PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

Wielkość: px
Rozpocząć pokaz od strony:

Download "PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych"

Transkrypt

1 PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1

2 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I N f f g 12 h 3 jest przypdkiem schemtu relcyjnego E := ( { I, N, P, O }, { I N, IP O } ). W zleżności od wyoru zioru zleżności funkcyjnych jko podstwy rozkłdu relcję tą możn rozłożyć ez strty dnych n dw sposoy: 2005/2006 Wykłd "Podstwy z dnych" 2 P O 3 4 3

3 Rozkłdlno dlność schemtów w relcyjnych E 1 : I N E 2 : 10 f 11 g 12 h I P O E 3 : I P O E 4 : I P N f f g h W oydwu przypdkch mmy: EGZ=E >< 1 E 2, EGZ=E >< 3 E /2006 Wykłd "Podstwy z dnych" 3

4 Definicj. Mówimy, że schemt relcyjny R := ( U, F ) jest rozkłdlny ez strty zleżności n dw schemty gdy Rozkłdlno dlność schemtów w relcyjnych R 1 := ( X, G ), R 2 := ( Y, H ), ) X Y = U, ) F + = ( G H ) /2006 Wykłd "Podstwy z dnych" 4

5 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Dl schemtu relcyjnego R := ( U, F ) U := { A, B, C, D }, F := { A B, BC D, D B, D C } rozwżmy nstępujące schemty: R 1 := ( { A, B }, { A B }), R 2 := ( { B, C, D }, { BC D, D B, D C } ), ędące rozkłdmi schemtu R ez strty zleżności. Rozkłd ten nie jest jednk rozkłdem ez strty dnych. 2005/2006 Wykłd "Podstwy z dnych" 5

6 Rozkłdlno dlność schemtów w relcyjnych Istotnie, rozwżmy relcję R INST(R) postci: R: A B C D c d 1 c 1 d 1 2 c 1 d 1 Wówczs relcje: mją postć: R 1 := R[AB] i R 2 := R[BCD] 2005/2006 Wykłd "Podstwy z dnych" 6

7 Rozkłdlno dlność schemtów w relcyjnych R 1 : A B 1 c 1 d 1 2 i R R >< 1 R 2 (nstępny sljd). R 2 : Zuwżmy, że zleżności B A i B CD nie nleżą do F +, tzn. nie są spełnione złożeni twierdzeni o wrunku koniecznym i dosttecznym rozkłdlności ez strty dnych. B C c D d 2005/2006 Wykłd "Podstwy z dnych" 7

8 Rozkłdlno dlność schemtów w relcyjnych R 1 >< R 2 A B 1 c d 1 c 1 d 1 2 c d 2 c 1 d 1 1 c 1 c /2006 Wykłd "Podstwy z dnych" 8 C c c 1 D d d 1 R: A B C c D d 2 d 1 d 1

9 Normlizcj schemtów w relcyjnych Definicj. Mówimy, że ziór K U jest kluczem dl schemtu relcyjnego R := ( U, F ), gdy spełni wrunki: ) ( K U ) F +, ) ( X U ) ( [ ( X U ) F + ] [ ( X K ) ] ). Jeżeli ziór K spełni tylko wrunek ) to nzywmy go ndkluczem. Elementy zioru K nzywmy tryutmi kluczowymi. 2005/2006 Wykłd "Podstwy z dnych" 9

10 Normlizcj schemtów w relcyjnych Przykłd. Dl schemtu relcyjnego E := ( { I, N, P, O }, { I N, IP O } ) wrunek ) definicji spełniją ziory { I, P }, { I, N, P }, { I, N, P, O }. Wrunek ) spełni ziór { I, P } i ten ziór jest kluczem schemtu R. 2005/2006 Wykłd "Podstwy z dnych" 10

11 Normlizcj schemtów w relcyjnych Uwg. Schemt relcyjny może posidć wiele kluczy (klucze kndydujące). Jeden z nich nzywmy kluczem głównym, (Primry key). Atryuty nie nleżące do żdnego klucz nzywmy tryutmi niekluczowymi. 2005/2006 Wykłd "Podstwy z dnych" 11

12 Normlizcj schemtów w relcyjnych - 1PN Definicj. Schemt relcyjny R := ( U, F ) jest w pierwszej postci normlnej (1PN), gdy dl kżdego A U ziór DOM(A) skłd się z wrtości elementrnych (tomic vlue). 2005/2006 Wykłd "Podstwy z dnych" 12

13 Normlizcj schemtów w relcyjnych - 2PN Definicj. Niech X, Y U i X Y =. Mówimy, że Y jest w pełni funkcyjnie zleżny od X, gdy istnieje zleżność funkcyjn X Y i nie istnieje zleżność z żdnego włściwego podzioru zioru X w Y. X Y F + X Y X 1 X 1 Y F /2006 Wykłd "Podstwy z dnych" 13

14 Normlizcj schemtów w relcyjnych - 2PN Definicj. Schemt relcyjny R := ( U, F ) jest w drugiej postci normlnej (2PN), gdy kżdy niekluczowy tryut A U jest w pełni zleżny od kżdego klucz tego schemtu. K 1 A F + K 2 A F + K 1 A K 2 K 1 A F + K 2 A F /2006 Wykłd "Podstwy z dnych" 14

15 Normlizcj schemtów w relcyjnych - 2PN Przykłd. Schemt relcyjny E = ( U, F ) gdzie U := { Indeks, Nzwisko, Kierunek, Adres, Przedmiot, Ocen }, F := { I NAK, IP O } z kluczem K := { I, P } nie jest w 2PN, o np. niekluczowy tryut N jest zleżny funkcyjnie tylko od { I } K. 2005/2006 Wykłd "Podstwy z dnych" 15

16 Normlizcj schemt Normlizcj schemtów relcyjnych w relcyjnych - 2PN Niech E ędzie relcją o schemcie E = ( U, F ) określoną nstępująco: E: I N A K P O 10 f x mt 3 10 f x mt 4 11 g y inf 3 12 h x inf 3 10 f x mt c /2006 Wykłd "Podstwy z dnych" 16

17 Normlizcj schemtów w relcyjnych - 2PN W relcji tej możn zuwżyć nstępujące nomli: usuwni ktulizcji zminy w kilku krotkch; dołączni -nie możn dołączyć student, który nie zdłżdnego egzminu; - np. przy uniewżnieniu egzminu student o indeksie 11 nleży usunąć cłą krotkę, co spowoduje utrtę informcji o studencie. - zmin dresu student wymg 2005/2006 Wykłd "Podstwy z dnych" 17

18 Normlizcj schemtów w relcyjnych - 2PN Dl kżdej relcji E INST(E) mmy E = E[INKA] >< E[IPO] tzn. uzyskliśmy dw schemty relcyjne i E 1 := ( { I, N, K, A }, { I NAK }) E 2 := ( { I, P, O }, { IP O }) odpowiednio z kluczmi { I } i { I, P }. Jest to rozkłd ez strty dnych. 2005/2006 Wykłd "Podstwy z dnych" 18

19 E 1 : Normlizcj schemtów w relcyjnych - 2PN Relcję E możn zstąpić dwiem relcjmi: I N f g h A x y x K mt inf inf E 2 : I Kżdy z tych schemtów jest w 2PN. Stwierdzenie. Jeżeli kżdy klucz schemtu jest ziorem jednoelementowym to schemt jest w 2PN. 2005/2006 Wykłd "Podstwy z dnych" 19 P c O

20 Normlizcj schemtów w relcyjnych - 3PN Definicj. Ziór tryutów Z jest trnzytywnie zleżny od zioru X, gdy ) X Z =, ) ( Y U ){(Y X = Y Z= ) [(X Y ) F + (Y X) F + (Y Z) F + ]}. X Y Z (X Y ) F + (Y X) F + (Y Z) F /2006 Wykłd "Podstwy z dnych" 20

