Wykład 3: Transformata Fouriera

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 3: Transformata Fouriera"

Transkrypt

1 Rchunek prwdopodobieństw MAP64 Wydził Elektroniki, rok kd. 28/9, sem. letni Wykłdowc: dr hb. A. Jurlewicz Wykłd 3: Trnsformt Fourier Złóżmy, że f(t) jest określon n R, ogrniczon, okresow o okresie 2T i spełni wrunki Dirichlet. Oznczmy ω = π T. Wtedy f(t) = n= c n e in ωt, gdzie c n = ω T T f(t)e in ωt dt. () Możemy zpisć to w postci f(t) = ω T n= T f(s)e in ωs ds e in ωt lub gdzie f(t) = F (n ω) = n= T T F (n ω) ω, f(s)e in ω(s t) ds W grnicy, przy T, równowżnie ω +, tzn. gdy funkcj f(t) przestje być okresow, zchodzi: Twierdzenie cłkowe Fourier: Dl dowolnego t przy złożenich, że: f(t) = dω f(s)e iω(s t) ds f(t) jest bezwzględnie cłkowln n R, czyli (tzn. cłk t jest zbieżn) f(t) dt < f(t) spełni wrunki Dirichlet n dowolnym przedzile ogrniczonym. Inny zpis pokzuje nlogię do (): f(t) = Stąd ide trnsformty Fourier. c(ω)e iωt dω, gdzie c(ω) = f(s)e iωs ds

2 Definicj. Niech f(t) będzie funkcją określoną n R. Trnsformtą Fourier funkcji f(t) nzywmy funkcję zespoloną ˆf(ω) = f(t)e iωt dt = Inne oznczenie: ˆf(ω) = F(f(t))(ω). f(t) cos(ωt)dt i f(t) sin(ωt)dt, ω R. Populrn interpretcj: t - czs (lub długość fli), ω - częstotliwość (lub liczb flow)) ˆf(ω)- widmo (chrkterystyk widmow, gęstość widmow) funkcji f(t), ˆf(ω) - widmo mplitudowe, θ(ω) = Arg( ˆf(ω)), rgument główny z przedziłu [ π, π] - widmo fzowe Fkt. Jeżeli f(t) jest bezwzględnie cłkowln n R, to trnsformt Fourier funkcji f(t) jest dobrze określon. Wynik to z tego, że f(t)e iωt = f(t). Uwg. Jeżeli f(t) jest funkcją przystą, to Jeżeli f(t) jest funkcją nieprzystą, to Przykłdy do zd. 2. ˆf(ω) = 2 f(t) cos(ωt)dt. ˆf(ω) = 2i f(t) sin(ωt)dt. 2

3 Podstwowe włsności trnsformty Fourier: Złóżmy, że f(t), g(t) są określone n R i bezwzględnie cłkowlne n R () ˆf(ω) f(t) dt <, ztem ˆf(ω) to funkcj ogrniczon (2) ˆf(ω) to funkcj ciągł (dowód wymg zwnsownych metod) (3) liniowość Dl dowolnych α, β R, dl h(t) = αf(t) + βg(t) mmy Dowód: ĥ(ω) = h(t)e iωt dt = α ĥ(ω) = α ˆf(ω) + βĝ(ω) f(t)e iωt dt + β (4) przesunięcie w czsie Dl dowolnego R, dl h(t) = f(t + ) mmy ĥ(ω) = e iω ˆf(ω) g(t)e iωt dt = α ˆf(ω) + βĝ(ω) Dowód: ĥ(ω)= f(t + )e iωt dt= s=t+ ds=dt t s = f(s)e iω(s ) ds = e iω f(s)e iωs ds=e iω ˆf(ω) (5) modulcj Dl dowolnego R, dl h(t) = f(t)e it mmy Dowód: ĥ(ω)= f(t)e it e iωt dt = ĥ(ω) = ˆf(ω + ) f(s)e i(ω+)t ds = ˆf(ω + ) (6) sklownie Dl dowolnego, dl h(t) = f(t) mmy ĥ(ω) = ˆf ( ) ω Dowód: Dl > mmy ĥ(ω)= f(t)e iωt dt= s=t ds=dt t s = f(s)e i ω s ds = ( ) ˆf ω Dl < mmy ĥ(ω)= f(t)e iωt dt= s=t ds=dt t s = f(s)e i ω s ds = ( ) ˆf ω = ( ) ˆf ω Przykłdy do zd. 2.2 ()-(d) 3

