1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz
|
|
- Jacek Górecki
- 8 lat temu
- Przeglądów:
Transkrypt
1 1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz
2 Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia Równania teorii sprężystości dla zagadnień trójwymiarowych
3 Przykłady konstrukcji inżynierskich wegrzyn/coolingt.html
4 Przykłady konstrukcji inżynierskich
5 Podział konstrukcji Wyróżniamy ustroje: a) prętowe b) powierzchniowe c) bryłowe Ustrój powierzchniowy (UP) - trójwymiarowe ciało odkształcalne, którego grubość h jest mała w porównaniu z pozostałymi wymiarami.
6 Charakterystyka ustroju powierzchniowego Opis UP uwzględnia: opis geometrii powierzchni środkowej i powierzchni równo oddalonej od niej opis więzów kinematycznych nakładanych na sposób deformacji definicje uogólnionych odkształceń w punkcie na powierzchni środkowej definicje uogólnionych sił przekrojowych na powierzchni środkowej charakterystykę podstawowych stanów naprężeń
7 Kryteria podziału ustrojów powierzchniowych Ustroje powierzchniowe klasyfikujemy z uwagi na różne aspekty: geometrię (powierzchni środkowej) smukłość h/l stan naprężeń kinematykę
8 Podział ustrojów powierzchniowych W zależności od typów powierzchni środkowej wyróżniamy: ustroje modelowane za pomocą płaszczyzny środkowej tarcze płyty ustroje modelowane za pomocą pojedynczo lub podwójnie zakrzywionej powierzchni środkowej powłoki
9 Definicja tarczy Tarczą - nazywamy płaski dźwigar powierzchniowy, modelowany za pomocą płaszczyzny środkowej, z obciążeniem leżącym jedynie w tej płaszczyźnie, o stałym wzdłuż grubości rozkładzie naprężeń.
10 Definicja płyty Płytą zginaną - nazywamy płaski dźwigar powierzchniowy, modelowany za pomocą płaszczyzny środkowej, z obciążeniem prostopadłym do tej płaszczyzny, o liniowo zmiennym wzdłuż grubości rozkładzie naprężeń.
11 Definicja powłoki Powłoką nazywamy dźwigar powierzchniowy zakrzywiony.
12 Rodzaje zakrzywionych powierzchni Powłoki pojedynczo zakrzywione walcowa [8] stożkowa Powłoki podwójnie zakrzywione kulista (elipsoidalna) [9] hiperboloidalna [3]
13 Rodzaje zakrzywionych powierzchni ciąg dalszy Powłoki mogą być: a) silnie zakrzywione b) słabo zakrzywione (szczególny przypadek to powłoki mało wyniosłe opisane w kartezjańskim układzie współrzędnych) c) osiowo symetryczne (powstałe na skutek obrotu określonej prostej lub krzywej wokół osi obrotu) a) [9] b) [9] c) [8]
14 Rodzaje powierzchni ciąg dalszy Powierzchnie mogą być: wyniosłe mało wyniosłe płaskie
15 Układy współrzędnych Powłoki modelowane są za pomocą powierzchni środkowej, która jest dwuwymiarowym obiektem geometrycznym, opisywanym dwoma współrzędnymi krzywoliniowymi ξ 1 i ξ 2 W zależności od kształtu powłoki, stosowane są następujące układy współrzędnych: A) sferycznych ξ 1 = ϕ, ξ 2 = Θ B) walcowych ξ 1 = x, ξ 2 = Θ C) kartezjańskich ξ 1 = x, ξ 2 = y
16 Opis powierzchni Na powierzchni środkowej, względem tzw. głównych linii współrzędnych ξ 1, ξ 2, wprowadzamy dwa ekstremalne promienie głównych krzywizn R 1, R 2 Odwrotności promieni to krzywizny, oznaczane k 1, k 2 k αα = 1 R αα, dla α=1,2 Średnią krzywiznę H oraz krzywiznę Gaussa K definiujemy jako: H = 1 2 (k 1 + k 2 ) K = k 1 k 2 Długość łuku ds α obliczana jest za pomocą parametrów Lamego A α : ds α = A α dξ α, dla α=1,2
17 Wartości krzywizny Gaussa Wyróżniamy powłoki: a) o dodatniej krzywiźnie Gaussa (K > 0 dla powłoki kulistej), b) o zerowej (K = 0 dla powłoki walcowej), c) o ujemnej (K < 0 dla powłoki hiperboloidalnej). A) [9] B) [8] C) [10]
18 Klasyfikacja ustrojów powierzchniowych Podział UP ze względu na grubość: cienkie - obowiązuje teoria Kirchhoffa-Love a umiarkowanie grube - obowiązuje teoria Mindlina-Reissnera grube - analiza 3D Dla dźwigarów cienkich, model matematyczny (układ równań opisujący zachowanie się ustroju pod działaniem zewnętrznych czynników) można znacznie uprościć. UP cienki to taki, dla którego h/l min <<< 1. W szczególności: dla płyt: h/l min < 1 10 dla powłok: h/r min <
19 Klasyfikacja ustrojów powierzchniowych Podział UP ze względu na rozkład naprężeń: jednorodny wzdłuż grubości tarcza powłoka w stanie bezmomentowym (błonowym) liniowo zmienny wzdłuż grubości płyta zginana powłoka w stanie membranowo-giętnym
20 Powierzchnia środkowa, przekrój normalny W punkcie na powierzchni definiujemy przekrój poprzeczny, którym są dwa wzajemnie prostopadłe przekroje normalne Π 1, Π 2. Na przecięciu obu płaszczyzn Π 1, Π 2 leży odcinek (włókno), którego zachowanie się w trakcie deformacji podlega ścisłemu opisowi (tzn. więzom kinematycznym Kirchhoffa-Love a lub Mindlina-Reissnera).
21 Powierzchnia środkowa, powierzchnia równo oddalona od środkowej Położenie punktu na powierzchni środkowej Π opisuje wektor: r = r(x, Y, Z) = r(ξ 1, ξ 2 ) Powierzchnię równo oddaloną Π (z) opisuje równanie: r (z) = r + zn, gdzie h 2 z h 2
22 Równania teorii sprężystości dla zagadnień trójwymiarowych Przyjmujemy jako znane na wstępie analizy zewnętrzne oddziaływania (obciążenia i kinematyczne wymuszenia): wektor obciążeń masowych ˆb (3 1) = {ˆb x, ˆb y, ˆb z } [N/m 3 ] w Ω wektor obciążeń brzegowych ˆσ b(3 1) = {ˆσ ν1, ˆσ ν2, ˆσ ν3 } [N/m 2 ] na Ω σ wektor przemieszczeń brzegowych û b(3 1) = {û ν1, û ν2, û ν3 } [m] na Ω u
23 Wielkości poszukiwane dla zagadnień trójwymiarowych Poszukiwane w obszarze Ω skutki : wektor naprężeń σ (6 1) (x, y, z) = {σ xx, σ yy, σ zz, τ xy, τ xz, τ yz } [N/m 2 ] wektor odkształceń ε (6 1) (x, y, z) = {ε xx, ε yy, ε zz, γ xy, γ xz, γ yz } [ ], wektor przemieszczeń u (3 1) (x, y, z) = {u x, u y, u z } = {u, v, w} [m] zakładamy równość naprężeń stycznych τ xy = τ yx, τ xz = τ zx, τ yz = τ zy
24 Kryterium znakowania naprężeń dla ośrodka 3D
25 Równania teorii sprężystości dla zagadnień trójwymiarowych Sformułowanie i rozwiązanie zagadnienia brzegowego teorii sprężystości sprowadza się do zapisania układu 15 równań różniczkowo-algebraicznych i jego rozwiązania. Układ równań zawiera: równań kinematycznych - 6 równania równowagi wewnętrznej - 3 równań fizycznych - 6 Uzupełnieniem układu równań muszą być zależności opisujące więzy podporowe i obciążenia brzegowe, zwane równaniami warunków brzegowych kinematycznych oraz statycznych.
26 Równania kinematyczne i równowagi I) równania kinematyczne (6): ε x = u x x, ε y = u y y, ε z = u z z, γ xy = u x y + u y x, II) równania równowagi (3): γ xz = u x z + u z x, γ yz = u y z + u z y, σ x x + τ yx y + τ zx z + ˆb x = 0, τ xy x + σ y y + τ zy z + ˆb y = 0, τ xz x + τ yz y + σ z z + ˆb z = 0,
27 Równania fizyczne III) równania fizyczne (6): ε x = 1 E [σ x ν(σ y + σ z )], ε y = 1 E [σ y ν(σ x + σ z )], γ xy = 1 G τ xy = ε z = 1 E [σ z ν(σ x + σ y )], 2(1 + ν) τ xy, γ xz = 1 E G τ xz = γ yz = 1 G τ yz = 2(1 + ν) τ yz. E 2(1 + ν) τ xz, E
28 Literatura [1] A. Borkowski, Cz. Cichoń, M. Radwańska, A. Sawczuk, Z. Waszczyszyn. Mechanika budowli. Ujęcie komputerowe. T.3, rozdz.9, Arkady, Warszawa, [2] J. Kobiak, W. Starosolski. Konstrukcje żelbetowe. T. 4, Arkady, Warszawa, [3] W. Kolendowicz. Mechanika budowli dla architektów. Arkady, Warszawa, [4] ROBOT Millenium Podręcznik użytkownika. RoboBAT, Kraków. [5] Podręcznik użytkownika systemu ANSYS w wersji elektronicznej.
29 Literatura prace L-5 [6] M. Radwańska, E. Pabisek. Zastosowanie systemu metody elementów skończonych ANKA do analizy statyki i wyboczenia ustrojów powierzchniowych. Pomoc dydaktyczna PK, Kraków, [7] Z.Waszczyszyn, E.Pabisek, J.Pamin, M.Radwańska. Nonlinear analysis of a RC cooling tower with geometrical imperfections and a technological cut-out. Engineering Structures, 2, , [8] M. Abramowicz. Analiza statyki powłok i paneli walcowych przy użyciu systemu ANSYS. Praca dyplomowa magisterska, opiekun: M. Radwańska, Politechnika Krakowska, Kraków, [9] M. Florek. Wybrane zagadnienia statyki powłok kulistych rozwiązania analityczne oraz numeryczne metodą elementów skończonych. Praca dyplomowa magisterska, opiekun: M. Radwańska, Politechnika Krakowska, Kraków, [10] K. Kwinta. Analiza powłok cienkich o różnych kształtach według teorii stanu bezmomentowego. Praca dyplomowa magisterska, opiekun: M. Radwańska, Politechnika Krakowska, Kraków, [11] M. Radwańska. Ustroje powierzchniowe. Podstawy teoretyczne oraz rozwiązania analityczne i numeryczne. Skrypt PK, Kraków, 2009.
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,
POWŁOKI GEOMETRIA POWIERZCHNI
Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydzia Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Maria Radwańska Tematyka wykładu
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko
Analiza płyt i powłok MES
Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
WYBRANE ZAGADNIENIA MECHANIKI USTROJÓW POWIERZCHNIOWYCH
WYBRANE ZAGADNIENIA MECHANIKI USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2010/2011 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki
ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady
ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut
Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa
Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia
[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
8. WIADOMOŚCI WSTĘPNE
Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 1 8. WIDOMOŚCI WSTĘPNE 8.1. KLSYFIKCJ ZSDNICZYCH ELEMENTÓW KONSTRUKCJI Podstawą klasyfikacji zasadniczych elementów konstrukcji jest kształt geometryczny
4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych
Analiza statyczna MES dla dźwigarów powierzchniowych
Adam Wosatko PODZIĘKOWANIA DLA: Marii Radwańskiej, Anny Stankiewicz, Sławomira Milewskiego, Jerzego Pamina, Piotra Plucińskiego Tematyka zajęć 1 Analiza statyczna MES algorytm, porównanie z MRS 2 ES tarczowe
Metoda elementów skończonych
Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
ROZWIĄZANIE PROBLEMU NIELINIOWEGO
Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja
2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało
CIENKOŚCIENNE KONSTRUKCJE METALOWE
CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 6: Wymiarowanie elementów cienkościennych o przekroju w ujęciu teorii Własowa INFORMACJE OGÓLNE Ścianki rozważanych elementów, w zależności od smukłości pod naprężeniami
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
TARCZOWE I PŁYTOWE ELEMENTY SKOŃCZONE
PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
Mechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
Metody obliczeniowe - modelowanie i symulacje
Metody obliczeniowe - modelowanie i symulacje J. Pamin nstitute for Computational Civil Engineering Civil Engineering Department, Cracow University of Technology URL: www.l5.pk.edu.pl Zagadnienia i źródła
Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
mgr inż. Paweł Szeptyński Podstawy wytrzymałości materiałów i mechaniki układów prętowych 07 Teoria stanu naprężenia i odkształcenia
NAPRĘŻENIE Teoria stanu naprężenia i odkształcenia Naprężeniem nazywamy gęstość powierzchniowych sił wewnętrznych obrazujących oddziaływanie jednej części ciała na drugą, po dokonaniu jego myślowego rozcięcia.
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
STATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop
Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9
PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH
1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA
Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1
Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, ichał Płotkowiak, Wojciech Pawłowski Poznań 00/003 ECHANIKA UDOWLI WSTĘP. echanika budowli stanowi dział mechaniki technicznej, zajmujący się statyką, statecznością
TENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:
7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić
Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie
Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba
α k = σ max /σ nom (1)
Badanie koncentracji naprężeń - doświadczalne wyznaczanie współczynnika kształtu oprac. dr inż. Ludomir J. Jankowski 1. Wstęp Występowaniu skokowych zmian kształtu obciążonego elementu, obecności otworów,
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
5.1. Kratownice płaskie
.. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.
MECHANIKA CIAŁA ODKSZTAŁCALNEGO. 1. Przedmiot i cel wytrzymałości materiałów STATYKA POLSKIE NORMY PODSTAWOWE POJĘCIA, DEFINICJE I ZAŁOŻENIA 1
ODSTWOWE OJĘC, DEFNCJE ZŁOŻEN 1 Wytrzymałość ateriałów - dział mechaniki stosowanej zajmujący się zachowaniem ciał stałych pod wpływem różnego typu obciążeń. Celem analizy tego zachowania jest wyznaczenie
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Mechanika Analityczna
Mechanika Analityczna Wykład 1 - Organizacja wykładu (sprawy zaliczeniowe, tematyka). Więzy i ich klasyfikacja Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej
Integralność konstrukcji w eksploatacji
1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia
Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia Przedmiot: Wytrzymałość Materiałów II Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 1 S 0 4 44-0 _0 Rok: II Semestr:
Twierdzenia o wzajemności
Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży
STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj
TRAJEKTORIE WARTOŚCI WŁASNYCH PÓL SIŁ WEWNĘTRZNYCH W TARCZACH I PŁYTACH ANIZOTROPOWYCH
TRAJEKTORIE WARTOŚCI WŁASNYCH PÓL SIŁ WEWNĘTRZNYCH W TARCZACH I PŁYTACH ANIZOTROPOWYCH Aleksander SZWED, Stanisław JEMIOŁO, Marcin GAJEWSKI Instytut Mechaniki Konstrukcji Inżynierskich PW. WSTĘP W przypadku
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
PLASTYCZNOŚĆ W UJĘCIU KOMPUTEROWYM
Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2013/2014 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Sprężystość
Łagodne wprowadzenie do Metody Elementów Skończonych
Łagodne wprowadzenie do Metody Elementów Skończonych dr inż. Grzegorz DZIERŻANOWSKI dr hab. inż. Wojciech GILEWSKI Katedra Mechaniki Budowli i Zastosowań Informatyki 10 XII 2009 - część I 17 XII 2009 -
ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI
10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 1 10. 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10.1. Zastosowanie funkcji Airy'ego =0 (10.1) Zakładamy, że istnieje funkcja F(x,y) spełniająca następujące
4.1. Modelowanie matematyczne
4.1. Modelowanie matematyczne Model matematyczny Model matematyczny opisuje daną konstrukcję budowlaną za pomocą zmiennych. Wartości zmiennych będą należały to zbioru liczb rzeczywistych i będą one reprezentować
Analiza płyt i powłok MES Zagadnienie wyboczenia
Analiza płyt i powłok MES Zagadnienie wyboczenia Wykład 3 dla kierunku Budownictwo, specjalności DUA+TOB Jerzy Pamin i Marek Słoński Instytut Technologii Informatycznych w Inżynierii Lądowej Politechnika
ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH
ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)
Przykłady rozkładu naprężenia stycznego w przekrojach belki zginanej nierównomiernie (materiał uzupełniający do wykładu z wytrzymałości materiałów I, opr. Z. Więckowski, 11.2018) Wzór Żurawskiego τ xy
Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
Elektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
Materiały do wykładu na temat Obliczanie sił przekrojowych, naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia.
Materiały do wykładu na temat Obliczanie sił przekrojowych naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia. Sprawdzanie warunków wytrzymałości takich prętów. Wydruk elektroniczny
P. Litewka Efektywny element skończony o dużej krzywiźnie
Wykaz oznaczeń stosowanych w pracy a długość elementu łukowego, c kosinus kąta rozwarcia elementu, c 0 kosinus połowy kąta rozwarcia elementu, d współczynnik ścinania, e współczynnik membranowy, g ij,
Metody obliczeniowe - modelowanie i symulacje
Metody obliczeniowe - modelowanie i symulacje J. Pamin Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechniki Krakowskiej Strona domowa: www.l5.pk.edu.pl Zagadnienia
Wytrzymałość materiałów
Wytrzymałość materiałów Wykład 3 Analiza stanu naprężenia i odkształcenia w przekroju pręta Poznań 1 3.1. Podstawowe założenia Charakterystyka materiału Zakładamy na początek, że mamy do czynienia z ośrodkiem
TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP)
TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP) Wstęp. Podstawy matematyczne. Tensor naprężenia. Różniczkowe równania równowagi Zakład Mechaniki Budowli PP Materiały pomocnicze do TSP (studia niestacjonarne,
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Zginanie proste belek
Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach
Mechanika teoretyczna
Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych
Przedmiot: Mechanika stosowana Liczba godzin zajęć dydaktycznych: Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Studia magisterskie: wykład 30
MES w zagadnieniach ośrodka ciągłego 2D i 3D
MES w zagadnieniach ośrodka ciągłego 2D i 3D Wykład 2 dla kierunku Budownictwo, specjalności DUA+TOB/BIM+BIŚ+BOI Jerzy Pamin i Piotr Pluciński Instytut Technologii Informatycznych w Inżynierii Lądowej
Wytrzymałość materiałów
Wytrzymałość materiałów IMiR - IA - Wykład Nr 1 Wprowadzenie. Pojęcia podstawowe. Literatura, podstawowe pojęcia, kryteria oceny obiektów, założenia wytrzymałości materiałów, siły wewnętrzne i ich wyznaczanie,
2.9. Kinematyka typowych struktur manipulatorów
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.9. Kinematyka typowych struktur manipulatorów 2.9.1. Manipulator planarny 3DOF Notacja DH Rys. 28 Tablica 1 Parametry DH Nr ogniwa
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:
Geometria powłoki, wg publikacji dr inż. Wiesław Baran
Geometria powłoki, wg publikacji dr inż. Wiesław Baran Gładką i regularną powierzchnię środkową S powłoki można opisać za pomocą funkcji wektorowej (rys. 2.1) dwóch współrzędnych krzywoliniowych u 1 i
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Mechanika Analityczna
Mechanika Analityczna Wykład 2 - Zasada prac przygotowanych i ogólne równanie dynamiki Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej 29 lutego 2016 Plan wykładu
Analiza wyboczenia MES
Analiza wyboczenia MES Jerzy Pamin i Marek Słoński e-mails: {JPamin,MSlonski}@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com ROBOT http://www.autodesk.com Zjawisko
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02
Hale o konstrukcji słupowo-ryglowej
Hale o konstrukcji słupowo-ryglowej SCHEMATY KONSTRUKCYJNE Elementy konstrukcji hal z transportem podpartym: - prefabrykowane, żelbetowe płyty dachowe zmonolityzowane w sztywne tarcze lub przekrycie lekkie