Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych
Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów skończoych w mechaice kostrukcji, Oficya Wydawicza Politechiki Warszawskiej, Warszawa 25. Błazik-Borowa E., Podgórski J.: Wprowadzeie do metody elemetów skończoych w statyce kostrukcji iżyierskich, IZT, Lubli 2 Metoda elemetów skończoych wybrae problemy, Oficya Wydawicza Politechiki Warszawskiej, Warszawa 996. Ciesielski R. i ii. Mechaika Budowli. Ujęcie komputerowe t. I i II Arkady. Warszawa, 99. Łodygowski T., ąkol W.: Metoda elemetów skończoych w wybraych zagadieiach mechaiki kostrukcji iżyierskich, Skrypt Politechiki Pozańskiej, 994; 2
Podstawowe pojęcia, założeia i twierdzeia mechaiki Liiowy model kostrukcji; Rówaia kostytutywe; Płaski sta apręŝeia i płaski sta odkształceia; Rówaia rówowagi; Zasada prac wirtualych; Twierdzeie Clapeyroa; Twierdzeia Bettiego i Maxwella. 3
Liiowy model kostrukcji Układ opisują liiowe rówaia róŝiczkowe: Małe przemieszczeia kostrukcji (duŝo miejsze od wymiarów kostrukcji); Małe odkształceia; Materiał liiowo-spręŝysty (moŝliwość stosowaia prawa Hooke a: E). Moduł Youga Etg(α) α 4
Nieliiowy model kostrukcji W rówaiach róŝiczkowych układu mogą być wprowadzoe: DuŜe przemieszczeia kostrukcji; Materiał z ieliiową zaleŝością. Obliczeia dla kostrukcji z ieliiowym modelem są wykoywae jak dla układów liiowych, ale obciąŝeie jest dzieloe a miejsze wartości tak, aby moŝa przy małej wartości obciąŝeia problem traktować jak liiowy. α β Moduł wzmocieia E w tg(β) Moduł Youga Etg(α) Przykład materiału ieliiowego 5
Naprężeia, działające a elemet o ieskończeie małych wymiarach, zestawia się w macierz, która osi azwę tesora stau aprężeń a wygląda w astępujący sposób: τ τ Tesor aprężeia i tesor odkształceia xx yx zx τ a aprężeia ii i τ ij są azywae składowymi tesora aprężeń. Powyższa macierz jest macierzą symetryczą czyli Τ oraz τ ij τji τ xy yy zy τ τ xz yz zz Odkształceia elemetu o ieskończeie małych wymiarach, zestawia się także w macierz, która osi azwę tesora stau odkształceia i wygląda w astępujący sposób: xx yx zx xy yy zy xz yz zz 6
Tesor aprężeia i tesor odkształceia Składowe tesorów aprężeń i odkształceń moża zapisać w formie wektorów: xx τxy τxz τ τ yx yy yz τzx τzy zz τxy τ yx xx yx zx xy yx τ yz yz τ xy yy zy zy zy τ xz yz zz xz xz τ zx zx τ τ τ xx yy zz xy xz yz xx yy zz xy xz yz 7
Tesor aprężeia Tesor aprężeia i tesor odkształceia i tesor odkształceia Składowe tesora apręŝeia (9) z uwagi a symetrię moŝa zapisać jako wektor: Podobie moŝa postąpić ze yz xz z y x τ τ Podobie moŝa postąpić ze składowymi tesora odkształceia: Składowe tesora odkształceia jako pochode przemieszczeń: 8 xy yz τ xy yz xz z y x x u x x y u y y z u z z x u y u y x xy + x u z u z x xz + y u z u z y yz +
Rówaia kostytutywe Rówaia kostytutywe Rówaia wiąŝące składowe tesorów apręŝeia i odkształceia: + + + µ µ µ λ λ λ λ µ λ λ λ λ µ λ 2 2 2 D odkształceia: 9 µ µ D D ( )( ) λ 2 + E ( ) µ 2 + E + + + ) 2( ) 2( ) 2( E D
Rówaia kostytutywe Zestawieie odkształceń podłużych w przestrzeym staie aprężeń xx yy E xx xx E xx E xx zz aprężeia działają wzdłuż osi x xx E xx E xx yy xx yy E yy E yy E yy zz aprężeia działają wzdłuż osi y yy E yy E yy zz xx zz E zz E zz E zz aprężeia działają wzdłuż osi z zz yy zz zz E E
Rówaia kostytutywe Tak jak w przypadku odkształceń podłużych a podstawie badań stwierdzoo zakres pracy materiału, który azyway jest sprężystym i w odiesieiu do którego moża zapisać: W przypadku odkształceń postaciowych ie ma sprzężeia pomiędzy odkształceiami w staie przestrzeym. Odkształceia postaciowe ostatecze zależą tylko od aprężeń styczych, działających w płaszczyźie zmiay kąta odkształceia postaciowego. 2 2 2 xy yz xz τ xy G τ G yz τxz G
Rówaia kostytutywe W rówaiach kostytutywych występują stałe materiałowe: E moduł Youga, moduł sprężystości podłużej G moduł irchoffa, moduł sprężystości postaciowej współczyik Poissoa E 2 + Wszystkie powyższe parametry łączy zależość: 2 ( + ) G W przypadku zapisu rówań kostytutywych za pomocą rachuku tesorowego dochodzą dwie stałe λ i µ,, azywae stałymi Lamego. Pomiędzy stałymi Lamego a wyżej wymieioymi stałymi istieją zależości: µ G 2G λ 2 2
Rówaia kostytutywe Rówaia kostytutywe Zależość pomiędzy aprężeiami i odkształceiami moża zapisać w formie: gdzie: D 3 stałe Lamego τ τ τ yz xz xy zz yy xx yz xz xy zz yy xx + + + µ µ µ µ λ λ λ λ µ λ λ λ λ µ λ 2 2 2 D µ G λ 2 2 G
Płaski sta aprężeia Płaski elemet, którego grubość jest zaczie miejsza od dwóch pozostałych, obciążoy tylko w swojej płaszczyźie azyway jest tarczą. W takiej sytuacji a powierzchi elemetu ie ma obciążeń, a więc ie ma aprężeń czyli aprężeia, które mają jede z ideksów z, są rówe zero. Taki sta aprężeń azyway jest płaskim staem aprężeń (PSN). Tarcza obciążoa tylko w swojej płaszczyźie. 4
Płaski sta aprężeia Założeie upraszczające, które moża stosować p. w przypadku ciekich tarcz. z zx zy τ τ Otrzymujemy astępujące składowe tesora odkształceia: ( ) z x + y zx zy Zredukowae wektory aprężeń i odkształceń: x y τ xy x E y D 2 xy 2 5
Płaski sta odkształceia W przypadku budowli, których wymiary są we wszystkich kierukach podobe, moża wyciąć płaski elemet. Na te płaski elemet działają pozostałe części bryły, które ie pozwalają a odkształceia w kieruku prostopadłym do tarczy. W takiej sytuacji a powierzchi elemetu odkształceia są rówe zero. Taki sta aprężeń azyway jest płaskim staem odkształceń (PSO). Bryła Wycięta tarcza 6
Płaski sta odkształceia Założeie upraszczające w przypadku masywych budowli. z zx zy Otrzymujemy astępujące składowe tesora aprężeia: z ( ) + τ x y zx Związek między zredukowaymi wektorami aprężeia i odkształceia: D E ( + )( 2) 2 2 τ zy D E 2 2 7
Rówaia rówowagi Wektorowa suma sił i suma mometów są rówe : Zapis skalary w przestrzei: a płaszczyźie: P i i P Xi i M Xi i M i i P Yi i i P Zi i M Yi M Zi i P Xi i P Yi i M Zi i 8
Ciało sztywe i odkształcale Ciało doskoale sztywe (idealizacja): Brak zmia odległości puktów ciała pod działaiem obciąŝeń. Ciało odkształcale: Odkształceia są a tyle duŝe, Ŝe ie jest moŝliwe pomiięcie odkształceń ciała w aalizie, bez istotej utraty dokładości obliczeń. 9
Zasada prac wirtualych ciało sztywe Praca wykoywaa a przemieszczeiach wirtualych przez siły zewętrze (obciążeia, reakcje) rówa jest. i P i u i i Przemieszczeie wirtuale powio spełiać astępujące waruki: dowole, iezależe od sił działających a bryłę, zgode z więzami (kiematyczie dopuszczale), iezależe od czasu. 2
Zasada prac wirtualych przykład H A H A V A a P P b RB δ B P δ P RB δ B δ P a δ B a + b δ P a R B P P δ a + b δ B ( ) δ P H A δ A V A V A δ P P RB R B P δ δ P VA A δ P b δ A a + b δ P b V A P P δ a + b A ( ) 2
Zasada prac wirtualych ciało odkształcale Wzrost eergii potecjalej ciała, zajdującego się w rówowadze, rówy jest pracy sił zewętrzych wykoaych a przemieszczeiach wirtualych. i P u E i i Wzrost eergii potecjalej praca wykoywaa przez siły wewętrze a przemieszczeiach wirtualych. V T E dv 22
omplemetara zasada prac wirtualych Wzrost eergii potecjalej ciała, zajdującego się w rówowadze, rówy jest pracy wirtualych sił zewętrzych wykoaych a rzeczywistych przemieszczeiach. i P i ui Wzrost eergii potecjalej praca wykoywaa przez wirtulae siły wewętrze a przemieszczeiach rzeczywistych. V E E dv T 23
Twierdzeie Clapeyroa () Twierdzeia Clapeyroa mówi, że dla układu sprężystego, zajdującego się w rówowadze, praca sił zewętrzych L z rówa jest eergii potecjalej sił wewętrzych (eergii sprężystej): L z V 2 lub w iej wersji i P i u i 2 T dv T dv 2 V V Praca sił zewętrzych jest miarą eergii potecjalej obciążeia zewętrzego przekształcającej się w eergię sprężystą: L z V z V-L w 24
Twierdzeie Clapeyroa (2) Układ musi spełiać astępujące waruki: materiał zachowuje się zgodie z prawem Hooke a, ie ma takich waruków brzegowych, których istieie zaleŝy od odkształceia kostrukcji, temperatura układu jest stała, ie ma apręŝeń i odkształceń wstępych. 25
Twierdzeie Bettiego Układ sił P ik wykouje taką samą pracę a przemieszczeiach wywołaych układem sił P j jak układ sił P j a przemieszczeiach wywołaych przez siły P ik. k P ik u jk P j u i P i u j P j u i P i Ugięcie belki od siły Ugięcie belki od siły P j P i P j u ii u ji u ij u jj P j P i Praca siły P j Praca siły P i u ii u ji u ij u jj Pj u ji P u i ij 26
Twierdzeie Maxwella Jeżeli a kostrukcję działają dwie iezależe uogólioe siły jedostkowe P i i P j, wywołujące odpowiedio przemieszczeia w ji (przemieszczeie w pukcie j a kieruku siły P j wywołae siłą P i ) i w ij (przemieszczeie w pukcie i a kieruku siły P i wywołae siłą P j ), to te przemieszczeia są sobie rówe. P i P i w ij P j w ji oraz P i i P j w ij w ji Ugięcie belki od siły P i Ugięcie belki od siły P j P j w ii w ji w ij w jj P j Praca siły P j P i Praca siły P i w ii w ji w ij w jj 27
Metoda elemetów skończoych Aproksymacja układu rówań różiczkowych wraz z warukami brzegowymi, opisujących obiekt układem rówań algebraicczych, który jest łatwiejszy do rozwiązaia. Rozwiązaie przybliżoe dokładość zależy od metod aproksymacji. Metoda stosowaa w różych dziedziach: mechaika ciała stałego, budowli, płyów, elektryka itp. 28
Sposób poszukiwaia rozwiązaia przybliżoego () Podział a elemety skończoe połączoe w węzłach. Niewiadome: przemieszczeia w węzłach. Przybliżeie przemieszczeń puktów wewątrz elemetów za pomocą fukcji aproksymujących (fukcje kształtu) a podstawie przemieszczeń węzłowych. Siły w elemetach uzależioe od przemieszczeń węzłów za pomocą macierzy sztywości. 29
Sposób poszukiwaia rozwiązaia przybliżoego (2) Zapis układu rówań rówowagi dla wszystkich węzłów (stopi swobody) i wprowadzeie waruków brzegowych. Rozwiązaie układu rówań algebraiczych obliczeie przemieszczeń węzłów. Obliczeie pozostałych wielkości odkształceia, siły wewętrrze, apręŝeia. 3
Algorytm metody elemetów skończoych Dyskretyzacja (geeracja siatki); Tworzeie macierzy sztywości elemetów; Agregacja globalej macierzy sztywości; Budowa globalego wektora obciąŝeia; Wprowadzeie waruków brzegowych; Rozwiązaie układu rówań; Obliczeie sił wewętrzych i reakcji. 3
ostrukcje prętowe: kratowe i ramowe Często podział aturaly odciek prostoliiowy pręta jest elemetem skończoym; Tarcze, płyty i powłoki: Elemety prostokąte lub trójkąte; Dyskretyzacja () 32
Dyskretyzacja (2) ostrukcje bryłowe: Elemety czterowęzłowe (czworościee), sześciowęzłowe, ośmiowęzłowe. 33
Macierze sztywości elemetów Macierze sztywości elemetów Aaliza poszczególych elemetów; Zalezieie związków między parametrami statyczymi (obciążeiami) i odpowiadającymi im parametrami geometryczymi (przemieszczeiami). (przemieszczeiami). 34 jy jx iy ix jy jx iy ix e e e F F F F u u u u l EA l EA l EA l EA ' ' ' f u
Stopie swobody Rodzaj kostrukcji Ilość stopi swobody Przesuięcia Obroty N D u x u y u z ϕ x ϕ y ϕ z krata płaska 2 krata przestrzea 3 rama płaska 3 rama przestrzea 6 ruszt 3 tarcza 2 płyta 3 powłoka 6 bryła 3 35
Globala macierz sztywości Globala macierz sztywości i rozwiązaie układu rówań i rozwiązaie układu rówań Układ rówań metody elemetów skończoych: p u N N p p p u u u M M M M O M M 2 2 2 22 2 2 Jako wyik otrzymujemy przemieszczeia w węzłach (a poszczególych stopiach swobody). Na ich podstawie wyliczae są siły odkształceia i aprężeia a astępie siły wewętrze, reakcje, itp. 36 N N N N N N N N p p u u M M M O M M M 2
Fukcje kształtu Do wyzaczeia przemieszczeń wewątrz elemetu a podstawie przemieszczeń węzłów służy fukcja kształtu. u( x, y) N ( x, y) u e e [ i j k l ] u ( x, y) N ( x, y) N ( x, y) N ( x, y) N ( x, y) Na podstawie fukcji przemieszczeń liczoe są odkształceia u x x x u x xz + z uz x y u u u u i j k l u y u z z y z u y uz yz + z y xy u y x + u y x I a tej podstawie aprężeia D 37
Moduły systemów MES (FEM) Preprocesor: Dyskretyzacja; Dae materiałowe; Opis obciążeia. Nowoczesy preprocesor pozwala a graficze wprowadzaie iformacji o modelu. Procesor: Macierze sztywości elemetów; Globala macierz sztywości; Wektor obciążeia; Waruki brzegowe; Rozwiązaie układu rówań. 38
Moduły systemów MES (FEM) Postprocesor: Obliczeie sił wewętrzych i reakcji; Wizualizacja wyików. 39
Moduły systemów MES (FEM) Postprocesor: (postaci drgań własych prostokątej płyty) 4
oiec