3. F jest lewostronnie ciągła

Wielkość: px
Rozpocząć pokaz od strony:

Download "3. F jest lewostronnie ciągła"

Transkrypt

1 Def. Zmienną losową nzywmy funkcję X: tką, że x R : { : X( ) < x }. Ozn.: zmist pisd A = { : X( ) < x } piszemy A = { X < x } zdrzenie poleg n tym, że X( )<x Wniosek: Jeżeli X jest zmienną losową, to { : X( ) x }, { : X( ) x }, { : X( ) > x }, { : X( ) = x }, { : X( ) [,] }, { : X( ) [,) }, { : X( ) (,] }, { : X( ) (,) } Jeżeli f jest funkcją przedziłmi ciągłą i ziór wrtości zmiennej losowej X D f, to Y( ) = f(x( )) jest też zmienną losową określoną n. Np. 1. Rzucmy rz monetą. = { O,R }. Zmienn losow X(O) =, X(R) = 1.. W tlii 5 krt, krty zostły ponumerowne. Losujemy jedną krtę. = { k 1, k,, k 5 }. Zmienn losow X(k i ) = i, i=1,,5. Def. Dystryuntą zmiennej losowej X nzywmy funkcję F: określoną wzorem F(x) = P({ : X( ) < x }) = P( X < x). Funkcj F: jest dystryuntą pewnej zmiennej losowej 1. F jest niemlejąc. lim F x = lim F x = 1 x x + 3. F jest lewostronnie ciągł Wniosek: P(X = x) = lim F t F(x), P(X x) = lim F t, P(x t x + t x + 1 X < x ) = F x F(x 1 ), P(X > x) = 1 lim F t, P(x t x + 1 < X < x ) = F x F x 1 P(X = x 1 ) itd.

2 Np. 1. Doierz prmetry A,B,C,D tk, y funkcj F(x) ył dystryuntą pewnej zmiennej losowej A, x Bx, < x 1 F x = x. x + C, 1 < x lim x lim x + D, < x F x = A = F x = 1 D = 1 F jest niemlejąc i lewostronnie ciągł lim F x = F(1) lim F x lim F x = F() lim F x x 1 x 1 + x x + B lim ( x x + C) = C 1 C D A = B C 1 C 1 = D x 1 + A = B 1 C 1 = D, x,15 x, < x 1. Dl F x = x olicz P( X = 1), P(X 1), P(1 < X < 1,5), x +,75, 1 < x P(,5 < X < 1,5), P(X > ) 1, < x P( X = 1) = lim F t F 1 =,5,15 =,15, P( X 1) = lim F t =,5, t 1 + t 1 + P(1 < X < 1,5) = F(1,5) F(1) P(X = 1) =,375,15,15 =,15, P(,5 < X < 1,5) = F(1,5) F(,5) P(X =,5) =,815,7815 =,7337, P(X > ) = 1 - lim F t = t +

3 Def. Mówimy, że zmienn losow X jest dyskretn (typu skokowego) X m skooczony lu przeliczlny ziór wrtości,x 1, x,, x n, } Mówimy, że zmienn losow X jest typu ciągłego ziorem wrtości X jest przedził, często nieogrniczony, orz dystryunt X m postd F(x) = x f t dt Wniosek: Dl zmiennej losowej X typu skokowego dystryunt X m postd F(x) = x i <x P(X = x i ) jest przedziłmi stł i m skooczoną lu przeliczlną liczę nieciągłości typu skok Def. Niech X ędzie zmienną losową typu ciągłego. Funkcję f nzywmy gęstością zmiennej losowej X dystryunt zmiennej losowej X jest postci F(x) = f t dt. x Funkcj f jest gęstością zmiennej losowej X 1. x: f x +. f x dx = 1 Wniosek: Jeżeli istnieje gęstośd f zmiennej losowej X, to 1. w punktch różniczkowlności dystryunty F zchodzi związek f(x) = F (x).. P(X [,]) = P(X (,]) = P(X [,)) = P(X (,)) = f x dx Np. 1. Dl jkich wrtości prmetrów i funkcj f x = 1+(x) jest gęstością pewnej zmiennej losowej. Wyzncz jej dystryuntę. z wrunku f(x)

4 + z wrunku f x dx = 1 + f x dx = π = 1 =, π x F(x) = dt π(1+ t ) lim lim A B A B 1 + (x) dx 1 = lim rctg( t) A π A x = 1 rctg x + 1 π = lim lim B A B rctg(x) = A π. Sprwdź, że funkcj F(x) = e e x jest dystryuntą zmiennej losowej X. Znjdź gęstośd zmiennej Y = X. poniewż e x jest funkcją mlejącą F jest rosnąc lim x e x = lim x + e x = lim F x = lim F x = 1 x x + funkcj e x jest ciągł F jest ciągł dystryunt zmiennej Y: G(x) = P(X, x < x) = P( X < x), x > =, x F x F x, x > =, x = e e x e e x, x >, x gęstośd zmiennej Y: g(x) = 1 x (e e x + x + e x e x ), x > Def. Rozkłdem zmiennej losowej X nzywmy: 1. prwdopodoieostw p i = P X = x i, i p i = 1 dl zmiennej X typu skokowego. gęstośd zmiennej X dl zmiennej typu ciągłego

5 Momenty zmiennych losowych: Def. Niech F(x) ędzie dystryuntą zmiennej X przedziłmi ciągłą i różniczkowlną w przedziłch ciągłości orz ziór,x 1, x, } ędzie ziorem punktów, w których funkcj F m skok. Cłką Stieltjes z funkcji g: względem dystryunty F(x) nzywmy liczę Wniosek: g x df x = g x F x dx + g x i [ lim t xi + F t F x i ] i 1. Jeżeli X jest typu ciągłego, to g x df x = g x F x dx. Jeżeli X jest typu skokowego, to g x df x = g x i P(X = x i ) i Np. Dl dystryunty F(x) =, x 1 1 e x, x > olicz cłkę x + 1 df(x). x + 1 df(x) = 1 lim B = x + 1 d B (x + 1)e x dx + x + 1 d(1 1 e x ) + 1 = 1 lim B [ x + 1 e x + e x ] + lim t + (1 1 e t ) F x i = B 1 + = 1 Def. Wrtością oczekiwną (ndzieją mtemtyczną, wrtością średnią) zmiennej losowej X o dystryuncie F nzywmy liczę (o ile cłk x df(x) jest zieżn) EX = xdf(x)

6 Jeżeli F jest dystryuntą zmiennej losowej X orz Y = g(x) dl funkcji g przedziłmi ciągłej, to o ile cłk EY = g x df(x) jest zieżn. g(x)df(x) Wniosek: 1. Jeżeli X jest zmienną typu ciągłego o gęstości f, to EX = xf(x)dx, o ile x f(x)dx jest zieżn. Jeżeli X jest zmienną typu skokowego o wrtościch,x 1, x, }, to EX = i x i p i, gdzie p i = P(X = x i ), o ile szereg i x i p i jest ezwzględnie zieżny Oserwcj: Jeżeli F jest dystryuntą zmiennej losowej X orz Y = g(x), to 1. jeżeli zmienn X typu skokowego m skooczoną liczę wrtości, to istnieje EY. jeżeli gęstośd f zmiennej X typu ciągłego m nośnik ogrniczony (tzn. istnieje ogrniczony ziór A tki, że f(x)= dl x A) orz g jest przedziłmi ciągł i ogrniczon n ziorze A, to istnieje EY, x x Np. Dystryuntą zmiennej losowej X jest F x =, < x 1. Olicz EY dl Y = ln(x+1). 1, x > 1 EY = ln (x + 1)dF(x) = 1 1 ln x + 1 dx = 1 [(x + 1)ln x + 1 x ] = = ln

7 Jeżeli istnieją wrtości oczekiwne EX i EY zmiennych losowych X i Y, to E(X+Y) = EX + EY Def. Niech F 1, F,, F n ędą dystryuntmi zmiennych losowych X 1, X,, X n. Mówimy, że zmienne losowe X 1, X,, X n są niezleżne x 1, x,, x n : P X 1 < x 1 X < x X n < x n = F 1 x 1 F x F n (x n ) Jeżeli zmienne losowe X 1, X,, X n są niezleżne, to E(X 1 X X n ) = EX 1 EX EX n Np. Znjdź wrtośd oczekiwną zmiennej Z = 3X-XY+Y, jeżeli X i Y są niezleżne orz EX=, EY=1. EZ = 3EX - EXEY + EY = = 3 Def. Momentem rzędu k zmiennej losowej X nzywmy E(X k ). Oznczenie m k. Wniosek: m k = x k df(x), o ile x k df(x) jest zieżn. Jeżeli dl zmiennej losowej X istnieje m k, to istnieją m l dl kżdego l k. Np. Olicz moment dowolnego rzędu dl zmiennej losowej X, jeżeli: 1. X m rozkłd zero-jedynkowy, tzn. P(X = 1) = p, P(X = ) = 1 p. m k = 1 k p + k 1 p = p

8 . X m rozkłd jednostjny n odcinku *,1+, tzn. gęstością X jest funkcj f x = m k = 1 x k dx = xk+1 1 k + 1 = 1 k + 1 1, x [,1], x [,1]. Def. Wrincją zmiennej losowej X nzywmy liczę D X = E(X EX). Oserwcj: D X Def. Średnim odchyleniem stndrdowym (dyspersją) zmiennej losowej X nzywmy liczę = D X Dyspersj jest mirą rozrzutu zmiennej losowej, tzn. odchyleni zmiennej losowej od jej średniej wrtości. Jeżeli istnieje wrincj zmiennej X, to D X = EX EX = m (m 1 ) Wniosek: Jeżeli X m moment co njmniej -go rzędu, to istnieje wrincj X. 1. Jeżeli X i Y są zmiennymi losowymi o skooczonych wrincjch, to D X = D X D X + = D X. Jeżeli X i Y są niezleżnymi zmiennymi losowymi o skooczonych wrincjch, to D X ± Y = D X + D Y D X = P X = = 1 tzn. X przyjmuje stłą wrtośd z prwdopodoieostwem 1

9 Def. Momentem centrlnym rzędu k zmiennej losowej X nzywmy liczę c k = E(X EX) k. Wrincj jest momentem centrlnym rzędu. Wniosek: Jeżeli istnieją momenty zwykłe m i, i k, to c k = Np. c 3 = m 3 3m m 1 + (m 1 ) 3 c = m m 3 m 1 + 6m m 1 3(m 1 ) k i= k i m k i ( m 1 ) i Def. Kwntylem rzędu p dl p (,1) rozkłdu zmiennej losowej X nzywmy liczę ξ p tką, że: 1. P(X ξ p ) p. P(X ξ p ) 1 p Wniosek: Jeżeli dystryunt F jest nieciągł, to kwntyle mogą nie yd wyznczone jednozncznie Jeżeli dystryunt jest ciągł, to kwntyl ξ p jest rozwiązniem równni F(ξ p ) = p. Oznczeni: Kwntyle rzędu 1, 1, 3 nzywmy kwrtylmi rzędu 1,, 3 odpowiednio. Kwrtyl rzędu nzywmy mediną i oznczmy Me. Odchyleniem dwirtkowym zmiennej X nzywmy liczę Q = 1 (ξ3 ξ1). Np. Olicz kwntyle rozkłdu zmiennej losowej X: 1. o rozkłdzie prwdopodoieostw P(X = k) =,1 dl k=,1,,9. P(X ξ p ) p P(X ξ p ) 1 p k ξ p,1 p 1 k<ξ p,1 1 p 1 1p k ξ p 1 1p k<ξ p

10 np. medin Me [,5] kwrtyle ξ1 =, ξ3 = 7 Q = 1 7 = 5, x <. o gęstości f x = λe λx, x. ξ p λe λx λe λx ξ p dx p dx 1 p np. medin Me = ln λ kwrtyle ξ1 = ln ln3 λ, ξ3 3. o dystryuncie F x = e λx ξ p p lim B e λx B ξp = ln λ ln3 Q = λ 1 p 1 e λξ p = p ξ p =, x 1 x 3 + 1,15, 1 < x,6 1, x >,6 ln (1 p) λ lim F(x) p x ξ+ p 1 F ξ p 1 p np. medin Me = 3 5 kwrtyle ξ1 = 3 7, ξ3 lim F(x) p x ξ+ p F ξ p p = 3 3 Q = 7 ξ p = , p (;,15] p 1,15, p (,15;,99],6, p (,99; 1)

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

Całka Riemanna Dolna i górna suma całkowa Darboux

Całka Riemanna Dolna i górna suma całkowa Darboux Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem

Bardziej szczegółowo

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2 Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,

Bardziej szczegółowo

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I. RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)

Bardziej szczegółowo

< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)

< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1) Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,

Bardziej szczegółowo

1 Rachunek zdań 3. 2 Funkcje liczbowe 6

1 Rachunek zdań 3. 2 Funkcje liczbowe 6 Spis treści 1 Rchunek zdń 3 2 Funkcje liczbowe 6 3 Ciągi liczbowe 9 3.1 Grnic włściw ciągu 10 3.2 Grnic niewłściw ciągu 11 3.3 Grnice pewnych ciągów 12 4 Grnice funkcji 13 4.1 Podstwowe definicje 13 4.2

Bardziej szczegółowo

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Całka oznaczona

Analiza matematyczna i algebra liniowa Całka oznaczona Anliz mtemtyczn i lgebr liniow Cłk oznczon Wojciech Kotłowski Instytut Informtyki Politechniki Poznńskiej emil: imię.nzwisko@cs.put.poznn.pl pok. 2 (CW) tel. (61)665-2936 konsultcje: piątek 15:10-16:40

Bardziej szczegółowo

Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk

Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk Anliz Mtemtyczn Cłk Riemnn Alexnder Denisjuk denisjuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych zmiejscowy ośrodek dydktyczny w Gdńsku ul. Brzegi 55 80-045 Gdńsk Anliz Mtemtyczn p.

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Analiza Matematyczna. Całka Riemanna

Analiza Matematyczna. Całka Riemanna Anliz Mtemtyczn. Cłk Riemnn Aleksnder Denisiuk denisiuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych Wydził Informtyki w Gdńsku ul. Brzegi 55 8-45 Gdńsk 29 kwietni 217 1 / 2 Cłk Riemnn

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Ciągi liczbowe Definicj. Rzeczywistym nieskończonym ciągiem liczbowym nzywmy funkcję określoną n zbiorze liczb nturlnych o wrtościch w zbiorze liczb rzeczywistych f : N R, n n. Ciąg

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag.

Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag. Mtemtyk Cłk oznczon Aleksnder Denisiuk denisjuk@euh-e.edu.pl Elblsk Uczelni Humnistyczno-Ekonomiczn ul. Lotnicz 2 82-3 Elblg Mtemtyk p. 1 Cłk oznczon Njnowsz wersj tego dokumentu dostępn jest pod dresem

Bardziej szczegółowo

nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P.

nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P. Rozdził 10 Cłk Drboux 10.1 Doln i górn sum Drboux Definicj podziłu. Niech, b R, < b. Kżdy skończony ciąg P postci (10.1) P = (x 0,..., x n ), gdzie n N, = x 0 < x 1

Bardziej szczegółowo

Jednowymiarowa zmienna losowa

Jednowymiarowa zmienna losowa 1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),

Bardziej szczegółowo

CAŁKA OZNACZONA JAKO SUMA SZEREGU

CAŁKA OZNACZONA JAKO SUMA SZEREGU CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

III. Rachunek całkowy funkcji jednej zmiennej.

III. Rachunek całkowy funkcji jednej zmiennej. III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,

Bardziej szczegółowo

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki

Bardziej szczegółowo

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki

Bardziej szczegółowo

Najczęściej spotykane rozkłady dyskretne:

Najczęściej spotykane rozkłady dyskretne: I. Rozkład dwupunktowy: Najczęściej spotykane rozkłady dyskretne: Def. Zmienna X ma rozkład dwupunktowy z prawdopodobieostwem 1 przyjmuje tylko dwie wartości, tzn. P(X = x 1 ) = p i P(X = x 2 ) = 1 p =

Bardziej szczegółowo

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1 Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

Pochodne i całki, macierze i wyznaczniki

Pochodne i całki, macierze i wyznaczniki Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

MATEMATYKA 1 MACIERZE I WYZNACZNIKI

MATEMATYKA 1 MACIERZE I WYZNACZNIKI MATEMATYKA 1 MACIERZE I WYZNACZNIKI Definicj 1. Niech A i B będą dowolnymi zbiormi. Zbiór A B = {(, b) : A b B} wszystkich pr uporządkownych (, b) tkich, że A i b B nzywmy iloczynem krtezjńskim zbiorów

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1) Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Współczynnik zmienności Klasycznym współczynnikiem (wskaźnikiem) zmienności zmiennej losowej X nazywamy wyrażenie gdzie E(X) 0. v k z (X) = D(X) E(X), Klasyczny

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx

Bardziej szczegółowo

Analiza Matematyczna (część II)

Analiza Matematyczna (część II) Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)

Bardziej szczegółowo

O SZEREGACH FOURIERA. T (x) = c k e ikx

O SZEREGACH FOURIERA. T (x) = c k e ikx O SZEREGACH FOURIERA Funkcję postci. Wielominy i szeregi trygonometryczne. T x = N k= N c k e ikx nzywmy wielominem trygonometrycznym. Jk widć, wielomin trygonometryczny jest funkcją okresową o podstwowym

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2 ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami) List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f

Bardziej szczegółowo

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii Wydził Mtemtyki Stosownej Zestw zdń nr 6 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 9 listopd 8r. Cłk oznczon i cłk niewłściw Zstosowni rchunku cłkowego w geometrii

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Planowanie złożonych przedsięwzięć wieloczynnościowych (Project Management - zarządzanie projektami)

Planowanie złożonych przedsięwzięć wieloczynnościowych (Project Management - zarządzanie projektami) D Miszczyńsk, M.Miszczyński KBO UŁ, Bdni opercyjne, metod PERT 1 Plnownie złożonych przedsięwzięć wieloczynnościowych (Project Mngement - zrządznie projektmi) Anlizujemy złożone przedsięwzięci wieloczynnościowe.

Bardziej szczegółowo

Całkowanie metodą Monte Carlo

Całkowanie metodą Monte Carlo Cłkownie metodą Monte Crlo Pln wykłdu: 1. Podstwow metod Monte Crlo 2. Metody MC o zwiększonej efektywności ) losowni wżonego b) zmiennej kontrolnej c) losowni wrstwowego d) obniżni krotności cłki Przypomnienie

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Metody numeryczne. Całkowanie. Janusz Szwabiński. nm_slides-4.tex Metody numeryczne Janusz Szwabiński 23/10/ :07 p.

Metody numeryczne. Całkowanie. Janusz Szwabiński. nm_slides-4.tex Metody numeryczne Janusz Szwabiński 23/10/ :07 p. Metody numeryczne Cłkownie Jnusz Szwbiński szwbin@ift.uni.wroc.pl nm_slides-4.tex Metody numeryczne Jnusz Szwbiński 23/10/2002 10:07 p.1/69 Cłkownie numeryczne 1. Kilk uwg ogólnych 2. Kwdrtury Newton Cotes

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

Analiza Matematyczna

Analiza Matematyczna Aliz Mtemtycz Przykłdy: Cłki ozczoe. Oprcowie: dr hb. iż. Agieszk Jurlewicz, prof. PWr Przykłd 9. : Korzystjąc z defiicji cłki ozczoej orz fktu, że fukcj ciągł jest cłkowl, oblicz e x dx przyjmując podził

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Wariacje Funkcji, Ich Własności i Zastosowania

Wariacje Funkcji, Ich Własności i Zastosowania Środowiskowe Studi Doktornckie z Nuk Mtemtycznych Uniwersytet Mrii Curie-Skłodowskiej w Lublinie Józef Bnś Ktedr Mtemtyki Politechnik Rzeszowsk Wricje Funkcji, Ich Włsności i Zstosowni Lublin 2014 Spis

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx& LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Matematyka dla biologów Zajęcia nr 7.

Matematyka dla biologów Zajęcia nr 7. Mtemtyk dl biologów Zjęci nr 7. Driusz Wrzosek 21 listopd 2018 Mtemtyk dl biologów Zjęci 7. 21 listopd 2018 1 / 20 Przypomnienie: funkcj pierwotn Niech F : D, gdzie D to odcinek otwrty lub cł prost ).

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Analiza Matematyczna II

Analiza Matematyczna II Uniwersytet Jn Kochnowskiego w Kielcch Wydził Mtemtyczno-Przyrodniczy Instytut Mtemtyki Dr hb. prof. UJK Grzegorz Łysik Anliz Mtemtyczn II Skrypt wykłdów Kielce, 212. 1 1 Funkcje wielu zmiennych 1.1 Przestrzeń

Bardziej szczegółowo

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2, Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać

Bardziej szczegółowo

Matematyka dla biologów Zajęcia nr 13.

Matematyka dla biologów Zajęcia nr 13. Matematyka dla biologów Zajęcia nr 13. Dariusz Wrzosek 16 stycznia 2019 Matematyka dla biologów Zajęcia 13. 16 stycznia 2019 1 / 34 Plan: 1 Rachunek prawdopodobienstwa-zmienne losowe o rozkładzie ciagłym

Bardziej szczegółowo

Analiza matematyczna ISIM II

Analiza matematyczna ISIM II Anliz mtemtyczn ISIM II Ryszrd Szwrc Spis treści Cłki niewłściwe 3. Cłki niewłściwe z funkcji nieujemnych............ 9.2 Cłki i szeregi........................... 2.3 Cłki niewłściwe z osobliwością w

Bardziej szczegółowo

Rozkłady prawdopodobieństwa zmiennych losowych

Rozkłady prawdopodobieństwa zmiennych losowych Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.

Bardziej szczegółowo

PEWNIK DEDEKINDA i jego najprostsze konsekwencje

PEWNIK DEDEKINDA i jego najprostsze konsekwencje PEWNIK DEDEKINDA i jego njprostsze konsekwencje W rozdzile ósmym stwierdziliśmy, że z podnych tm pewników nie wynik istnienie pierwistków z liczb rzeczywistych. Uzupe lnimy terz liste pewników jeszcze

Bardziej szczegółowo

Wykład 3: Transformata Fouriera

Wykład 3: Transformata Fouriera Rchunek prwdopodobieństw MAP64 Wydził Elektroniki, rok kd. 28/9, sem. letni Wykłdowc: dr hb. A. Jurlewicz Wykłd 3: Trnsformt Fourier Złóżmy, że f(t) jest określon n R, ogrniczon, okresow o okresie 2T i

Bardziej szczegółowo

Plan wykładów z Matematyki, I 2014/2015 semestr zimowy. (a) Podstawowe funkcje: pierwiastki, funkcja potęgowa, logarytm.

Plan wykładów z Matematyki, I 2014/2015 semestr zimowy. (a) Podstawowe funkcje: pierwiastki, funkcja potęgowa, logarytm. Pln wykłdów z Mtemtyki, I 014/015 semestr zimowy 1. Powtórk i widomości wstępne. () Podstwowe funkcje: pierwistki, funkcj potęgow, logrytm. (b) Trygonometri. (c) Dwumin Newton, przystość funkcji.. Rchunek

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy

Bardziej szczegółowo

Całki oznaczone. wykład z MATEMATYKI

Całki oznaczone. wykład z MATEMATYKI Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8

Bardziej szczegółowo

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia:

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia: XI. Rhunek łkowy funkji wielu zmiennyh. 1. Cłk podwójn. 1.1. Cłk podwójn po prostokąie. Oznzeni: P = {(x, y) R 2 : x b, y d} = [, b] [, d] - prostokąt n płszzyźnie, f(x, y) - funkj określon i ogrnizon

Bardziej szczegółowo

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

Kombinowanie o nieskończoności. 4. Jak zmierzyć?

Kombinowanie o nieskończoności. 4. Jak zmierzyć? Kombinownie o nieskończoności.. Jk zmierzyć? Projekt Mtemtyk dl ciekwych świt spisł: Michł Korch 9 kwietni 08 Trochę rzeczy z wykłdu Prezentcj multimediln do wykłdu. Nieskończone sumy Będzie nm się zdrzć

Bardziej szczegółowo

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Niewymierność i przestępność Materiały do warsztatów na WWW6

Niewymierność i przestępność Materiały do warsztatów na WWW6 Niewymierność i przestępność Mteriły do wrszttów n WWW6 Piotr Achinger 23 sierpni 2010 1 Wstęp 1.1 Liczby wymierne i niewymierne Pytnie 1. Czy istnieją liczby niewymierne? Zdnie 1. Wykzć, że 1. 2 / Q,

Bardziej szczegółowo