4 (7) pochodn w spektrum Jeżeli h(t) = tf(t) jest bezwzględnie cłkowln n R (tzn. to istnieje ciągł pochodn ˆf (ω) = d dω ˆf(ω) orz ˆf (ω) = f(t)( it)e iωt dt = iĥ(ω) tf(t) dt < ), Jeżeli h m (t) = t m f(t), m N, jest bezwzględnie cłkowln n R (tzn. t m f(t) dt < ), to istnieje ciągł pochodn ˆf (m) (ω) = dm dω ˆf(ω) orz m (8) pochodn w czsie ˆf (m) (ω) = f(t)( it) m e iωt dt = ( i) m ĥ m (ω) Jeżeli f (t) = d f(t) jest ciągł orz bezwzględnie cłkowln n R dt (tzn. f (t) dt < ), to f (ω) = iω ˆf(ω) Jeżeli f (m) (t) = dm f(t), m N, jest ciągł orz dtm f (r) (t) dt < dl kżdego < r m, to Przykłdy do zd. 2.2 (e)-(g) f (m) (ω) = (iω) m ˆf(ω) Tbel: Włsności trnsformty Fourier h(t) ĥ(ω) Uwgi liniowość αf(t) + βg(t) α ˆf(ω) + βĝ(ω) przesunięcie w czsie f(t + ) e iω ˆf(ω) modulcj f(t)e it ˆf(ω + ) sklownie f(t) ˆf ( ) ω pochodn w spektrum ( i) m t m f(t) ˆf (m) (ω) m N pochodn w czsie f (m) (t) (iω) m ˆf(ω) m N splot (f g)(t) ˆf(ω) ĝ(ω) 4

5 Jednoznczność przeksztłceni Fourier Trnsformt Fourier F : f(t) ˆf(ω) to odwzorownie z jednej rodziny funkcji w drugą. Twierdzenie. Jeżeli f(t), g(t) są bezwzględnie cłkowlne n R orz f(t) = g(t) dl prwie wszystkich t (tzn. zbiór {t : f(t) g(t)} jest skończony lbo nieskończony przeliczlny, lbo nieprzeliczlny o długości (mierze Lebesgue ), jk np. zbiór Cntor), to ˆf(ω) = ĝ(ω) dl kżdego ω. N odwrót, jeżeli f(t), g(t) są bezwzględnie cłkowlne n R orz ˆf(ω) = ĝ(ω) dl kżdego ω, to f(t) = g(t) dl prwie wszystkich t. Odwrotn trnsformt Fourier. Z twierdzeni cłkowego Fourier wynik, że jeżeli f(t) jest bezwzględnie cłkowln n R i spełni wrunki Dirichlet n dowolnym odcinku ogrniczonym, to dl dowolnego t f(t) = ˆf(ω)e iωt dω. (2) Po prwej stronie mmy tzw. odwrotną trnsformtę Fourier funkcji ˆf(ω). W ogólnym przypdku zchodzi Twierdzenie. Jeżeli f(t) i ˆf(ω) są bezwzględnie cłkowlne n R, to równość (2) zchodzi dl prwie wszystkich t. Przykłdy do zd. 2.3, 2.4 5

