rezonans. Składanie drgań: wzmocnienie, wygaszenie, drgania koherentne, dudnienia, analiza harmoniczna krzywe Lissajous Pokazy 22