21 Normlizcj schemtów w relcyjnych - 3PN Definicj. Schemt relcyjny R := ( U, F ) jest w trzeciej postci normlnej ( 3PN ), gdy jest w 2PN i kżdy ziór niekluczowych tryutów Z U nie jest trnzytywnie zleżny od kżdego zioru tryutów K ędącego kluczem tego schemtu. 2005/2006 Wykłd "Podstwy z dnych" 21

22 Normlizcj schemtów w relcyjnych - 3PN Przykłd. Rozwżmy schemt relcyjny E := ( U, F ) U :={Wykonwc, Adres, Projekt, Dt_zkończeni}, F := { W APD, P D } z kluczem K := { W } jest w 2PN. 2005/2006 Wykłd "Podstwy z dnych" 22

23 Normlizcj schemtów w relcyjnych - 3PN Niech E ędzie relcją o schemcie E := (U, F) U := { Wykonwc, Adres, Projekt, Dt_zk } F := { W AP, P D } określoną nstępująco: E: W A 30 x 40 y 50 y 60 z P c D 01/01/ /01/ /01/ /01/ /2006 Wykłd "Podstwy z dnych" 23

24 Normlizcj schemtów w relcyjnych - 3PN Poniewż W P P D to W D tzn. ziór {D} jest trnzytywnie zleżny od zioru {W}. W relcji tej możn zuwżyć nstępujące nomli: dołączni, ktulizcji i usuwni. Dl kżdej relcji E INST(E) mmy E=E[WAP] >< E[PD] tzn. uzyskmy dw schemty relcyjne ędące w 3PN E 1 := ( { W, A, P }, { W A, W P }) i E 2 := ( { P, D }, { P D } ). 2005/2006 Wykłd "Podstwy z dnych" 24

25 Normlizcj schemtów w relcyjnych - 3PN Jest to rozkłd ez strty dnych. Relcję E możn zstąpić dwiem relcjmi: E 1 : W A x y y z P c E 2 : P c D 01/01/ /01/ /01/ /2006 Wykłd "Podstwy z dnych" 25

26 Normlizcj schemtów w relcyjnych - 3PN Uwg. W kżdym schemcie ędącym w 3PN między tryutmi niekluczowymi nie m zleżności funkcyjnych. Zdnie. Sprwdzić, czy schemt relcyjny E := ( { A, B, C }, { AB C, C A } ) jest w 3PN. 2005/2006 Wykłd "Podstwy z dnych" 26

27 Normlizcj schemtów w relcyjnych - PNB-C Definicj. Schemt relcyjny R := ( U, F ) jest w postci normlnej Boyce'-Codd,(PNB-C), gdy z fktu ( X Y ) F +, Y U - X, wynik, że X jest ndkluczem tzn. ( X U ) F /2006 Wykłd "Podstwy z dnych" 27

28 Uwg. Kżdy schemt w PNB-C jest w 3PN. Przykłd. Schemt relcyjny E := ( { Student, Przedmiot, Wykłdowc }, { W P, SP W } ) z kluczem K := { S, P } nie jest w PNB-C, o mimo, że W P F +, to nie istnieje zleżność W U. Normlizcj schemtów relcyjnych - PNB-C 2005/2006 Wykłd "Podstwy z dnych" 28

29 Normlizcj schemtów relcyjnych - PNB-C Niech E ędzie relcją o schemcie R := ( U, F ) określoną nstępująco: E: S P W W relcji E występują nomli usuwni i dołączni. Nie możn dołączyć wykłdowcy i przedmiotu jeżeli rk chociż jednego student uczęszczjącego n wykłd. Nie możn również usunąć osttniego student uczęszczjącego n dny przedmiot. 2005/2006 Wykłd "Podstwy z dnych" x x y z

30 Normlizcj schemtów relcyjnych relcyjnych - PNB-C Schemt E możn rozłożyć n dw schemty relcyjne E 1 := ( { W, P }, { W P } ) i E 2 := ( { W, S }, ), z których kżdy jest w PNB-C. Wtedy relcję E możn przedstwić w postci: E 1 : W x y z P E 2 : W x x y z S /2006 Wykłd "Podstwy z dnych" 30

31 Normlizcj schemtów relcyjnych - PNB-C Poniewż E = E 1 >< E 2, więc rozkłd ten jest rozkłdem ez strty dnych, le nie jest rozkłdem ez strty zleżności, owiem { W P, SP W } + {{W P } } +. Nie jest możliwe dopisnie krotki (z,10) do relcji E 2, owiem wykłdowc z prowdzi wykłd z przedmiotu, student 10 uczęszcz n ten przedmiot do wykłdowcy y. 2005/2006 Wykłd "Podstwy z dnych" 31

32 Zleżność wielowrtościow Definicj. Niech X,Y U, Z:= U - XY. Mówimy, że istnieje zleżność wielowrtościow między ziormi X i Y, co oznczmy przez X >>Y, gdy dl kżdego zioru KROTKA(U) istnieje pewn funkcj ω : KROTKA(X) (KROTKA(YZ)), gdzie (KROTKA(YZ)) ozncz ziór wszystkich podziorów zioru KROTKA(YZ), tk, że jeżeli do zioru ω(krotka(x)) nleżą krotki ( y, z ) i (y, z ), to nleżą również krotki ( y, z ) i (y, z ). 2005/2006 Wykłd "Podstwy z dnych" 32

33 Zleżność wielowrtościow Definicj. Niech dn ędzie relcj R(U), X, Y U i Z:=U-XY. Mówimy, że w R spełnion jest zleżność wielowrtościow X >> Y, gdy spełniony jest jeden z równowżnych wrunków: ) (, ), [ ] ( [ ]) [ ] ( ) x R X y y R Y z z R Z { [( x >< y >< z R) ( x >< y >< z R) ] [( x >< y >< z R) ( x >< y >< z R) ] } ) [ XY ] R[ XZ ]. R = R >< 2005/2006 Wykłd "Podstwy z dnych" 33

34 Zleżność wielowrtościow X Y Z Uwg. Kżd zleżność funkcyjn X Y jest zleżnością wielowrtościową tzn. X >> Y. Uwg. Zleżności X >> U i X >> spełnione są w kżdej relcji R(U). Nzywmy je trywilnymi zleżnościmi wielowrtościowymi. 2005/2006 Wykłd "Podstwy z dnych" 34

35 Zleżność wielowrtościow Przykłd. U := { Prcownik, Imię_Dzieck, Zroki, Rok } E: P D x y x y z z Z R P >> D P >> ZR E 1 : P D E 2 : P Z R x y z P >> D P >> ZR 2005/2006 Wykłd "Podstwy z dnych" 35

36 Zleżność wielowrtościow Definicj. Niech U ędzie ziorem tryutów i M { X >> Y X U Y U }. Przez M + oznczmy njmniejszy (ze względu n relcję ) ziór zleżności wielowrtościowych tkich, że M M + i dl ( X, Y, Z U)( X Y= X Z = Z Y = ) spełnione są nstępujące ksjomty: 2005/2006 Wykłd "Podstwy z dnych" 36

37 Zleżność wielowrtościow ( Y X ) ( X >> Y ) M, + M0. (zwrotność), ( X >> Y ) M ( X >> U XY) M, ( X >> Y) M ( XZ >> YZ) M, M (dopełnilność), M (poszerzlność), [ M ] ( X >> Z ) M, ( X >> Y) M ( Y >> Z) M (przechodniość), M4. M5. M6. [ ] + + M ( XZ >> W ) M, + ( X >> Y) M ( YZ >> W) + ( X >> Y ) M ( X >> Z ) (pseudo-przechodniość), [ ] + + M ( X >> YZ ) M, (ddytywność), [( ) ( ) ] + + ( ) + X >> Y M X >> Z M X >> Y Z M, (dekompozycj). 2005/2006 Wykłd "Podstwy z dnych" 37

38 Uwg. Między zleżnościmi funkcyjnymi i wielowrtościowymi zchodzą nstępujące związki: FM1. FM2. Zleżność wielowrtościow ( ) + ( ) + X Y F X >> Y M, [( ) ( ) ( ) ( )] + + X >> Z M Y >> V M V Z Y Z = ( ) + X V F. 2005/2006 Wykłd "Podstwy z dnych" 38

39 Schemt relcyjny Definicj. Dl zioru tryutów U i ziorów F i M, ( zkłdmy, że ziór M nie zwier zleżności funkcyjnych), prę R := ( U, F M ) nzywmy schemtem relcyjnym i mówimy, że relcj R jest przypdkiem schemtu relcyjnego R jeśli jest relcją typu U orz kżd zleżność funkcyjn i wielowrtościow jest spełnion w R. 2005/2006 Wykłd "Podstwy z dnych" 39

40 Zleżność wielowrtościow - 4PN Definicj. Mówimy, że schemt relcyjny R := ( U, F M ) jest w czwrtej postci normlnej (4PN) gdy [( ) ( ) ] + ( ) + X >> Y M Y U X X U F. Przykłd. Dl schemtu relcyjnego - R := ( { P, D, Z, R }, {D P, PR Z, P > D, }) i relcji E z przykłdu ze sljdu 35 rozwżmy dw schemty R 1 := ( { P, D }, {D P }), R 2 := ( { P, Z, R }, { PR Z }). Wtedy relcje E 1 i E 2 z tego przykłdu są w 4PN. 2005/2006 Wykłd "Podstwy z dnych" 40

41 Schemt relcyjnej zy dnych Definicj. Schemtem relcyjnej zy dnych nzywmy ziór R := { R i := ( U i, F i ) i = 1,2,..,n }. wszystkich schemtów relcyjnych występujących w dnej zie dnych 2005/2006 Wykłd "Podstwy z dnych" 41

42 Algorytm tworzeni schemtu relcyjnej zy dnych 1. Określmy jeden schemt relcyjnej zy dnych { R := ( U, F ) }, gdzie U jest ziorem wszystkich tryutów występujących w zie dnych, przy czym ziór U doiermy w tki sposó y możn yło n ziorze U określić zleżności funkcyjne. 2. Rozkłdjąc schemt relcyjny R n schemty R := ( U i i, F i ), i = 1,2,..,n otrzymmy schemt zy dnych R := { R := ( U i i, F i ) i = 1,2,..,n }. 2005/2006 Wykłd "Podstwy z dnych" 42

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 2 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy bz dnych" 1 Pojęcie krotki - definicj Definicj. Niech dny będzie skończony zbiór U := { A 1, A 2,..., A n }, którego

Bardziej szczegółowo

RBD Relacyjne Bazy Danych

RBD Relacyjne Bazy Danych Wykłd 6 RBD Relcyjne Bzy Dnych Bzy Dnych - A. Dwid 2011 1 Bzy Dnych - A. Dwid 2011 2 Sum ziorów A i B Teori ziorów B A R = ) ( Iloczyn ziorów A i B ( ) B A R = Teori ziorów Różnic ziorów ( A) i B Iloczyn

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

Zbiory wyznaczone przez funkcje zdaniowe

Zbiory wyznaczone przez funkcje zdaniowe pojęci zbioru i elementu RCHUNEK ZIORÓW zbiór zwier element element nleży do zbioru jest elementem zbioru ( X zbiór wszystkich przedmiotów indywidulnych, których dotyczy dn nuk zbiór pełny (uniwerslny

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu. ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

4.3. Przekształcenia automatów skończonych

4.3. Przekształcenia automatów skończonych 4.3. Przeksztłceni utomtów skończonych Konstrukcj utomtu skończonego (niedeterministycznego) n podstwie wyrżeni regulrnego (lgorytm Thompson). Wejście: wyrżenie regulrne r nd lfetem T Wyjście : utomt skończony

Bardziej szczegółowo

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów

Bardziej szczegółowo

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

PODSTAWY BAZ DANYCH 2009/ / Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH 2009/ / Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 2009/2010 1 Literatura 1. Connolly T., Begg C.: Systemy baz danych. Tom 1 i tom 2. Wydawnictwo RM 2004. 2. R. Elmasri, S. B. Navathe: Wprowadzenie do systemu baz danych, Wydawnictwo

Bardziej szczegółowo

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

bezkontekstowa generujac X 010 0X0.

bezkontekstowa generujac X 010 0X0. 1. Npisz grmtyke ezkontekstow generujc jezyk : L 1 = { 0 i 10 j 10 p : i, j, p > 0, i + j = p } Odpowiedź. Grmtyk wygląd tk: Nieterminlem strtowym jest S. S 01X0 0S0 X 010 0X0. Nieterminl X generuje słow

Bardziej szczegółowo

PEWNIK DEDEKINDA i jego najprostsze konsekwencje

PEWNIK DEDEKINDA i jego najprostsze konsekwencje PEWNIK DEDEKINDA i jego njprostsze konsekwencje W rozdzile ósmym stwierdziliśmy, że z podnych tm pewników nie wynik istnienie pierwistków z liczb rzeczywistych. Uzupe lnimy terz liste pewników jeszcze

Bardziej szczegółowo

Wszystkim życzę Wesołych Świąt :-)

Wszystkim życzę Wesołych Świąt :-) Poniższe zdni pochodzą ze zbiorów: ) J. Rutkowski, Algebr bstrkcyjn w zdnich b) M. Bryński, J. Jurkiewicz, Zbiór zdń z lgebry Do kolokwium proszę też przejrzeć zdni z ćwiczeń. Wszystkim życzę Wesołych

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I. RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)

Bardziej szczegółowo

Przekształcenia automatów skończonych

Przekształcenia automatów skończonych Przeksztłceni utomtów skończonych Teori utomtów i języków formlnych Dr inŝ. Jnusz Mjewski Ktedr Informtyki Konstrukcj utomtu skończonego n podstwie wyrŝeni regulrnego (lgorytm Thompson) Wejście: wyrŝenie

Bardziej szczegółowo

Lista 4 Deterministyczne i niedeterministyczne automaty

Lista 4 Deterministyczne i niedeterministyczne automaty Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Wyk lad 1 Podstawowe wiadomości o macierzach

Wyk lad 1 Podstawowe wiadomości o macierzach Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

Systemy Wyszukiwania Informacji

Systemy Wyszukiwania Informacji Uniersytet Śląski Systemy Wyszkini Informcji Agnieszk Nok Brzezińsk gnieszk.nok@s.ed.pl Instytt Informtyki Zkłd Systemó Informtycznych Uniersytet Śląski Wrnki zliczeni przedmiot Ooiązko oecność n ykłdch

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

4.6. Gramatyki regularne

4.6. Gramatyki regularne 4.6. Grmtyki regulrne G = < N,T,P,Z > jest grmtyką prwostronnie liniową, jeśli jej produkcje mją postć: ( i) U xv x T * U,V N ( ii) U x G = < N,T,P,Z > jest grmtyką prwostronnie regulrną, jeśli jej produkcje

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika w Toruniu

Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Mikołj Kopernik w Toruniu Wydził Mtemtyki i Informtyki Krzysztof Frączek Anliz Mtemtyczn I Wykłd dl studentów I roku kierunku informtyk Toruń 206 Spis treści Liczby rzeczywiste 2 Ciągi liczbowe

Bardziej szczegółowo

TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE)

TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE) 1. TEORIA PŁYT CIENKOŚCIENNYCH 1 1. 1. TEORIA PŁYT I POWŁOK (KIRCHHOFFA-LOVE) Płyt jest to ukłd ogrniczony dwom płszczyznmi o młej krzywiźnie. Odległość między powierzchnimi ogrniczjącymi tę wysokość płyty

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b, WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz

Bardziej szczegółowo

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

Wstęp do Analizy Matematycznej funkcje jednej zmiennej. Stanisław Spodzieja

Wstęp do Analizy Matematycznej funkcje jednej zmiennej. Stanisław Spodzieja Wstęp do Anlizy Mtemtycznej funkcje jednej zmiennej Stnisłw Spodziej Łódź 2014 2 Wstęp Książk t jest niezncznie zmodyfikowną wersją wykłdu z nlizy mtemtycznej dl pierwszego roku mtemtyki, jki prowdziłem

Bardziej szczegółowo

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych

Bardziej szczegółowo

Całka Riemanna Dolna i górna suma całkowa Darboux

Całka Riemanna Dolna i górna suma całkowa Darboux Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem

Bardziej szczegółowo

JĘZYKI FORMALNE I AUTOMATY SKOŃCZONE

JĘZYKI FORMALNE I AUTOMATY SKOŃCZONE ZBIÓR ZADAŃ do WYKŁADU prof. Tdeusz Krsińskiego JĘZYKI FORMALNE I AUTOMATY SKOŃCZONE rozdził 2. Automty skończone i języki regulrne Wyrżeni i języki regulrne Zdnie 2.1. Wypisz wszystkie słow nleżące do

Bardziej szczegółowo

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale Trójkąt Pscl od kuchni Kls 1 Gimnzjum nr 1 z Oddziłmi Integrcyjnym i Sportowymi im. Bł. Slomei w Skle ul. Ks.St.Połetk 32 32-043 Skł Gimnzjum nr 1 z Oddziłmi Integrcyjnymi i Sportowymi im. Bł. Slomei w

Bardziej szczegółowo

Analiza Matematyczna (część II)

Analiza Matematyczna (część II) Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)

Bardziej szczegółowo

Pochodne i całki, macierze i wyznaczniki

Pochodne i całki, macierze i wyznaczniki Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk

Bardziej szczegółowo

3. F jest lewostronnie ciągła

3. F jest lewostronnie ciągła Def. Zmienną losową nzywmy funkcję X: tką, że x R : { : X( ) < x }. Ozn.: zmist pisd A = { : X( ) < x } piszemy A = { X < x } zdrzenie poleg n tym, że X( )

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)

Bardziej szczegółowo

Wartość bezwzględna. Proste równania i nierówności.

Wartość bezwzględna. Proste równania i nierówności. Wrtość bezwzględn Proste równni i nierówności Dl liczb rzeczywistych możemy zdefiniowć opercję zwną wrtością bezwzględną lub modułem liczby Definicj 7,, Sens powyższej definicji jest nstępujący Jeżeli

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

4.2. Automat skończony

4.2. Automat skończony 4.2. Automt skończony Przykłd: Rozwżmy język nd lfetem inrnym T = {0, } skłdjący się z łńcuchów zero-jedynkowych o tej włsności, że licz zer w kżdym łńcuchu jest przyst i licz jedynek w kżdym łńcuchu też

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową

Bardziej szczegółowo

Wykład z matematyki dla studentów Inżynierii Środowiska. Wykład 1. Literatura PRZEGLĄD FUNKCJI ELEMENTARNYCH

Wykład z matematyki dla studentów Inżynierii Środowiska. Wykład 1. Literatura PRZEGLĄD FUNKCJI ELEMENTARNYCH Wykłd z mtemtyki dl studentów Inżynierii Środowisk Wykłd. Litertur. Gewert M., Skoczyls Z.: Anliz mtemtyczn, Oficyn Wydwnicz GiS, Wrocłw, 0.. Jurlewicz T., Skoczyls Z.: Algebr liniow, Oficyn Wydwnicz GiS,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P.

nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P. Rozdził 10 Cłk Drboux 10.1 Doln i górn sum Drboux Definicj podziłu. Niech, b R, < b. Kżdy skończony ciąg P postci (10.1) P = (x 0,..., x n ), gdzie n N, = x 0 < x 1

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Całka oznaczona

Analiza matematyczna i algebra liniowa Całka oznaczona Anliz mtemtyczn i lgebr liniow Cłk oznczon Wojciech Kotłowski Instytut Informtyki Politechniki Poznńskiej emil: imię.nzwisko@cs.put.poznn.pl pok. 2 (CW) tel. (61)665-2936 konsultcje: piątek 15:10-16:40

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Podstawy układów logicznych

Podstawy układów logicznych Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.

Bardziej szczegółowo

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu.

Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu. Osob prowdząc wykłd i ćwiczeni: dr inż. Mrek werwin Instytut terowni i ystemów Informtycznych Uniwersytet Zielonogórski e-mil : M.werwin@issi.uz.zgor.pl tel. (prc) : 68 328 2321, pok. 328 A-2, ul. prof.

Bardziej szczegółowo

Modelowanie 3 D na podstawie fotografii amatorskich

Modelowanie 3 D na podstawie fotografii amatorskich Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx& LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętych i schemt ocenini zdń otwrtych Klucz odpowiedzi do zdń zmkniętych 4 5 6 7 8 9 0 4 5 6 7 8 9 0 D D D Schemt ocenini zdń otwrtych Zdnie (pkt) Rozwiąż nierówność x + x+ 0

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi

Bardziej szczegółowo

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2 Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Próbny egzamin maturalny MARZEC 2017 schemat oceniania. Klucz odpowiedzi do zadań zamkniętych C A D C C B C C C D C B A A A C A B D D C A C A C

Próbny egzamin maturalny MARZEC 2017 schemat oceniania. Klucz odpowiedzi do zadań zamkniętych C A D C C B C C C D C B A A A C A B D D C A C A C Próbny egzmin mturlny MARZEC 7 schemt ocenini Klucz odpowiedzi do zdń zmkniętych 4 5 7 8 9 4 5 7 8 9 4 5 C A D C C B C C C D C B A A A C A B D D C A C A C Schemt ocenini zdń otwrtych Zdnie. (-) x Rozwiąż

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Weryfikacja modelowa jest analizą statyczną logiki modalnej

Weryfikacja modelowa jest analizą statyczną logiki modalnej Weryfikcj modelow jest nlizą sttyczną logiki modlnej Mrcin Sulikowski MIMUW 15 grudni 010 1 Wstęp Weryfikcj systemów etykietownych 3 Flow Logic 4 Weryfikcj modelow nliz sttyczn Co jest czym czego? Weryfikcj

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, utomty i oliczeni Wykłd 5: Wricje n temt utomtów skończonych Słwomir Lsot Uniwersytet Wrszwski 25 mrc 2015 Pln Automty dwukierunkowe (Niedeterministyczny) utomt dwukierunkowy A = (A,,, Q, I, F,

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 006/7 3. Liczby nturlne i rzeczywiste; funkcje elementrne.. Funkcje. Niech X i Y będą zbiormi. Definicj.. Funkcją (inczej: odwzorowniem) z X do Y nzyw się przyporządkownie

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

Kombinowanie o nieskończoności. 4. Jak zmierzyć?

Kombinowanie o nieskończoności. 4. Jak zmierzyć? Kombinownie o nieskończoności.. Jk zmierzyć? Projekt Mtemtyk dl ciekwych świt spisł: Michł Korch 9 kwietni 08 Trochę rzeczy z wykłdu Prezentcj multimediln do wykłdu. Nieskończone sumy Będzie nm się zdrzć

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń

Bardziej szczegółowo

2. ELEMENTY GEOMETRII ANALITYCZNEJ I WEKTOROWEJ

2. ELEMENTY GEOMETRII ANALITYCZNEJ I WEKTOROWEJ . ELEMENTY GEOMETRII ANALITYCZNEJ I WEKTOROWEJ.. Wstęp: metod współrzędnych WYKŁAD 5 W geometrii nlitycznej dmy oiekty geometryczne metodą nlityczną. Njrdziej znną metodą tego typu jest metod współrzędnych

Bardziej szczegółowo

a a a b M. Przybycień Matematyczne Metody Fizyki I

a a a b M. Przybycień Matematyczne Metody Fizyki I Relcje równowr wnowżności i klsy Definicj: Relcją określoną n zbiorze A nzywmy dowolny test porównwczy pomiędzy uporządkownymi prmi elementów elementów zbioru A. Jeśli pr (, b) œ A ä A spełni ten test,

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo