Zadanie 1. Rozważ funkcję f(x, y) = (x + y)(x + 6)( y 3) określoną na zbiorze R 2.
|
|
- Anatol Niemiec
- 8 lat temu
- Przeglądów:
Transkrypt
1 Zadanie 1. Rozważ funkcję f(x, y) = (x + y)(x + 6)( y 3) określoną (ii) (3pt) Zbadaj, czy w punktach A = ( 3, 0), B = (1, 2), C = ( 6, 3) funkcja f ma maksimum lokalne. (iii) (2pt) Zbadaj, czy w punktach D = (3, 2), E = (3, 3) funkcja f ma minimum lokalne. Zadanie 2. Rozważ funkcję afiniczną f(x, y, z) = 2x 3y + z 1 określoną na zbiorze X = {(x, y, z) R 3 x + y + 1 2, y 3, y 2x 0, x + y z 5}. Zadanie 3. Rozważ funkcję f(x, y) = max{4x 2 + y 2, 5x + 3y + 3, 3x 4y + 6} określoną (ii) (6pt) Oblicz subróżniczkę f funkcji f w punktach A = ( 3/5, 3/5), B = (1, 4), C = ( 1, 2) i D = (1, 2). Zadanie 4. Niech A = {(x, y) R 2 : x 2 + 2y 2 1, 2y x 0}. (ii) (3pt) Wyznacz stożek kierunków osiągalnych F A (z) w punkcie z = ( 1 2, 1 4 ). (iii) (6pt) Wyznacz stożek styczny T A (z) i normalny N A (z) w punkcie z = ( 1 6, ). Zadanie 5. Rozważ funkcję f(x, y, z) = y 2 + z 2 określoną na zbiorze X = {(x, y, z) R 3 x 2 + y 2 + z 1, y + z = 0, x + 2y + z 0}. (i) (3pt) Czy w punktach A = ( 1, 1, 1), B = ( 1 2, 1 2, 1 2 ), C = (0, 1 2, 1 2 ) spełniony jest
2 Zadanie 6. Niech A = {(x, y, z) R 3 będzie funkcją określoną na zbiorze A. : x 2 y 2 = 1, y 2 + z 2 = 1}, zaś f(x, y, z) = x 2 + y (i) (2pt) Sprawdź warunek jakości więzów dla zadania optymalizacji funkcji f na zbiorze A. (ii) (8pt) Znajdź minimum i maksimum funkcji f na A. Zadanie 7. Rozważ funkcję f(x, y) = (2x + y)(x + 1)(y + 1) określoną (i) (6pt) Znajdź wszystkie punkty krytyczne funkcji f; (ii) (2pt) Zbadaj czy w punktach A = ( 1/2, 0), B = ( 1/2, 1/2) funkcja f przyjmuje minimum lokalne; (iii) (2pt) Zbadaj czy w punktach C = ( 1, 1), D = ( 1, 2) funkcja f przyjmuje minimum maksimum lokalne. Polecenia opcjonalne 1. globalne? (iv) Czy funkcja f przyjmuje na R 2 minimum lub maksimum Zadanie 8. Rozważ funkcję liniową f(x, y, z) = x + y + 2z + 2 określoną na zbiorze X = {(x, y, z) R 3 x + y + z 3, min{x 1, y, z + 1} 0}. (i) (2pt) Wykaż, że zbiór X jest wypukły; (ii) (2pt) Wykaż, że zbiór X jest zwarty; (iii) (4pt) Podaj zbiór punktów ekstremalnych zbioru X; (iv) (2pt) Znajdź ekstrema funkcji f na zbiorze X; Zadanie 9. Rozważ funkcję f(x, y) = max{x 2 + y 2, 13x + 7y + 20, 3x + 3y + 20} określoną (i) (2pt) Sprawdź, czy f jest funkcją wypukłą; (ii) (6pt) Wyznacz subróżniczki f funkcji f w punktach A = ( 10, 10), B = ( 2, 2), C = ( 2, 5); (iii) (2pt) Czy w którymś z punktów A, B, C funkcja f przyjmuje minimum lokalne? Czy w którymś z tych punktów f przyjmuje minimum globalne? Zadanie 10. Rozważ zbiór A = {(x, y) R 2 x 2 + 5y 0, 2x y x + 2y 25}. (ii) (3pt) Wyznacz stożek kierunków osiągalnych F A (Z) w punkcie Z = (1/3, 13/3). (iii) (6pt) Wyznacz stożek styczny T A (U) i normalny N A (U) w punkcie U = (5, 5). Zadanie 11. Rozważ funkcję f(x, y, z) = (x + y) 2 + (y z) 2 określoną na zbiorze X = {(x, y, z) R 3 2x 2 + y 2 + 2xy + y z 1, x + 2y z = 0, 3x + 3y z 0}.
3 (i) (3pt) Czy w punktach A = ( 1, 2, 3), B = (1/2, 1, 3/2), C = (0, 1/2, 1) spełniony jest Zadanie 12. Rozważ funkcję f(x, y) = (x + y)(x + 6)( y 3) określoną (ii) (3pt) Zbadaj, czy w punktach A = ( 3, 0), B = (1, 2), C = ( 6, 3) funkcja f ma maksimum lokalne. (iii) (2pt) Zbadaj, czy w punktach D = (3, 2), E = (3, 3) funkcja f ma minimum lokalne. Zadanie 13. Rozważ funkcję afiniczną f(x, y, z) = 2x 3y + z 1 określoną na zbiorze X = {(x, y, z) R 3 x + y + 1 2, y 3, y 2x 0, x + y z 5}. Zadanie 14. Rozważ funkcję f(x, y) = max{4x 2 + y 2, 5x + 3y + 3, 3x 4y + 6} określoną (ii) (6pt) Oblicz subróżniczkę f funkcji f w punktach A = ( 3/5, 3/5), B = (1, 4), C = ( 1, 2) i D = (1, 2). Zadanie 15. Niech A = {(x, y) R 2 : x 2 + 2y 2 1, 2y x 0}. (ii) (3pt) Wyznacz stożek kierunków osiągalnych F A (z) w punkcie z = ( 1 2, 1 4 ). (iii) (6pt) Wyznacz stożek styczny T A (z) i normalny N A (z) w punkcie z = ( 2 6, 1 6 ). Zadanie 16. Rozważ funkcję f(x, y, z) = y 2 + z 2 określoną na zbiorze X = {(x, y, z) R 3 x 2 + y 2 + z 1, y + z = 0, x + 2y + z 0}.
4 (i) (3pt) Czy w punktach A = ( 1, 1, 1), B = ( 1 2, 1 2, 1 2 ), C = (0, 1 2, 1 2 ) spełniony jest Zadanie 17. Rozważ funkcję f(x, y) = (x + 7)(y 3)(x y + 1) określoną (ii) (3pt) Zbadaj, czy w punktach A = (0, 2), B = ( 4, 0), C = ( 7, 3) funkcja f ma maksimum lokalne. (iii) (2pt) Zbadaj, czy w punktach D = (2, 3), E = (2, 2) funkcja f ma minimum lokalne. Zadanie 18. Rozważ funkcję afiniczną f(x, y, z) = 2x + y + 3z + 1 określoną na zbiorze X = {(x, y, z) R 3 x z + 2 2, z 3, 2x + z 2, x y z + 1 5}. Zadanie 19. Rozważ funkcję f(x, y) = max{x 2 + 4y 2, 3x + 5y + 3, 4x + 3y + 6} określoną (ii) (6pt) Oblicz subróżniczkę f funkcji f w punktach A = (4, 1), B = ( 3 5, 3 5 ), C = (2, 1) i D = ( 2, 1). Zadanie 20. Niech A = {(x, y) R 2 : 2x 2 + y 2 1, 2x y 0}. (ii) (3pt) Wyznacz stożek kierunków osiągalnych F A (z) w punkcie z = ( 1 4, 1 2 ). (iii) (6pt) Wyznacz stożek styczny T A (z) i normalny N A (z) w punkcie z = ( 1 6, 2 6 ). Zadanie 21. Rozważ funkcję f(x, y, z) = x 2 + z 2 określoną na zbiorze X = {(x, y, z) R 3 x + y 2 + z 2 1, x + z = 0, x + y + 2z 0}.
5 (i) (3pt) Czy w punktach A = ( 1, 1, 1), B = ( 1 2, 1 2, 1 2 ), C = ( 1 2, 0, 1 2 ) spełniony jest Zadanie Znajdź wszystkie punkty krytyczne funkcji f(x, y) = (x + y)e x2 2y 2 i ustal, czy funkcja f przyjmuje w nich minimum lokalne, maksimum lokalne, czy punkt siodłowy. 2. Oblicz f (1,2) (0, 0). Zadanie 23. Znajdź (dowolną, byle poprawną metodą) najmniejszą wartość funkcji f(x, y, z) = 2x y 2 z na zbiorze A = {(x, y, z) R 2 : x y = 2, z 2 = 1, x 2}. Zadanie 24. Produkcja pewnej firmy zależy od liczby zatrudnionych pracowników (n) oraz od liczby godzin, jaką każdy z nich przepracuje tygodniowo (k). Funkcja produkcji (wyrażona w sztukach towaru) ma postać f(n, k) = 50 nk n + 2k. Koszty jakie ponosi firma w związku z zatrudnieniem n pracowników, każdego na k godzin tygodniowo, to K(n, k) = nk + n. Wyznacz minimalny koszt, jaki trzeba ponieść, by wyprodukować 144 sztuki towaru. Zadanie 25. Rozważ zagadnienie poszukiwania największej wartości funkcji f(x, y, z) = x 2 + y 4 z 2 na zbiorze A = {(x, y, z) R 3 : x + y + z 10, x 2 + y 2 1, z 1}. 1. Czy funkcja przyjmuje wartość najmniejszą na zbiorze A? Odpowiedź uzasadnij. 2. Sprawdź warunek jakości więzów dla tego zadania. 3. Wypisz warunki konieczne KKT dla tego zadania. Sprawdź, w których z wymienionych poniżej punktów są spełnione: (0, 1, 1), (0, 1, 1), (1, 1, 2 2 2), ( 2, 2, 1). Zadanie 26. Wykaż, że zbiór A = {(x, y, z) R 3 : x + y 4, max{ x, y } 3, x + z 2, y + z 1} jest wypukły i zwarty oraz wskaż zbiór jego punktów ekstremalnych. Zadanie 27. Rozważ funkcję f(x, y) = e 4 (x 2 + y 2 ) e y2 x określoną
6 (ii) (4pt) Zbadaj, w których z nich funkcja ma minimum, a w których maksimum lokalne. (iii) (1pt) Czy f przyjmuje na R 2 minimum globalne? A maksimum globalne? Zadanie 28. Rozważ funkcję afiniczną f(x, y, z) = x + 2y + 3z 1 określoną na zbiorze X = {(x, y, z) R 3 min{z x, z+y} z, max{ 3x+2y+2z, 3x+2y 6z} 6, x 3 0}. Zadanie 29. Rozważ funkcję f(x, y) = max{x 2 y, x 2 + y, x 2 + y 2 } określoną na zbiorze R 2. (ii) (6pt) Wyznacz subróżniczkę f(x, y) funkcji f dla wszystkich (x, y) R 2. Zadanie 30. Niech A = {(x, y) R 2 : 2x + y x 2 + 1, x y 1}. (ii) (3pt) Wyznacz stożek kierunków osiągalnych F A (z) w punkcie z = (2, 1). (iii) (6pt) Wyznacz stożek styczny T A (z) i normalny N A (z) w punkcie z = (3, 4). Zadanie 31. Rozważ funkcję f(x, y, z) = x 2 + z określoną na zbiorze X = {(x, y, z) R 3 z x = 0, x 2 + z 2 + 2y 4, y + z 2x}. (i) (3pt) Czy w punktach A = ( 2, 2, 2), B = (1, 1, 1), C = (0, 1, 0) spełniony jest warunek jakości więzów? (ii) (4pt) Czy w punkcie A spełnione są warunki konieczne KKT na minimum? (iii) (4pt) Czy w punkcie B spełnione są warunki konieczne KKT na maksimum? (iv) (4pt) Czy punkcie C spełnione są warunki dostateczne KKT na minimum? Czy w punkcie B spełnione są warunki dostateczne KKT na maksimum?
Analiza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.
13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Rachunek różniczkowy funkcji wielu zmiennych
Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych
Analiza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
Metoda Karusha-Kuhna-Tuckera
Badania operacyjne i teoria optymalizacji Poznań, 2015/2016 Plan 1 Sformułowanie problemu 2 3 Warunki ortogonalności 4 Warunki Karusha-Kuhna-Tuckera 5 Twierdzenia Karusha-Kuhna-Tuckera 6 Ograniczenia w
ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.
10 zadań związanych z granicą i pochodną funkcji.
0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
1 Pochodne wyższych rzędów
1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego
Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami
Funkcje wielu zmiennych
Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
Funkcje wielu zmiennych
Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym
Metoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do
Równania nieliniowe, nieliniowe układy równań, optymalizacja
4 maj 2009 Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań
Metoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1. Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient. Dla prostoty ograniczymy się do
Ekstrema globalne funkcji
SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
ANALIZA MATEMATYCZNA
ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej
2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
Równania nieliniowe, nieliniowe układy równań, optymalizacja
Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań nieliniowych -metoda bisekcji
Funkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Je zeli ka zdemu punktowi P o wspó rzednych x; y) z pewnego obszaru D na p aszczyźnie R 2 przyporzadkujemy w sposób jednoznaczny liczb e rzeczywista z, to przyporzadkowanie to nazywamy
Dr. inŝ. Ewa Szlachcic Katedra Automatyki, Mechatroniki i Systemów Sterowania. Przykładowe zadania optymalizacji nieliniowej bez ograniczeń
Wydział Elektroniki Kier: Automatyka i Robotyka Studia magisterskie II stopnia Dr. inŝ. Ewa Szlachcic Katedra Automatyki, Mechatroniki i Systemów Sterowania Przykładowe zadania optymalizacji nieliniowej
Definicja pochodnej cząstkowej
1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem
Wstęp do topologii Ćwiczenia
Wstęp do topologii Ćwiczenia Spis treści Przestrzeń metryczna, metryka 2 Kule w przestrzeni metrycznej 2 3 Zbieżność w przestrzeniach metrycznych 4 4 Domknięcie, wnętrze i brzeg 6 5 Zbiory gęste, brzegowe
Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34
Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład 13 14.01.2019, M.A-B 1 / 34 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a,
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
Pytania i polecenia podstawowe
Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
Temat: Zastosowania pochodnej
Temat: Zastosowania pochodnej A n n a R a j u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga A n n a R a j u r a, M a
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 8 MARCA 2014 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) ( Liczba 9 3 6 4 27) jest
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,
Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej
Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:
Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej
2. Optymalizacja bez ograniczeń
2. Optymalizacja bez ograniczeń 1. Podaj definicję ścisłego minimum lokalnego zadania 2. Podaj definicję minimum lokalnego zadania 3. Podaj definicję ścisłego minimum globalnego zadania 4. Podaj definicję
Metody Numeryczne Optymalizacja. Wojciech Szewczuk
Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne
Programowanie liniowe
Badania operacyjne Ćwiczenia 2 Programowanie liniowe Metoda geometryczna Plan zajęć Programowanie liniowe metoda geometryczna Przykład 1 Zbiór rozwiązań dopuszczalnych Zamknięty zbiór rozwiązań dopuszczalnych
Zestaw zadań przygotowujących do egzaminu z Matematyki 1
Uniwersytet Ekonomiczny w Katowicach Wydział Finansów i Ubezpieczeń, Kierunek: Finanse i Zarządzanie w Ochronie Zdrowia Zestaw zadań przygotowujących do egzaminu z Matematyki 1 Powtórka materiału przed
Excel - użycie dodatku Solver
PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym
Egzamin podstawowy (wersja przykładowa), 2014
Egzamin podstawowy (wersja przykładowa), Analiza Matematyczna I W rozwiązaniach prosimy formułować lub nazywać wykorzystywane twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski oraz
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x
Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
Wykład 6, pochodne funkcji. Siedlce
Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
a) f : R R R: f(x, y) = x 2 y 2 ; f(x, y) = 3xy; f(x, y) = max(xy, xy); b) g : R 2 R 2 R: g((x 1, y 1 ), (x 2, y 2 )) = 2x 1 y 1 x 2 y 2 ;
Zadania oznaczone * s troch trudniejsze, co nie oznacza,»e trudne.. Zbadaj czy funkcjonaª jest dwuliniowy, symetryczny, antysymetryczny, dodatniookre±lony: a) f : R R R: f(x, y) = x y ; f(x, y) = 3xy;
Funkcje wielu zmiennych (c.d.)
Funkcje wielu zmiennych (c.d.) Ekstrema funkcji wielu zmiennych Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Funkcje wielu zmiennych (c.d.) str. 1/40 Minimum lokalne
Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a
Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje
Funkcje dwóch zmiennych
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.
Wykład 6. Matematyka 2, semestr letni 2010/2011 Brak fragmentu dotyczącego twierdzenia o odwzorowaniu odwrotnym
Wykład 6. Matematyka 2, semestr letni 2010/2011 Brak fragmentu dotyczącego twierdzenia o odwzorowaniu odwrotnym Niechf: R n RbędziefunkcjąróżniczkowalnąnapewnymobszarzeO R 2.Przyjrzyjmy się zbiorowi f
Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych) Przy czym błąd, jaki popełniamy zastępując przyrost funkcji
Wykład 5 De.5 (różniczka unkcji Niech unkcja ma pochodną w punkcie. Różniczką unkcji w punkcie nazywamy unkcję d zmiennej określoną wzorem. Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych Jeżeli
Maciej Grzesiak. Optymalizacja
Maciej Grzesiak Optymalizacja Oznaczenia. Część pojęć i twierdzeń jest formułowana dla ogólnej przestrzeni liniowej V. Jeśli jest ona skończenie wymiarowa, tzn. V = R n dla pewnego n, to wektory traktujemy
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU
Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a
AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium
AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego
Przegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła
Przegląd metod optymalizacji wielowymiarowej Tomasz M. Gwizdałła 2012.12.06 Funkcja testowa Funkcją testową dla zagadnień rozpatrywanych w ramach tego wykładu będzie funkcja postaci f (x) = (x 1 1) 4 +
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 2 KWIETNIA 204 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 2 2 3 2 3 jest równa
Analiza Matematyczna MAEW101 MAP1067
Analiza Matematyczna MAEW MAP67 Wydział Elektroniki Przykłady do Listy Zadań nr 4 Funkcje wielu zmiennych. Pochodne cząstkowe Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania 4.: Wyznaczyć
Algorytmy Równoległe i Rozproszone Część II - Sieci porównujące
Algorytmy Równoległe i Rozproszone Część II - Sieci porównujące Łukasz Kuszner pokój 209, WETI http://kaims.eti.pg.gda.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://kaims.eti.pg.gda.pl/
Wielkopolskie Mecze Matematyczne
Wielkopolskie Mecze Matematyczne edycja druga 3 kwietnia 2015r. W okresie renesansu we Włoszech matematycy stworzyli ciekawą formę rywalizacji intelektualnej. Wymieniali się zadaniami, a po kilku tygodniach
Wielokryteriowa optymalizacja liniowa
Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych
FUNKCJE WIELU ZMIENNYCH
FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin
Integralność konstrukcji w eksploatacji
1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji
Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012
Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,
Zarzadzanie i Marketing Egzamin z Matematyki. Studia dzienne. 1999
Imie Nazwisko Zestaw 121 Zarzadzanie i Marketing Egzamin z Matematyki. Studia dzienne. 1999 Zaznacz wlasciwa odpowiedz przez otoczenie kolkiem litery a, b lub c. Tylko jedna z podanych odpowiedzi jest
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,
1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.
WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R
2. Definicja pochodnej w R n
2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)
Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 1-100 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A
Imię i nazwisko.. Zadanie 1 Oto diagram prezentujący powierzchnię największych jezior świata.
Imię i nazwisko.. Zadanie 1 Oto diagram prezentujący powierzchnię największych jezior świata. Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe. I. Ładoga
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem
Analiza wielokryterialna
Analiza wielokryterialna dr hab. inż. Krzysztof Patan, prof. PWSZ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa w Głogowie k.patan@issi.uz.zgora.pl Wprowadzenie Wielokryterialny wybór wariantu
Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:
Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie
1 Granice funkcji wielu zmiennych.
AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica
Teoria popytu. Popyt indywidualny konsumenta
Teoria popytu Popyt indywidualny konsumenta Koszyk towarów Definicja 1 Wektor x=(x 1,x 2,x 3,...,x n ) taki, że x i 0 dla każdego i,w którym i-ta współrzędna oznacza ilość towaru nr i, którą konsument
EGZAMIN PISEMNY Z ANALIZY I R. R n
EGZAMIN PISEMNY Z ANALIZY I R Instrukcja obsługi. Za każde zadanie można dostać 4 punkty. Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie. W nagłówku rozwiązania należy
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla
Słabe ostre minima. Uniwersytet Łódzki Wydział Matematyki. Agnieszka Czuba
Uniwersytet Łódzki Wydział Matematyki Agnieszka Czuba Słabe ostre minima Praca magisterska wykonana w Zakładzie Metod Numerycznych pod kierunkiem prof. dr hab. Marcina Studniarskiego Łódź 2001 Spis treści
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Pochodne wyższych rzędów. Wzór Taylora
Analiza Matematyczna Pochodne wyższych rzędów. Wzór Taylora Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045