a = (2.1.3) = (2.1.4)

Wielkość: px
Rozpocząć pokaz od strony:

Download "a = (2.1.3) = (2.1.4)"

Transkrypt

1 . DRGANIA Fundamentalną ideą drgań są drgania harmoniczne proste. Termin harmoniczne ma informować, Ŝe funkcja opisująca drgania to funkcja typu sinus/cosinus, natomiast słowo proste Ŝe drgania nie są ani tłumione (rozdział.), ani z siłą wymuszającą (rozdział.3)..1. Drgania harmoniczne proste Zagadnienie drgań harmonicznych moŝna traktować jako szczególny przypadek dynamiki. Chodzi tu o analizę prostoliniowego ruchu masy m, na jaką działa siła proporcjonalna do współrzędnej, ale przeciwnie skierowana, co wyraŝa funkcja.1.1: F = -k x (.1.1) gdzie k = współczynnik proporcjonalności. Rys Ruch harmoniczny. Siła F nazywana jest siłą kierującą, poniewaŝ kieruje masę m do początku układu - połoŝenia równowagi. Łatwo wykazać, Ŝe w takich warunkach masa m porusza się ruchem harmonicznym. W tym celu uwzględniamy prawo dynamiki newtonowskiej (przypomnijmy je: przyśpieszenie ciała jest proporcjonalne do przyłoŝonej siły, a współczynnikiem proporcjonalności jest odwrotność masy tego ciała): - k x a = (.1.) m oraz definicję przyśpieszenia (rezygnuje się tutaj z zapisu wektorowego, poniewaŝ ruch odbywa się stale w tym samym kierunku wzdłuŝ którego poprowadzono współrzędną x) Z połączenia.1. i.1.3 powstaje równanie róŝniczkowe.1.4: d x a = (.1.3) dt d x - k x = (.1.4) dt m MoŜna zapisać w postaci sumy, której składniki wyraŝają siły.1.5: d x m k x 0 dt + = (.1.5) Pierwszy składnik w wyraŝeniu.1.5 to siła bezwładnościowa (siłą pozorna wynikająca z ruchu zmiennego masy m), drugi siła zewnętrzna (rzeczywista siła działająca na masę m). Równanie.1.4/.1.5 posiada kilka rozwiązań w postaci następujących funkcji czasu: kombinacja funkcji.1.6 i.1.7 oraz funkcja zespolona: x = A sin( ω t + ϕ) (.1.6) x = A cos( ω t + ϕ) (.1.7) x = A sin( ω t + ϕ) + A cos( ω t + ϕ) (.1.8) xˆ = A cos( ω t + ϕ ) + j A sin( ω t + ϕ) (.1.9)

2 Postać algebraiczną funkcji zespolonej.1.9 moŝna przekształcić w postać wykładniczą.1.10 (za pomocą tzw. wzorów Eulera): xˆ j( ω t+ϕ ) = A e (.1.10) EULER Leonhard ( ) Funkcje.1.6 i.1.7 w bezpośredni sposób odzwierciedlają ideę drgań harmonicznych prostych. Parametrom tych funkcji naleŝy przypisać następujące znaczenia: A - amplituda drgań (ωt+ϕ) - faza drgań ω - częstość ϕ - faza początkowa drgań Prześledzimy, jak moŝna funkcję.1.6 wprowadzić do opisu drgań harmonicznych prostych. Najpierw sprawdzenie, czy funkcja ta na pewno spełnia równanie.1.5: wyznaczamy drugą pochodną sprawdzanej funkcji i umieszczamy ją razem z funkcją pierwotną w równaniu.1.5: - m A ω sin( ω t + ϕ) + k sin( ω t + ϕ) = 0 (.1.11) Łatwo zauwaŝyć, Ŝe powyŝsze równanie jest spełnione, gdy k ω = (.1.1) m Zatem funkcja.1.6 opisuje w pełni drgania harmoniczne o częstości ω. Działając w podobny sposób dochodzi się do wniosku, Ŝe funkcje.1.7,.1.8 i.1.9 takŝe opisują drgania harmoniczne. Jednak o funkcjach zespolonych.1.8 i.1.9 nie naleŝy mówić opisują ale reprezentują drgania harmoniczne proste. Przykładem przedstawionej idei drgań harmonicznych prostych moŝe być cięŝarek zawieszony na spręŝynie. Rys..1.. CięŜarek na spręŝynie wykonujący ruch harmoniczny prosty. SpręŜyna pełni w tym oscylatorze funkcję czynnika wytwarzającego siłę działającą na masę. ZaleŜność siły spręŝyny od jej wydłuŝenia musi mieć liniowy przebieg, to znaczy spręŝyna musi być doskonale spręŝysta przynajmniej w zakresie wydłuŝeń nie większych od amplitudy. W przeciwnym razie cięŝarek nie wykonywałby ruchu harmonicznego. W zagadnieniu drgań harmonicznych ukształtowało się autonomiczne nazewnictwo: siła F działająca na masę - siła kierująca (układ do połoŝenia równowagi) współrzędna x(t) - wychylenie

3 początek współrzędnej (x = 0) - połoŝenie równowagi maksymalna wartość współrzędnej - amplituda A argument sinusa/cosinusa (ωt +ϕ) - faza ω - częstość f - częstotliwość f = ω/π ϕ - faza początkowa T - okres drgań T = π/ω = 1/f Przydatność funkcji zespolonej (jako reprezentacji drgań) ujawnia się najbardziej wtedy, gdy przedstawiamy ją za pomocą wskazu. MoŜna to uczynić w układzie nieruchomym (rys..1.3a) lub w układzie wirującym z szybkością kątową ω (rys..1.3b). xˆ j( ωt+ ϕ ) jϕ = A cos( ω t + ϕ) + j A sin( ω t + ϕ) = A e xˆ = A cosϕ + j A sinϕ = A e Rys Graficzne przedstawienie reprezentacji drgań harmonicznych prostych funkcją zespoloną w układzie nieruchomym (a) i w układzie wirującym (b) Składanie drgań prostopadłych Zagadnienie składania drgań prostopadłych - to przykład z kinematyki; polega na określaniu toru ruchu określonego r przez połoŝenie (t) : r (t) = A cos( ω t + ϕ ) i + A cos( ω t + ) j (..1) r ϕ Tor jest jednoznacznie określony przez układ równań parametrycznych..: x = A 1 cos(ω 1 t + ϕ 1 ) y = A cos(ω t + ϕ ) (..) Obraz tak przedstawionego toru wytwarzany jest na wykresie y(x) poprzez zaznaczanie punktów o współrzędnych obliczanych dla kolejnych wartości parametru t. Obraz ten moŝna uzyskać takŝe na ekranie oscyloskopu, jeŝeli przebiegi x(t) i y(t) z generatorów podłączymy odpowiednio do zacisków odchylania pionowego i odchylania poziomego (rys ). Trudności pojawiają się, gdy poszukujemy wyraŝenia y = f(x). MoŜna próbować je pokonać poprzez wyrugowanie parametru t. Otrzymamy wtedy funkcję y(x), której kształtu na ogół nie jesteśmy w stanie się domyśleć. ZaleŜy on od wartości aŝ sześciu parametrów: A 1, A, ω 1, ω, ϕ 1, ϕ. ω1 ω1 y( x) = A cos arc cos ϕ + ϕ ) (..3) ( ω A1 ω 1 x

4 Rys Zasada wytwarzania krzywych Lissajous na ekranie oscyloskopu. Praktyczna przydatność powyŝszej funkcji jest niewielka. MoŜna jedynie wykazać, Ŝe w sytuacji gdy A 1 = A, ω 1 = ω i ϕ 1 = ϕ, otrzymuje się przebieg prostoliniowy. Analizę kształtów toru wynikających z prostopadłego złoŝenia ruchów sinusoidalnych przeprowadził Lissajous. Wykazał on, Ŝe tor w postaci krzywej zamkniętej wykształca się wtedy, gdy stosunek częstości ω 1 /ω drgań składowych stanowi ułamek zwykły (stosunek liczb naturalnych). Jak wspomniano, obrazy krzywych Lissajous moŝna otrzymać na ekranie oscyloskopu, a takŝe na ekranie komputera posługując się chociaŝby pakietem obliczeniowym Excel. Na rysunkach od.1.1. do przedstawiono kilka przykładów krzywych Lissajous. Rys Krzywe Lissajous uzyskiwane przy tych samych częstościach drgań składowych ale o innych róŝnicach faz. Rys Krzywe Lissajous uzyskiwane przy tym samym stosunku częstości drgań składowych ale o innych róŝnicach faz. LISSAJOUS Jules Antoine ( ) Rys Krzywe Lissajous uzyskiwane przy róŝnych częstościach drgań składowych o róŝnicy faz 0,5 π.

5 .1.. Składania drgań równoległych Zagadnienie składania drgań równoległych sprowadza się do problemu zsumowania dwóch funkcji opisujących drgania: x 1 (t) = A 1 cos(ω 1 t + ϕ 1 ) (.1..1) + x (t) = A cos(ω t + ϕ ) x (t) =? Rozwiązanie powyŝszego przypadku moŝe być łatwe w wypadku, gdy rozwiązania poszukuje się w sposób numeryczny. Natomiast względnie łatwe analityczne rozwiązanie staje się moŝliwe tylko w szczególnych przypadkach. Pierwszy przypadek odpowiada sytuacji, gdy częstości drgań składowych są takie same (.1..). x 1 (t) = A 1 cos(ωt + ϕ 1 ) (.1..) + x (t) = A cos(ωt + ϕ ) x (t) = A cos(ωt + ϕ) NaleŜy jedynie określić A oraz ϕ. Przydatną staje się wtedy reprezentacja zespolona drgań, a w szczególności wskazy w układzie wirującym z częstością drgań składowych. Na rysunku.1..1 przedstawiono ów graficzny sposób sumowania drgań. Rys Graficzne składanie drgań równoległych. Od tego momentu określanie A i ϕ sprowadza się do czynności trygonometrycznych. JeŜeli częstości drgań są róŝne, wtedy równieŝ istnieje moŝliwość analitycznego zsumowania tych drgań, ale pod warunkiem, Ŝe mają tę samą amplitudę. Po prostu moŝna zastosować wzór na sumę sinusów: A sinω 1 t + A sinω t = A sin ω1 + ω ω1 ω t cos t (.1..3) Rys Składanie drgań o róŝnych częstościach.

6 ω1 ω W wyraŝeniu.1..3 cos t " " to tzw. czynnik fazowy informujący, Ŝe są to drgania harmoniczne. Pozostała ω1 ω część, czyli A cos t ", wyraŝa amplitudę tych drgań. Stąd wniosek, Ŝe złoŝenie drgań harmonicznych o " róŝnych częstościach skutkuje powstaniem drgań harmonicznych o częstości równej połowie sumy częstości drgań składowych z amplitudą zmieniającą się z częstością równą połowie róŝnicy częstości drgań składowych. JeŜeli amplitudy są róŝne, efekt jest podobny co moŝna wykazać sumując te drgania w sposób numeryczny (rys..1..)... Drgania tłumione JeŜeli na masę m oprócz siły kierującej działa siła hamująca, wtedy amplituda drgań zmniejsza się z upływem czasu. Przyjmuje się, iŝ wartość siły hamującej jest proporcjonalna do szybkości ruchu i jest skierowana w kierunku przeciwnym do kierunku ruchu. Wtedy równanie.1.4, po uzupełnieniu o wyraŝenie przedstawiające siłę hamującą przyjmuje postać (..1). PowyŜsze równanie moŝna przedstawić w postaci bilansu sił (..): - k x - k' dx d x dt = (..1) dt m d x dx + kx + k' = 0 (..) dt dt m Równanie róŝniczkowe.. posiada przybliŝone rozwiązania zaleŝne od wartości k. JeŜeli współczynnik hamowania k jest dostatecznie mały, wtedy rozwiązanie przyjmuje następującą postać (..3): βt x(t) = A e cosωt (..3) gdzie β - to współczynnik tłumienia drgań związany ze współczynnikiem hamowania zaleŝnością..3. o k' β = (..3) m Przedstawiona idea drgań słabo-tłumionych znajduje zastosowanie np. w przykładzie zanurzonego w cieczy cięŝarka na spręŝynie (rys..9). Rys...1. Drgania harmoniczne tłumione. Po włączeniu tłumienia częstość ulega zmniejszeniu, a wyraŝa to zaleŝność..3: ω = ωo β (..3) W sytuacji gdy tłumienie jest silne, drgania tracą charakter harmoniczny. Ich ewentualne przebiegi przy róŝnych intensywnościach tłumienia - pokazano na rys.... JeŜeli tłumienie jest krytyczne, to znaczy ω o = β, układ powraca do stanu równowagi w czasie najkrótszym. Wychylenie x(t) w takim ruchu opisane jest zaleŝnością..4:

7 x(t) ωo t = A(1+ ωo t) e (..4) Rys... Drgania silnie tłumione (drgania anharmoniczne). Przypadek a drgania bardzo silnie tłumione (ruch pełzający), przypadek b drgania silnie tłumione, przypadek c drgania tłumione krytycznie (układ powraca do stanu równowagi w czasie najszybszym)..3. Drgania z siłą wymuszającą Idea tego rodzaju drgań moŝe być zapisana podobnie jak drgania harmoniczne proste oraz drgania harmoniczne tłumione, czyli w postaci równania - bilansu sił: - k x - k' dx d x dt + Fo cosωt = (.3.1) dt m d x dx m + kx + k' = Fo cosωt (.3.) dt dt Ideę tę moŝna przedstawić na praktycznym przykładzie analogicznym jak dla drgań tłumionych. Dodatkowy element stanowi siła wymuszająca przyłoŝona do oscylatora (rys..3.1) - odpowiednik prawej strony w równaniu.3.. Rys Przykład oscylatora harmonicznego tłumionego z siłą wymuszającą. Równanie róŝniczkowe.3. ma następujące ogólne rozwiązanie: x(t) = A(ω) cos(ωt + ϕ( ω)) (.3.3) Kształt zaleŝności amplitudy tych drgań od częstości drgań wymuszających zaleŝy od współczynnika tłumienia. Przedstawia to rysunek.3..

8 Rys..3.. ZaleŜność amplitudy od częstości siły wymuszającej. Dokładne rozwiązanie równania.3.1/.3., czyli analityczna postać funkcji A(ω) oraz ϕ(ω) znajdzie czytelnik w drugiej części podręcznika w rozdziale o analogach elektrycznych zjawisk fizycznych nieelektrycznych.

Rys Ruch harmoniczny jako rzut ruchu po okręgu

Rys Ruch harmoniczny jako rzut ruchu po okręgu 3. DRGANIA I FALE 3.1. Ruch harmoniczny W szkole poznajemy ruch harmoniczny w trakcie analizy ruchu jednostajnego po okręgu jako rzut na prostą (rys. 3.1). Tak jest w istocie, poniewaŝ ruch po okręgu to

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

a = (2.1.2) m a = (2.1.3) = (2.1.4) + (2.1.5) m 2 = A e (2.1.9)

a = (2.1.2) m a = (2.1.3) = (2.1.4) + (2.1.5) m 2 = A e (2.1.9) . DRGANIA Fundaentalną ideą drgań są drgania haroniczne proste. Słowo haroniczne podkreśla, że funkcja opisuje drgania typu sinus/cosinus, natoiast słowo proste że nie są one ani tłuione (rozdział.) ani

Bardziej szczegółowo

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż. Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

, to: Energia całkowita w ruchu harmonicznym prostym jest proporcjonalna do kwadratu amplitudy.

, to: Energia całkowita w ruchu harmonicznym prostym jest proporcjonalna do kwadratu amplitudy. Wykład z fizyki Piotr Posmykiewicz 4 Podstawiając to do wzoru na energię kinetyczną: K = ma sin t + ( δ ) Podstawiając = k / m K = ka sin t ( + δ ) -5 Energia kinetyczna w ruchu harmonicznym prostym Energia

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego Uniwersytet Rolniczy w Krakowie Wydział InŜynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Wykład 6 Drgania. Siła harmoniczna

Wykład 6 Drgania. Siła harmoniczna Wykład 6 Drgania Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus albo

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

URZĄDZENIE DO DEMONSTRACJI POWSTAWANIA KRZYWYCH LISSAJOUS

URZĄDZENIE DO DEMONSTRACJI POWSTAWANIA KRZYWYCH LISSAJOUS URZĄDZENIE DO DEMONSTRACJI POWSTAWANIA KRZYWYCH LISSAJOUS Urządzenie słuŝące do pokazu krzywych Lissajous powstających w wyniku składania mechanicznych drgań harmonicznych zostało przedstawione na rys.

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁINśYNIERII

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa. MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.

Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż. Plan wykładu Ruch drgajacy 1 Przykłady zastosowań dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Drgania wymuszone 3 Drgania zachodzace w tym samym kierunku

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych Termin AREK73C Induktor i kondensator. Warunki początkowe Przyjmujemy t, u C oraz ciągłość warunków początkowych ( ) u ( ) i ( ) i ( ) C L L Prąd stały i(t) R u(t) u( t) Ri( t) I R RI i(t) L u(t) u() t

Bardziej szczegółowo

VII. Drgania układów nieliniowych

VII. Drgania układów nieliniowych VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Prosty oscylator harmoniczny

Prosty oscylator harmoniczny Ruch drgający i falowy Siła harmoniczna, drgania swobodne Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym. Przemieszczenie cząstki w ruchu periodycznym można zawsze wyrazić

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

Wyznaczanie stałej szybkości reakcji wymiany jonowej

Wyznaczanie stałej szybkości reakcji wymiany jonowej Wyznaczanie stałej szybkości reakcji wymiany jonowej Ćwiczenie laboratoryjne nr 4 Elementy termodynamiki i kinetyki procesowej Anna Ptaszek Elementy kinetyki chemicznej Pojęcie szybkości reakcji Pojęcie

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

Bezwładność - Zrywanie nici nad i pod cięŝarkiem (rozszerzenie klasycznego ćwiczenia pokazowego)

Bezwładność - Zrywanie nici nad i pod cięŝarkiem (rozszerzenie klasycznego ćwiczenia pokazowego) 6COACH 6 Bezwładność - Zrywanie nici nad i pod cięŝarkiem (rozszerzenie klasycznego ćwiczenia pokazowego) Program: Coach 6 Projekt: na ZMN060c CMA Coach Projects\PTSN Coach 6\Zrywanienici\Zestaw.cma Przykład

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium Cel ćwiczenia: Celem ćwiczenia jest uzyskanie wykresów charakterystyk skokowych członów róŝniczkujących mechanicznych i hydraulicznych oraz wyznaczenie w sposób teoretyczny i graficzny ich stałych czasowych.

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM PODSTAWOWY. I. Liczby (20 godz.) ( b ) 2

PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM PODSTAWOWY. I. Liczby (20 godz.) ( b ) 2 PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM PODSTAWOWY I. Liczby (0 godz.) TEMAT ZAJĘĆ Zapis dziesiętny liczby rzeczywistej Wzory skróconego mnoŝenia Nierówności liniowe Przedziały liczbowe Powtórzenie przedstawiać

Bardziej szczegółowo

REZONANS PRĄDOWY. I. Cel ćwiczenia: zapoznanie z problematyką rezonansu prądowego, wyznaczenie charakterystyk. IV. Wprowadzenie

REZONANS PRĄDOWY. I. Cel ćwiczenia: zapoznanie z problematyką rezonansu prądowego, wyznaczenie charakterystyk. IV. Wprowadzenie Ćwiczenie E- EZONANS PĄDOWY I. el ćwiczenia: zapoznanie z problematyką rezonansu prądowego, wyznaczenie charakterystyk prądowych obwodu, częstości rezonansowej, współczynnika dobroci i tłumienia, pasma

Bardziej szczegółowo

RÓWNANIE RÓśNICZKOWE LINIOWE

RÓWNANIE RÓśNICZKOWE LINIOWE Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy

Bardziej szczegółowo

1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20)

1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20) Badanie drgań modelu cząsteczki czteroatomowej(m20) 37 1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20) Celem ćwiczenia jest wyznaczenie widma drgań układu czterech wahadeł sprzężonych oraz wyznaczenie

Bardziej szczegółowo

1 T. Sygnały. Sygnał okresowy f(t) Wartość średnia sygnału okresowego f(t) Sygnały f(t) Stałe. Zmienne f(t) const. Pulsujące Inne.

1 T. Sygnały. Sygnał okresowy f(t) Wartość średnia sygnału okresowego f(t) Sygnały f(t) Stałe. Zmienne f(t) const. Pulsujące Inne. Sygnały Sygnały f(t) Stałe Zmienne f(t) const Pulsujące nne Zmieniające znak Zachowujące znak Oksowe Nieoksowe Odkształcone SNSODALNE nne Sygnał oksowy f(t) > t f ( t) f ( t + ) Wartość śdnia sygnału oksowego

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1. OAH 07 Badanie układu L Program: oach 6 Projekt: MA oach Projects\ PTSN oach 6\ Elektronika\L.cma Przykłady: L.cmr, L1.cmr, V L Model L, Model L, Model L3 A el ćwiczenia: I. Obserwacja zmian napięcia na

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty..

Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty.. 4. Proste równoległe i prostopadłe Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty.. Jeśli przecinają się w dowolnym miejscu, i to pod kątem prostym,

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA NAZEWNICTWO LINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE O STAŁYCH WSPÓŁCZYNNIKACH d n u a n d x + a d n 1 u n n 1 d x +... + a d 2 u n 1 2 d x + a d u 2 1 d x + a u = b( x) Powyższe równanie o niewiadomej funkcji

Bardziej szczegółowo

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY DRGANIA OSCYLATOR HARMONICZNY wyklad 10 015/016, zima 1 Własności sprężyste ciał stałych Przedmiot: Fizyka naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. MTiSP pomiary częstotliwości i przesunięcia fazowego MTiSP 003 Autor: dr inż. Piotr Wyciślok Strona 1 / 8 Cel Celem ćwiczenia jest wykorzystanie

Bardziej szczegółowo

1. Sprawdzanie prawa OHMA i praw KIRCHHOFFA

1. Sprawdzanie prawa OHMA i praw KIRCHHOFFA Sprawdzanie prawa OHMA i praw KHHOFFA -0 Dr inŝ. Tadeusz Mączka. Sprawdzanie prawa OHMA i praw KHHOFFA. Wstęp: kłady elektryczne, moŝna traktować jako zbiory obwodów elektrycznych, przez które przepływają

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

1. Podstawowe pojęcia

1. Podstawowe pojęcia 1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany

Bardziej szczegółowo

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY DRGANIA OSCYLATOR HARMONICZNY wyklad 8 017/018, zima 1 Własności sprężyste ciał stałych Przedmiot: Fizyka naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA ROK SZKOLNY: 2018/2019 KLASY: 2mT OPRACOWAŁ: JOANNA NALEPA OCENA CELUJĄCY OCENA BARDZO DOBRY - w pełnym zakresie - w pełnym opanował zakresie opanował

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

Temat ćwiczenia. Pomiary drgań

Temat ćwiczenia. Pomiary drgań POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary drgań 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodami pomiarów drgań urządzeń mechanicznych oraz zasadą działania przetwornika

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych

Bardziej szczegółowo

Spr yna Coach 6 Wyznaczanie stałej spr ysto ci spr yny Zestaw.cma Obserwacja zjawiska indukcji elektromagnetycznej Indukcja.cma

Spr yna  Coach 6 Wyznaczanie stałej spr ysto ci spr yny Zestaw.cma Obserwacja zjawiska indukcji elektromagnetycznej Indukcja.cma 6COACH 30 SpręŜyna Program: Coach 6 Projekt: na ZMN060c I. Wyznaczanie stałej spręŝystości spręŝyny CMA Coach Projects\PTSN Coach 6\ Rezonans\Zestaw.cma Przykład wyników: Zestaw-wyniki.cmr II. Obserwacja

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

Malowanie sinusoidami

Malowanie sinusoidami Malowanie sinusoidami Bogusław Fugiel Sygnały akustyczne moŝemy zróŝnicować ze względu na ich głośność, wysokość i barwę. Czym jest barwa dźwięku? Według definicji Amerykańskiego Instytutu Standardów (1994)

Bardziej szczegółowo

Laboratorium Fizyki I Płd. Bogna Frejlak DRGANIA PROSTE HARMONICZNE: WAHADŁO REWERSYJNE I TORSYJNE

Laboratorium Fizyki I Płd. Bogna Frejlak DRGANIA PROSTE HARMONICZNE: WAHADŁO REWERSYJNE I TORSYJNE Politechnika Warszawska Wydział Fizyki aboratorium Fizyki P Bogna Politechnika Frejlak Warszawska Wydział Fizyki aboratorium Fizyki Płd Bogna Frejlak RGANA PROSE HARMONCZNE: WAHAŁO REWERSYJNE ORSYJNE RGANA

Bardziej szczegółowo

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY DRGANIA OSCYLATOR HARMONICZNY wyklad8 2012/2013, zima 1 Własności sprężyste ciał stałych naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała zależy od naprężenia

Bardziej szczegółowo

XIXOLIMPIADA FIZYCZNA (1969/1970). Stopień W, zadanie doświadczalne D.. Znaleźć doświadczalną zależność T od P. Rys. 1

XIXOLIMPIADA FIZYCZNA (1969/1970). Stopień W, zadanie doświadczalne D.. Znaleźć doświadczalną zależność T od P. Rys. 1 KOOF Szczecin: www.of.szc.pl XIXOLIMPIADA FIZYCZNA (1969/197). Stopień W, zadanie doświadczalne D. Źródło: Olimpiady fizyczne XIX i XX Autor: Waldemar Gorzkowski Nazwa zadania: Drgania gumy. Działy: Drgania

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo