Układy równań liniowych
|
|
- Renata Piątkowska
- 6 lat temu
- Przeglądów:
Transkrypt
1
2 Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a an n d a a an d a + a a n n d a a a n d an + an ann n d n an an a nn n d n ozwiązanie metodą Cramera: a a a a a a a + a a a a a a a a a a a + a a a a a a a a a a a + a a a a Zastępując pierwszą kolumnę ostatniego wyznacznika przez d, d,, d n dostajemy: n n n n n n n n n n n n nn n n nn n n nn n n nn a a an d a an a a a n d a a n an an ann d n an ann Podobne równania możemy znaleźć dla pozostałych niewiadomych w układzie równań. M. Przybycień Matematyczne Metody Fizyki I Wykład 6-
3 Wzory Cramera Wprowadzamy oznaczenia (W wyznacznik główny układu): W a a a a a a n n a a a n n nn W j a a d a a a a d a a j- j + n j- j + n a a d a a n nj- n nj + nn ) Jeśli wyznacznik współczynników W jest różny od zera wtedy układ n równań liniowych z n niewiadomymi ma dokładnie jedno rozwiązanie (układ oznaczony) dane przez tzw. wzory Cramera: Wi i i n W ) Jeśli W, ale nie wszystkie W j, j,, n są jednocześnie równe zero, to układ nie ma rozwiązań (układ sprzeczny). ) Jeśli W, oraz wszystkie W j, j,, n są jednocześnie równe zero, to przynajmniej jedno z równań układu jest kombinacją liniową pozostałych. Odrzucając to równanie (równania) dostajemy układ równoważny (mający te same rozwiązania) układowi pierwotnemu, ale zawierający mniej równań niż niewiadomych. Układ taki może być sprzeczny lub nieoznaczony. M. Przybycień Matematyczne Metody Fizyki I Wykład 6-
4 Wzory Cramera - interpretacja geometryczna Przykład: ozwiąż układ równań metodą wyznacznikową (Cramera): ( ) ( ) 6 ( 8) ( ) ( ) ( ) Pola równoległoboków zbudowanych z wektorów ( ) ( ) ( ) ( ) ( 6 8) ( ) + i oraz + i są równe: Pola równoległoboków zbudowanych z wektorów ( ) ( ) ( ) ( ) ( 6) + 8 ( ) i oraz + i są równe: ( ) ( ) ( ) ( ) ( ) ( ) ( ) 6 ( 8) 6 ( 8) M. Przybycień Matematyczne Metody Fizyki I Wykład 6-4
5 Układ równań liniowych jednorodnych Układ równań liniowych w których wszystkie stałe d i, i,., n są równe zero nazywamy układem jednorodnym: wszystkie W i, i,., n a + a an n a + a a n n an + an ann n jeśli wyznacznik główny W, wtedy jedynym rozwiązaniem układu jednorodnego jest rozwiązanie trywialne tzn. i, i,., n jeśli wyznacznik W, wtedy układ może posiadać rozwiązania nietrywialne. Przykład: Dla jakich wartości parametru λ układ równań ( - λ ) + y posiada również inne rozwiązania poza rozwiązaniem y. 4 + ( 5 λ ) y -λ W λ 8 λ+ 7 ( λ )( λ 7) 4 5 λ λ : ( -) + y 4 + ( 5 ) y y fi układ posiada nietrywialne rozwiązania dla λ lub λ7 λ 7 : ( -7) + y 4 + ( 5 7) y y M. Przybycień Matematyczne Metody Fizyki I Wykład 6-5
6 Postać schodkowa macierzy Definicja: Operacje elementarne na wierszach (kolumnach) macierzy to: (E) zamiana miejscami dwóch wierszy (kolumn), (E) pomnożenie wszystkich elementów dowolnego wiersza (kolumny) przez liczbę różną od zera, (E) dodanie do dowolnego wiersza (kolumny) kombinacji liniowej pozostałych wierszy (kolumn). Definicja: Macierz A jest w postaci schodkowej jeśli spełnione są następujące warunki: wszystkie niezerowe wiersze występują powyżej wierszy zerowych, jeśli pierwszy niezerowy element w danym wierszu pojawia się w kolumnie j, to wszystkie elementy w tej kolumnie w kolejnych wierszach są równe zero, pierwszy niezerowy element w każdym niezerowym wierszu, pojawia się w dalszej (bardziej na prawo) kolumnie, niż pierwszy niezerowy element w poprzednim wierszu. element wiodący w pierwszym wierszu jest różny od zera * * * * * * * * * * * * * * * * * * * * * elementy wiodące M. Przybycień Matematyczne Metody Fizyki I Wykład 6-6
7 ząd macierzy Uwaga: Aby doprowadzić macierz do postaci schodkowej, wykonujemy operacje elementarne tylko na jej wierszach. Definicja: Kolumny oryginalnej macierzy, w których znajdują się elementy wiodące nazywamy kolumnami podstawowymi. Definicja: Macierz A jest w postaci schodkowej zredukowanej E A, jeśli jest w postaci schodkowej i jeśli dodatkowo elementy wiodące są równe, a wszystkie pozostałe elementy w kolumnach podstawowych są równe zero. Uwaga: W postaci schodkowej zredukowanej, zarówno forma macierzy jak i jej poszczególne elementy są określone jednoznacznie. Definicja: zędem macierzy nazywamy (poniższe definicje są równoważne): liczbę niezerowych wierszy, po przekształceniu macierzy do postaci schodkowej, albo liczbę kolumn podstawowych w oryginalnej macierzy, albo liczbę liniowo niezależnych wektorów, których współrzędne w pewnej bazie stanowią kolumny macierzy, albo liczbę liniowo niezależnych wektorów, których współrzędne w pewnej bazie stanowią wiersze macierzy. albo wymiar największego niezerowego minora macierzy. M. Przybycień Matematyczne Metody Fizyki I Wykład 6-7
8 Przykład: Znajdź rząd macierzy: A / 4 / 7 7 ząd macierzy / 4 / 8 / + / 7 / 4 / / ząd macierzy A wynosi rz(a) 4 6 Kolumny podstawowe macierzy A:,, 4 7 / M. Przybycień Matematyczne Metody Fizyki I Wykład 6-8 Każda nie podstawowa kolumna k macierzy A oraz E A daje się zapisać jako kombinacja liniowa kolumn podstawowych znajdujących się na lewo od niej, ze współczynnikami określonymi przez elementy k-tej kolumny macierzy E A : E* 5 4E* + E* + E* 4 E* E* + E * A* A* + A A * * 4A* + A* + A* 5 4
9 Jednocześnie widać, że nie istnieje minor stopnia 4. M. Przybycień Matematyczne Metody Fizyki I Wykład 6-9 ząd macierzy Widać, że istnieją minory stopnia i różne od zera, a więc rz(a) Przykład: Znajdź metodą wyznacznikową rząd macierzy: A Należy sprawdzić czy istnieją niezerowe minory stopnia : Ponieważ wszystkie minory stopnia są równe zero więc rz(a). Przykład: Znajdź rząd macierzy: A Kolumny podstawowe E ząd macierzy A wynosi rz(a)
10 Układy równań liniowych ozważmy układ m równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a an n d a + a a n n d a + a a d m m mn n m a a an d a a a n d am am a mn n d m W postaci macierzowej powyższy układ równań zapisujemy jako: A d jeśli wszystkie d i są jednocześnie równe zero, wtedy układ nazywamy jednorodnym, jeśli choć jedno d i jest różne od zera, wtedy układ nazywamy niejednorodnym, istnieją dokładnie trzy możliwości dotyczące zbiorów rozwiązań i układu liniowego rozwiązanie jednoznaczne, tzn. istnieje dokładnie jeden zbiór wartości i spełniający jednocześnie wszystkie równania układu (układ oznaczony) brak rozwiązań, tzn. nie istnieje zbiór wartości i spełniający jednocześnie wszystkie równania układu (układ sprzeczny) nieskończenie wiele rozwiązań, tzn. istnieje nieskończenie wiele zbiorów wartości i spełniających jednocześnie wszystkie równania układu (układ nieoznaczony) M. Przybycień Matematyczne Metody Fizyki I Wykład 6-
11 Metoda eliminacji Gaussa Definicja: Dwa układy równań są równoważne, jeśli mają te same zbiory rozwiązań. Twierdzenie: Zamiana miejscami dwóch równań lub pomnożenie stronami równania przez stałą różną od zera lub dodanie do równania kombinacji liniowej innych równań przekształca dany układ równań w układ równoważny. Przykład: ozwiąż układy równań: + y + z 9 + y + z 9 + y + z y z y 5z 7 y 5z y 5z y 8z 7 z Stosując wsteczne podstawianie otrzymujemy: z, y, 7. + y + y + y y 5 y 5 5 y 5 + y 4 y 4 Stosując wsteczne podstawianie otrzymujemy: y,. + y + y + y y 5 y 5 5 y 5 + y 4 y Brak rozwiązań. M. Przybycień Matematyczne Metody Fizyki I Wykład 6-
12 Metoda eliminacji Gaussa + y + z 9 + y + z 9 + y + z y z y 5z 7 y 5z y z y 5z 7 Układ ma nieskończenie wiele rozwiązań: y ( 5z 7), y z + 9 ( 7z + 9) Definicja: W każdym wierszu (równaniu) pierwszą niezerową zmienną nazywamy zmienną wiodącą. Układ jest w postaci schodkowej jeśli każda zmienna wiodąca znajduje się na prawo od zmiennej wiodącej w równaniu powyżej (nie dotyczy pierwszego równania). Wnioski: W metodzie Gaussa doprowadzamy układ równań do postaci schodkowej. Jeśli każda zmienna jest zmienną wiodącą wtedy układ ma dokładnie jedno rozwiązanie. Jeśli choć jedna zmienna nie jest zmienną wiodącą i układ nie jest sprzeczny to ma nieskończenie wiele rozwiązań. W celu uproszczenia zapisu przedstawiamy układ równań a a an d a a a n d A d za pomocą tzw. macierzy uzupełnionej U [A d] am am amn d m Twierdzenie: Zastosowanie operacji elementarnych (E, E i E) do wierszy macierzy uzupełnionej, przekształca dany układ równań w układ równoważny. M. Przybycień Matematyczne Metody Fizyki I Wykład 6-
13 Metoda eliminacji Gaussa-Jordana Metoda eliminacji Gaussa polega na doprowadzeniu macierzy uzupełnionej do postaci schodkowej za pomocą operacji elementarnych stosowanych do jej wierszy. Przykład: ozwiąż układ równań: + y + z y z / / 7 / + y + 4z 4 / / 5 / / 5 8 / 5 zędy macierzy współczynników i uzupełnionej są równe i wynoszą rz(a) rz(u) ozwiązania: ( 7 ) ( ) 5 Metoda eliminacji Gaussa-Jordana polega na dodatkowym wyzerowaniu wszystkich elementów znajdujących się w kolumnie nad elementami wiodącymi Math Player M. Przybycień Matematyczne Metody Fizyki I Wykład 6-
14 Metoda eliminacji Gaussa Układy równań o nieskończonej liczbie rozwiązań opis zbioru rozwiązań. Przykład: ozwiąż układy równań: Sposoby zapisu zbioru rozwiązań: 4 4 Zmienne wiodące wyrażamy za pomocą zmiennych 4 swobodnych, które traktujemy jako parametry: 4 4 { },,, 4 4 / / 4 + zędy macierzy współczynników i uzupełnionej są równe i wynoszą rz(a) rz(u) < 4 Definicja: Zmienne, które nie są wiodące w postaci schodkowej, nazywamy swobodnymi. M. Przybycień Matematyczne Metody Fizyki I Wykład 6-4
15 Istnienie i liczba rozwiązań układu Przykład: ozwiąż układy równań: + y + y + y Układ nie ma rozwiązań (ukł. sprzeczny). Twierdzenie (o istnieniu i liczbie rozwiązań układu równań liniowych) Układ m równań liniowych z n niewiadomymi ma rozwiązania wtedy i tylko wtedy gdy rząd macierzy współczynników A jest równy rzędowi macierzy uzupełnionej U. Jeśli rz(a) rz(u) r oraz r < n to układ ma nieskończenie wiele rozwiązań zależnych od n-r parametrów. ozwiązanie ogólne układu niejednorodnego ma postać: p + h + h + + h Jeśli rz(a) rz(u) r oraz r n to układ ma dokładnie jedno rozwiązanie. Jeśli rz(a) rz(u) to układ nie ma rozwiązań n r n r i i i i i i 4 5 zędy macierzy współczynników i uzupełnionej są różne rz(a) rz(u) 5 5 ( p i h i to wektory kolumnowe nä; i to zmienne traktowane jako parametry) M. Przybycień Matematyczne Metody Fizyki I Wykład 6-5
16 Jednorodny układ równań liniowych Jednorodny układ równań liniowych a + a an n a + a a n n am + am amn n układ jednorodny ma zawsze rozwiązanie trywialne tzn. i, dla i,., n jeśli rz(a) r oraz r n to układ jednorodny ma tylko rozwiązanie trywialne. jeśli rz(a) r oraz r < n to układ ma nieskończenie wiele rozwiązań zależnych od n-r parametrów. Ogólne rozwiązanie ma postać: Przykład: ozwiąż układ równań: h + h + + h... n r n r i i i i i i + y + z + 5 y + 7z A 5 7 E + 6 y + 8z 6 8 Ponieważ rz(a) n więc układ ma tylko rozwiązanie trywialne. ónież z postaci macierzy [E ] stosując podstawienia widać, że y z M. Przybycień Matematyczne Metody Fizyki I Wykład 6-6
17 Metoda eliminacji Gaussa Przykład: ozwiąż układ równań: A 4 E oznacza to, że wyjściowy układ równań jest równoważny układowi dwóch równań: Wybieramy dwie wiodące zmienne i wyrażamy poprzez dwie pozostałe: ozwiązanie zapisujemy w postaci: M. Przybycień Matematyczne Metody Fizyki I Wykład 6-7
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
UKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4
17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,
Metoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
, A T = A + B = [a ij + b ij ].
1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m
1 Układy równań liniowych
II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie
Układy równań liniowych
Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1
Układy równań liniowych. Ax = b (1)
Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który
wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów
KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...
Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Macierze i Wyznaczniki
dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
MACIERZE I WYZNACZNIKI
Wykłady z matematyki inżynierskiej IMiF UTP 07 MACIERZ DEFINICJA. Macierza o m wierszach i n kolumnach nazywamy przyporza dkowanie każdej uporza dkowanej parze liczb naturalnych (i, j), gdzie 1 i m, 1
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
Zastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Układy liniowo niezależne
Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem
1 Rząd macierzy. 2 Liniowa niezależność. Algebra liniowa. V. Rząd macierzy. Baza podprzestrzeni wektorowej
1 Rząd macierzy Rozpatrzmy równanie jednorodne Ax = 0, gdzie A M(n, k). Wiemy, że posiada ono rozwiązanie. Jednakże wymiar macierzy A, a tym samym liczba równań w odpowiadającym jej układzie równań liniowych
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym
1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
3 Przestrzenie liniowe
MIMUW 3 Przestrzenie liniowe 8 3 Przestrzenie liniowe 31 Przestrzenie liniowe Dla dowolnego ciała K, analogicznie jak to robiliśmy dla R, wprowadza się operację dodawania wektorów kolumn z K n i mnożenia
9 Układy równań liniowych
122 II PRZESTRZENIE WEKTOROWE 9 Układy równań liniowych 1 Istnienie rozwiązań układu równań liniowych W tym paragrafie przerwiemy chwilowo ogólną analizę struktur pojawiających się w przestrzeniach wektorowych,
Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013
Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia
Metoda eliminacji Gaussa
Metoda eliminacji Gaussa Rysunek 3. Rysunek 4. Rozpoczynamy od pierwszego wiersza macierzy opisującej nasz układ równań (patrz Rys.3). Zakładając, że element a 11 jest niezerowy (jeśli jest, to niezbędny
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH
P I O T R DUDZIŃSKI ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH GDYNIA 2003 Piotr Dudziński, Zadania z matematyki dla studentów kierunków ekonomicznych, Gdynia 2003, s. 84, bibliografia
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi
Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi
Macierze. Układy równań.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Macierze Układy równań 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.
Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
Układy równań liniowych metoda gaussowskiej eliminacji
Wykład4(29X2009) Układy równań liniowych metoda gaussowskiej eliminacji Treść wykładu Teoria układów równań liniowych, I Przykłady prowadzenia eliminacji niewiadomych metodą Gaussa, Wprowadzenie języka
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Praca domowa - seria 6
Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x
Przekształcenia liniowe
Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9
Spis treści 1 Podstawowe struktury algebraiczne 2 11 Grupa, pierścień, ciało 2 12 Grupy permutacji 4 13 Pierścień wielomianów, algorytm Euklidesa, największy wspólny dzielnik 6 14 Zadania 7 2 Rachunek
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Ukªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3
3 Wyznaczniki 31 Wyznaczniki stopni 2 i 3 Wyznacznik macierzy 2 2 Dana jest macierz [ ] a b A Mat c d 2 2 (R) Wyznacznikiem macierzy A nazywamy liczbę mamy a A c b ad bc d Wyznacznik macierzy A oznaczamy
2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie.
Wniosek 1 Rozpatrzmy układ równań postaci: y 1 = a 11 (x)y 1 + + a 1n (x)y n y 2 = a 21 (x)y 1 + + a 2n (x)y n y n = a n1 (x)y 1 + + a nn (x)y n (1) o współczynnikach ciągłych w przedziale J 1 Rozwiązanie
Przekształcanie równań stanu do postaci kanonicznej diagonalnej
Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego
Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań.
Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań. Wydział Matematyki Politechniki Wrocławskiej Układy Cramerowskie Układem Cramera nazywamy układ równań liniowych: AX = B, w którym A jest macierzą
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Spis treści. 1 Macierze Macierze. Działania na macierzach Wyznacznik Macierz odwrotna Rząd macierzy...
Spis treści 1 Macierze 3 1.1 Macierze. Działania na macierzach.............................. 3 1.2 Wyznacznik.......................................... 6 1.3 Macierz odwrotna......................................
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Rozwiazywanie układów równań liniowych. Ax = b
Rozwiazywanie układów równań liniowych Ax = b 1 PLAN REFERATU: Warunki istnienia rozwiazań układu Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów - algorytm rekurencyjny Rozwiazanie układu
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
5 Wyznaczniki. 5.1 Definicja i podstawowe własności. MIMUW 5. Wyznaczniki 25
MIMUW 5 Wyznaczniki 25 5 Wyznaczniki Wyznacznik macierzy kwadratowych jest funkcją det : K m n K, (m = 1, 2, ) przypisującą każdej macierzy kwadratowej skalar, liniowo ze względu na każdy wiersz osobno
UKŁADY RÓWNAŃ LINIOWYCH
Projekt dofinansowała Fundacja mbanku UKŁADY RÓWNAŃ LINIOWYCH CZĘŚĆ I Układ równań to przynajmniej dwa równania spięte z lewej strony klamrą, np.: x + 0 Każde z równań musi zawierać przynajmniej jedną