6 Splot funkcji: Definicj. Złóżmy, że f 2 (t), g 2 (t) są bezwzględnie cłkowlne n R. Definiujemy nową funkcję - splot funkcji f i g: Uwg. h(t) = (f g)(t) def = f(s)g(t s)ds. Przy podnych złożenich splot f g jest dobrze określony dl wszystkich t. (W ogólnym przypdku wystrczy, że f(t), g(t) są bezwzględnie cłkowlne n R, i wtedy splot jest dobrze określony dl prwie wszystkich t.) Włsności splotu funkcji: () przemienność f g = g f Dowód: (f g)(t)= f(s)g(t s)ds= t s=u ds=du s u = f(t u)g(u)( du) = (g f)(t) (2) łączność f (g h) = (f g) h (3) f (g + h) = f g + f h (cf) g = c(f g), c R Twierdzenie. Jeżeli f(t) i g(t) są bezwzględnie cłkowlne n R, to h(t) = (f g)(t) jest bezwzględnie cłkowln n R orz ĥ(ω) = ˆf(ω) ĝ(ω) Szkic dowodu: Cłkowlność ( h wynik z twierdzeni ) Fubiniego. ( ) ĥ(ω)= f(s)g(t s)ds e iωt dt tw.fubiniego = f(s) g(t s)e iωt dt ds = ( ) = f(s)e iωs g(u)e iωu dt ds = ˆf(ω) ĝ(ω) Przykłdy do zd. 2.5, 2.6 6

7 Funkcj delt Dirc δ(t) Definicj (nieformln): Delt Dirc δ(t) to funkcj spełnijąc wrunki: dl t δ(t) = dl t = δ(t)dt = Pul Dirc wprowdził nieformlnie tki obiekt w mechnice kwntowej w 928 r. Ścisłą i poprwną definicję podł teori dystrybucji w ltch 4-tych i 5-tych XX wieku. Intuicje: δ(t) reprezentuje nieskończenie wielki impuls pojwijący się w chwili t = i trwjący nieskończenie krótko, przy czym efekt dziłni tego impulsu (mierzony cłką po cłej prostej) jest jednostkowy. Inn interpretcj: δ(t) reprezentuje msę jednostkową skupioną w punkcie. Konstrukcj delty Dirc: dl t > n Bierzemy ciąg impulsów prostokątnych p n (t) = n dl t 2 n Zuwżmy, że p n (t)dt = n 2 2 n = dl kżdego n. Deltę Dirc definiujemy jko grnicę δ(t) = lim n p n (t). Wtedy (nieformlnie) mmy δ(t)dt = lim n p n (t)dt =. n/2 p n (t) 5 n= n=2 n= n= pole= /n /n 7

8 Włsności delty Dirc: () Jeśli f(t) jest cigł w punkcie t =, to (Jest to jedn z lterntywnych definicji delty Dirc.) (2) f(t)δ(t ) = f()δ(t ) dl dowolnego R (3) Jeśli f(t) jest cigł w punkcie t =, to (4) f(t) δ(t ) = f(s)δ(t s)ds = f(t ) f(t)δ(t)dt = f(). f(t)δ(t )dt = f(). (5) t δ(s )ds = χ(t ), dl t gdzie χ(t) = dl t > (funkcj Hevyside ). (6) δ(t + b) = ( δ t + b ) dl dowolnych, b R funkcj Hevyside χ(t) Uwg: δ(t), R, to funkcj spełnijąc wrunki: dl t δ(t) = orz δ(t)dt =. dl t = Trnsformt Fourier delty Dirc: Z włsności () mmy ˆδ(ω) = e iω. (Zuwżmy, że ˆp n (ω) = 2 n 2 n cos(ωt)dt = n sin(ωt) ω Stąd lim n ˆp n(ω) = = ˆδ(ω) dl kżdego ω.) t= n = sin ( ω ) n t= ω n dl ω, ˆp n () = Dl f(t) mmy ztem ˆf(ω) = δ(ω) (z trnsformty odwrotnej). 8

9 Tbel: Trnsformty Fourier podstwowych funkcji f(t) e t dl t dl t < ˆf(ω) + iω e t 2 + ω 2 e t2 dl t dl t > dl t dl pozostłych t 2 sin(ω) ω πe ω2 4 dl ω 2 dl ω = i( e iω ) ω dl ω dl ω = δ(ω) δ(t) 9

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

Całka Riemanna Dolna i górna suma całkowa Darboux

Całka Riemanna Dolna i górna suma całkowa Darboux Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i

Bardziej szczegółowo

Analiza Matematyczna (część II)

Analiza Matematyczna (część II) Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)

Bardziej szczegółowo

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki

Bardziej szczegółowo

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki

Bardziej szczegółowo

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I. RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,

Bardziej szczegółowo

TRANSFORMATA FOURIERA

TRANSFORMATA FOURIERA TRANSFORMATA FOURIERA. Wzór całkowy Fouriera Wzór ten wykorzystujemy do analizy funkcji nieokresowych; funkcje te mogą opisywać np.przebiegi eleektryczne. Najpierw sformułujmy tzw. warunki Dirichleta.

Bardziej szczegółowo

nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P.

nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P. Rozdził 10 Cłk Drboux 10.1 Doln i górn sum Drboux Definicj podziłu. Niech, b R, < b. Kżdy skończony ciąg P postci (10.1) P = (x 0,..., x n ), gdzie n N, = x 0 < x 1

Bardziej szczegółowo

Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk

Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk Anliz Mtemtyczn Cłk Riemnn Alexnder Denisjuk denisjuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych zmiejscowy ośrodek dydktyczny w Gdńsku ul. Brzegi 55 80-045 Gdńsk Anliz Mtemtyczn p.

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Całka oznaczona

Analiza matematyczna i algebra liniowa Całka oznaczona Anliz mtemtyczn i lgebr liniow Cłk oznczon Wojciech Kotłowski Instytut Informtyki Politechniki Poznńskiej emil: imię.nzwisko@cs.put.poznn.pl pok. 2 (CW) tel. (61)665-2936 konsultcje: piątek 15:10-16:40

Bardziej szczegółowo

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych

Bardziej szczegółowo

Analiza Matematyczna. Całka Riemanna

Analiza Matematyczna. Całka Riemanna Anliz Mtemtyczn. Cłk Riemnn Aleksnder Denisiuk denisiuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych Wydził Informtyki w Gdńsku ul. Brzegi 55 8-45 Gdńsk 29 kwietni 217 1 / 2 Cłk Riemnn

Bardziej szczegółowo

Lista 1. (e) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę. (f) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę

Lista 1. (e) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę. (f) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę MATEMATYKA Lista 1 1. Zbadać liniową niezależność wektorów. (a) (1, 2, 3), (3, 4, 5), V = R 3 ; (b) (1, 2, 3), (3, 2, 1), (1, 1, 1), V = R 3 ; (c) (1, 0, 0, 0), ( 1, 1, 0, 0), (1, 1, 1, 0), ( 1, 1 1, 1),

Bardziej szczegółowo

Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag.

Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag. Mtemtyk Cłk oznczon Aleksnder Denisiuk denisjuk@euh-e.edu.pl Elblsk Uczelni Humnistyczno-Ekonomiczn ul. Lotnicz 2 82-3 Elblg Mtemtyk p. 1 Cłk oznczon Njnowsz wersj tego dokumentu dostępn jest pod dresem

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Mtemtyk 1 Šuksz Dwidowski Instytut Mtemtyki, Uniwersytet l ski Cªk oznczon Niech P = [, b] R b dzie przedziªem. Podziªem przedziªu P b dziemy nzywli k»d sko«czon rodzin Π = {P 1, P 2,..., P m } tkich przedziªów,»e

Bardziej szczegółowo

Pochodne i całki, macierze i wyznaczniki

Pochodne i całki, macierze i wyznaczniki Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk

Bardziej szczegółowo

Wykład 2: Szeregi Fouriera

Wykład 2: Szeregi Fouriera Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

III. Rachunek całkowy funkcji jednej zmiennej.

III. Rachunek całkowy funkcji jednej zmiennej. III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,

Bardziej szczegółowo

1 Rachunek zdań 3. 2 Funkcje liczbowe 6

1 Rachunek zdań 3. 2 Funkcje liczbowe 6 Spis treści 1 Rchunek zdń 3 2 Funkcje liczbowe 6 3 Ciągi liczbowe 9 3.1 Grnic włściw ciągu 10 3.2 Grnic niewłściw ciągu 11 3.3 Grnice pewnych ciągów 12 4 Grnice funkcji 13 4.1 Podstwowe definicje 13 4.2

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1) Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x

Bardziej szczegółowo

CAŁKA OZNACZONA JAKO SUMA SZEREGU

CAŁKA OZNACZONA JAKO SUMA SZEREGU CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Ciągi liczbowe Definicj. Rzeczywistym nieskończonym ciągiem liczbowym nzywmy funkcję określoną n zbiorze liczb nturlnych o wrtościch w zbiorze liczb rzeczywistych f : N R, n n. Ciąg

Bardziej szczegółowo

Wariacje Funkcji, Ich Własności i Zastosowania

Wariacje Funkcji, Ich Własności i Zastosowania Środowiskowe Studi Doktornckie z Nuk Mtemtycznych Uniwersytet Mrii Curie-Skłodowskiej w Lublinie Józef Bnś Ktedr Mtemtyki Politechnik Rzeszowsk Wricje Funkcji, Ich Włsności i Zstosowni Lublin 2014 Spis

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

SZEREG TRYGONOMETRYCZNY FOURIERA

SZEREG TRYGONOMETRYCZNY FOURIERA SZEREG TRYGONOMETRYCZNY FOURIERA Rozważmy ciag funkcji: 1, cos πx πx 2πx, sin, cos, sin 2πx,..., cos nπx, sin nπx,...}, gdzie jest pewną iczbą dodatnią. Zauważmy, że na przedziae , da dowonych dwóch

Bardziej szczegółowo

9. Całkowanie. I k. sup

9. Całkowanie. I k. sup 9. Cłkownie Zcznijmy od podstwowego dl teorii cłki pojęci podziłu. Podziłem odcink [, b] R nzywmy kżdy skończony zbiór P [, b] zwierjący ob końce odcink. Niech będą punktmi podziłu P. Odcinki = x < x

Bardziej szczegółowo

Matematyka dla biologów Zajęcia nr 7.

Matematyka dla biologów Zajęcia nr 7. Mtemtyk dl biologów Zjęci nr 7. Driusz Wrzosek 21 listopd 2018 Mtemtyk dl biologów Zjęci 7. 21 listopd 2018 1 / 20 Przypomnienie: funkcj pierwotn Niech F : D, gdzie D to odcinek otwrty lub cł prost ).

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii Wydził Mtemtyki Stosownej Zestw zdń nr 6 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 9 listopd 8r. Cłk oznczon i cłk niewłściw Zstosowni rchunku cłkowego w geometrii

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika w Toruniu

Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Mikołj Kopernik w Toruniu Wydził Mtemtyki i Informtyki Krzysztof Frączek Anliz Mtemtyczn I Wykłd dl studentów I roku kierunku informtyk Toruń 206 Spis treści Liczby rzeczywiste 2 Ciągi liczbowe

Bardziej szczegółowo

3. F jest lewostronnie ciągła

3. F jest lewostronnie ciągła Def. Zmienną losową nzywmy funkcję X: tką, że x R : { : X( ) < x }. Ozn.: zmist pisd A = { : X( ) < x } piszemy A = { X < x } zdrzenie poleg n tym, że X( )

Bardziej szczegółowo

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami) List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Matematyczne Metody Fizyki II

Matematyczne Metody Fizyki II Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 7 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 7 1 / 11 Reprezentacja

Bardziej szczegółowo

Równania różniczkowe w przestrzeniach Banacha

Równania różniczkowe w przestrzeniach Banacha Równni różniczkowe w przestrzenich Bnch 1 Równni różniczkowe w przestrzenich Bnch Wojciech Kryszewski 1. Preliminri Złóżmy, że E jest przestrzenią Bnch (nd R lub C), I jest przedziłem ( 1 ) niezdegenerownym

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Niewymierność i przestępność Materiały do warsztatów na WWW6

Niewymierność i przestępność Materiały do warsztatów na WWW6 Niewymierność i przestępność Mteriły do wrszttów n WWW6 Piotr Achinger 23 sierpni 2010 1 Wstęp 1.1 Liczby wymierne i niewymierne Pytnie 1. Czy istnieją liczby niewymierne? Zdnie 1. Wykzć, że 1. 2 / Q,

Bardziej szczegółowo

a a a b M. Przybycień Matematyczne Metody Fizyki I

a a a b M. Przybycień Matematyczne Metody Fizyki I Relcje równowr wnowżności i klsy Definicj: Relcją określoną n zbiorze A nzywmy dowolny test porównwczy pomiędzy uporządkownymi prmi elementów elementów zbioru A. Jeśli pr (, b) œ A ä A spełni ten test,

Bardziej szczegółowo

Spis treści. 1 Wprowadzenie 2

Spis treści. 1 Wprowadzenie 2 Spis treści 1 Wprowdzenie 2 2 Podstwowe przestrzenie funkcyjne 14 2.1 Przestrzenie L p (, b) i L (, b)......................... 14 2.2 Przestrzenie L p (, b) L p (, b) i L (, b) L (, b)............. 27

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

PEWNIK DEDEKINDA i jego najprostsze konsekwencje

PEWNIK DEDEKINDA i jego najprostsze konsekwencje PEWNIK DEDEKINDA i jego njprostsze konsekwencje W rozdzile ósmym stwierdziliśmy, że z podnych tm pewników nie wynik istnienie pierwistków z liczb rzeczywistych. Uzupe lnimy terz liste pewników jeszcze

Bardziej szczegółowo

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b, WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz

Bardziej szczegółowo

2. Analiza Funkcje niepustymi zbiorami. Funkcja

2. Analiza Funkcje niepustymi zbiorami. Funkcja 2. Anliz Kresy: infim i suprem Wprowdzmy oznczenie dl rozszerzonej prostej rzeczywistej: R = R {, + }, przy czym w zbiorze tym zchowujemy nturlny porzdek w R orz przyjmujemy, że < < dl R. Niech A R. Ogrniczeniem

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 2 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy bz dnych" 1 Pojęcie krotki - definicj Definicj. Niech dny będzie skończony zbiór U := { A 1, A 2,..., A n }, którego

Bardziej szczegółowo

Wzory uproszczonego mno zenia: (a + b) 2 = a 2 + 2ab + b 2, (a b) 2 = a 2 2ab + b 2, a 2 b 2 = (a b) (a + b).

Wzory uproszczonego mno zenia: (a + b) 2 = a 2 + 2ab + b 2, (a b) 2 = a 2 2ab + b 2, a 2 b 2 = (a b) (a + b). Wzory uproszczonego mno zeni: ( + b) = + b + b, ( b) = b + b, b = ( b) ( + b). Dzi ni n pot ¾egch: Dl ; y R orz ; b > 0 (dl pewnych wyk dników ; y z o zeni o ; b mog¾ być os bine w zle zności od sytucji)

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1 Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)

Bardziej szczegółowo

Kombinowanie o nieskończoności. 4. Jak zmierzyć?

Kombinowanie o nieskończoności. 4. Jak zmierzyć? Kombinownie o nieskończoności.. Jk zmierzyć? Projekt Mtemtyk dl ciekwych świt spisł: Michł Korch 9 kwietni 08 Trochę rzeczy z wykłdu Prezentcj multimediln do wykłdu. Nieskończone sumy Będzie nm się zdrzć

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy

Bardziej szczegółowo

Całki niewłaściwe. Funkcje Γ i B Eulera oraz ich zastosowania

Całki niewłaściwe. Funkcje Γ i B Eulera oraz ich zastosowania Rozdził Cłki niewłściwe. Funkcje Γ i B Euler orz ich zstosowni W tym rozdzile omówimy pojęcie cłki niewłściwej. Zjmiemy się też dwom brdzo wżnymi konkretnymi typmi tkich cłek: funkcjmi Γ (gmm i B (bet

Bardziej szczegółowo

MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element

MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element MATEMATYKA Wykłd 4 (Funkcje) Pisząc f : (,b) R rozumiemy Ŝe kŝdemu (, b) przyporządkowny zostł dokłdnie jeden element y R. Wykresem funkcji nzywmy zbiór pr (,f()) n płszczyźnie skłdjącej się ze wszystkich

Bardziej szczegółowo

Materiały do kursu Matematyka na kierunku Informatyka studia stacjonarne

Materiały do kursu Matematyka na kierunku Informatyka studia stacjonarne Mteriły do kursu Mtemtyk n kierunku Informtyk studi stcjonrne Ryszrd Rębowski 9 mrc 09 Wstęp Przedstwiony poniżej mterił nleży rozumieć jko uzupełnienie do wykłdu z Mtemtyki w rmch kursu Mtemtyk przeprowdzonego

Bardziej szczegółowo

Metody numeryczne. Całkowanie. Janusz Szwabiński. nm_slides-4.tex Metody numeryczne Janusz Szwabiński 23/10/ :07 p.

Metody numeryczne. Całkowanie. Janusz Szwabiński. nm_slides-4.tex Metody numeryczne Janusz Szwabiński 23/10/ :07 p. Metody numeryczne Cłkownie Jnusz Szwbiński szwbin@ift.uni.wroc.pl nm_slides-4.tex Metody numeryczne Jnusz Szwbiński 23/10/2002 10:07 p.1/69 Cłkownie numeryczne 1. Kilk uwg ogólnych 2. Kwdrtury Newton Cotes

Bardziej szczegółowo

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się

Bardziej szczegółowo

ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1

ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1 ELEKTRONIKA CYFROWA Mteriły y pomocnicze do wykłd dów Dl AiZ zoczne inŝynierskie, sem Wykorzystne mteriły Łub T Ukłdy logiczne, PW 26 Wenck A NOTATKI Z TECHNIKI CYFROWEJ PW 26 wwwelektronikorgpl Wprowdzenie

Bardziej szczegółowo

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2 Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Wykład z matematyki dla studentów Inżynierii Środowiska. Wykład 1. Literatura PRZEGLĄD FUNKCJI ELEMENTARNYCH

Wykład z matematyki dla studentów Inżynierii Środowiska. Wykład 1. Literatura PRZEGLĄD FUNKCJI ELEMENTARNYCH Wykłd z mtemtyki dl studentów Inżynierii Środowisk Wykłd. Litertur. Gewert M., Skoczyls Z.: Anliz mtemtyczn, Oficyn Wydwnicz GiS, Wrocłw, 0.. Jurlewicz T., Skoczyls Z.: Algebr liniow, Oficyn Wydwnicz GiS,

Bardziej szczegółowo

< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)

< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1) Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

2 Całka oznaczona-cd Rozdrobnienia podziałów Warunki równoważne całkowalności Własności funkcji całkowalnych...

2 Całka oznaczona-cd Rozdrobnienia podziałów Warunki równoważne całkowalności Własności funkcji całkowalnych... Spis treści Uzupełnieni do wykłdu. (4 III 200) 2. Jednostjn ciągłość funkcji.................... 2.2 Cłk Riemnn (heurez)..................... 3.3 Cłk Riemnn -konstrukcj................... 4.4 Przykłdy

Bardziej szczegółowo

Wykład 12: Sumowanie niezależnych zmiennych losowych i jego związek ze splotem gęstości i transformatami Laplace a i Fouriera. Prawo wielkich liczb.

Wykład 12: Sumowanie niezależnych zmiennych losowych i jego związek ze splotem gęstości i transformatami Laplace a i Fouriera. Prawo wielkich liczb. Rchuek prwdopodobieństw MA064 Wydził Elektroiki, rok kd. 2008/09, sem. leti Wykłdowc: dr hb. A. Jurlewicz Wykłd 2: Sumowie iezleżych zmieych losowych i jego związek ze splotem gęstości i trsformtmi Lplce

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

MATEMATYKA 1 MACIERZE I WYZNACZNIKI

MATEMATYKA 1 MACIERZE I WYZNACZNIKI MATEMATYKA 1 MACIERZE I WYZNACZNIKI Definicj 1. Niech A i B będą dowolnymi zbiormi. Zbiór A B = {(, b) : A b B} wszystkich pr uporządkownych (, b) tkich, że A i b B nzywmy iloczynem krtezjńskim zbiorów

Bardziej szczegółowo

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym. I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

7. Szeregi funkcyjne

7. Szeregi funkcyjne 7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych

Bardziej szczegółowo

Wykład 8: Całka oznanczona

Wykład 8: Całka oznanczona Wykłd 8: Cłk ozczo dr Mriusz Grządziel grudi 28 Pole trójkt prboliczego Problem. Chcemy obliczyć pole s figury S ogriczoej prostą y =, prostą = i wykresem fukcji f() = 2. Rozwizie przybliżoe. Dzielimy

Bardziej szczegółowo

Analiza matematyczna ISIM II

Analiza matematyczna ISIM II Anliz mtemtyczn ISIM II Ryszrd Szwrc Spis treści Cłki niewłściwe 3. Cłki niewłściwe z funkcji nieujemnych............ 9.2 Cłki i szeregi........................... 2.3 Cłki niewłściwe z osobliwością w

Bardziej szczegółowo

O SZEREGACH FOURIERA. T (x) = c k e ikx

O SZEREGACH FOURIERA. T (x) = c k e ikx O SZEREGACH FOURIERA Funkcję postci. Wielominy i szeregi trygonometryczne. T x = N k= N c k e ikx nzywmy wielominem trygonometrycznym. Jk widć, wielomin trygonometryczny jest funkcją okresową o podstwowym

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew Pbisek Adm Wostko Wprowdzenie

Bardziej szczegółowo

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx& LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.

Bardziej szczegółowo

Zbiory wyznaczone przez funkcje zdaniowe

Zbiory wyznaczone przez funkcje zdaniowe pojęci zbioru i elementu RCHUNEK ZIORÓW zbiór zwier element element nleży do zbioru jest elementem zbioru ( X zbiór wszystkich przedmiotów indywidulnych, których dotyczy dn nuk zbiór pełny (uniwerslny

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania

Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania Zdi z lizy mtemtyczej - sem. II Cłki ozczoe i zstosowi Defiicj. Niech P = x x.. x będzie podziłem odcik [ b] części ( N przy czym x k = x k x k gdzie k δ(p = mx{ x k : k } = x < x

Bardziej szczegółowo

Piotr Stefaniak. Materiały uzupełniające do wykładu Matematyka

Piotr Stefaniak. Materiały uzupełniające do wykładu Matematyka Zchodniopomorski Uniwersytet Technologiczny w Szczecinie Piotr Stefnik Mteriły uzupełnijące do wykłdu Mtemtyk dl studentów Wydziłu Nuk o Żywności i Rybctwie Szczecin, 3 grudni 208 Spis treści Mcierze i

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Właściwości sygnałów i splot. Krzysztof Patan

Właściwości sygnałów i splot. Krzysztof Patan Właściwości sygnałów i splot Krzysztof Patan Właściwości sygnałów Dla sygnału ciągłego x(t) można zdefiniować wielkości liczbowe charakteryzujące ten sygnał wartość średnia energia sygnału x sr = lim τ

Bardziej szczegółowo

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew

Bardziej szczegółowo

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki INSTYTUT MATEMATYKI POLITECHNIKA KRAKOWSKA Dr Mrgret Wicik e-mi: mwicik@pk.edu.p Równni różniczkowe cząstkowe - metod Fourier. Przykłdowe rozwiązni i wskzówki zd.1. Wyznczyć funkcję opisującą drgni podłużne

Bardziej szczegółowo

Analiza Matematyczna II

Analiza Matematyczna II Uniwersytet Jn Kochnowskiego w Kielcch Wydził Mtemtyczno-Przyrodniczy Instytut Mtemtyki Dr hb. prof. UJK Grzegorz Łysik Anliz Mtemtyczn II Skrypt wykłdów Kielce, 212. 1 1 Funkcje wielu zmiennych 1.1 Przestrzeń

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

Wstęp do Analizy Matematycznej funkcje jednej zmiennej. Stanisław Spodzieja

Wstęp do Analizy Matematycznej funkcje jednej zmiennej. Stanisław Spodzieja Wstęp do Anlizy Mtemtycznej funkcje jednej zmiennej Stnisłw Spodziej Łódź 2014 2 Wstęp Książk t jest niezncznie zmodyfikowną wersją wykłdu z nlizy mtemtycznej dl pierwszego roku mtemtyki, jki prowdziłem

Bardziej szczegółowo

Przeksztacenie Laplace a. Krzysztof Patan

Przeksztacenie Laplace a. Krzysztof Patan Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:

Bardziej szczegółowo