Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a
|
|
- Franciszek Morawski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a
2 Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje Problem z ograniczeniami w postaci równości Twierdzenie Lagrange a Metoda Lagrange a Przykład
3 Nieliniowa funkcja celu Na schemacie v oznacza napięcie źródła, r opór wewnętrzny źródła, a R opór odbiornika. Znaleźć taką wartość R, aby strata mocy była maksymalna, jeżeli dopuszczalny spadek napięcia na oporniku wynosi E? + r R P = i R v i= r+ R E = ir
4 Nieliniowa funkcja celu i ograniczenia r + R zmaksymalizować vr przy ograniczeniach : <E r+r v P = R r+r
5 P Nieliniowa funkcja celu r + R zmaksymalizować dp = dr 4 r+ R v r+ R - r+ R v R v P = R r+r strata mocy 4,5 4 3,5 3,5 1,5 1 0,5 0 R strata mocy R= r
6 P Nieliniowa funkcja celu i ograniczenia r + R v zmaksymalizować P = R r+r przy ograniczeniach : R < Er v-e strata mocy 4,5 4 3,5 3,5 1,5 1 0,5 0 strata mocy R
7 P Nieliniowa funkcja celu i ograniczenia r + R v zmaksymalizować P = R r+r przy ograniczeniach : R < Er v-e strata mocy 4,5 4 3,5 3,5 1,5 1 0,5 0 strata mocy R
8 Sformułowanie problemu programowania matematycznego zminimalizować (zmaksymalizować) z = f 0 (x 1, x,..., x n ) przy ograniczeniach f 1 (x 1, x,..., x n ) 0 f (x 1, x,..., x n ) 0 f m (x 1, x,..., x n ) 0
9 Sformułowanie problemu programowania matematycznego zminimalizować (zmaksymalizować) z = f 0 (x) przy ograniczeniach: f i (x) 0, i = 1,, m x n
10 Sformułowanie problemu programowania matematycznego zminimalizować (zmaksymalizować) z = f 0 (x) przy ograniczeniach: f i (x) 0, i = 1,, m Problem programowania liniowego jest szczególnym przypadkiem problemu programowania matematycznego zminimalizować (zmaksymalizować) przy ograniczeniach: x n z = f 0 (x) = cx f i (x)=a i x b i 0,i = 1,, m x n+
11 Klasyfikacja problemów NLP Problemy bez ograniczeń Problemy z ograniczeniami Ograniczenia w postaci równań Ograniczenia w postaci nierówności
12 Ekstremum funkcji Niech: S = {x: f i (x) 0, i = 1,..., m} - zbiór rozwiązań dopuszczalnych D = {x: 0 < x* x < d } E = S D Funkcja f 0 ma w punkcie x* słabe minimum (maksimum) lokalne, jeśli istnieje d>0 takie, że dla każdego x E f 0 (x*) f 0 (x), (f 0 (x*) f 0 (x))
13 Ekstremum funkcji Niech: S = {x: f i (x) 0, i = 1,..., m} - zbiór rozwiązań dopuszczalnych D = {x: 0 < x* x < d } E = S D Funkcja f 0 ma w punkcie x* właściwe minimum (maksimum) lokalne, jeśli istnieje d>0 takie, że dla każdego x E f 0 (x*) < f 0 (x), (f 0 (x*) > f 0 (x))
14 Ekstremum funkcji Niech: S = {x: f i (x) 0, i = 1,..., m} - zbiór rozwiązań dopuszczalnych D = {x: 0 < x* x < d } E = S D Funkcja f 0 ma w punkcie x* właściwe minimum (maksimum) globalne, jeśli dla każdego x S f 0 (x*) < f 0 (x), (f 0 (x*) > f 0 (x))
15 Ekstremum funkcji minimum lokalne maksimum lokalne punkt przegięcia minimum globalne
16 Funkcje wielu zmiennych 1 x x f x = - + Punkt siodłowy f(x) x x1-10
17 Poszukiwanie ekstremum funkcji nieliniowej S = x zminimalizować x 1 + x (x 1 7) + (x 7) 5 (x 1 7) + (x 7) 7 7 x 1 Brak rozwiązań dopuszczalnych a zatem brak rozwiązań optymalnych!
18 Poszukiwanie ekstremum funkcji nieliniowej S = S x zminimalizować x 1 + x (x 1 7) + (x 7) 5 (x 1 7) + (x 7) 7 7 x 1 Rozwiązanie optymalne ograniczone!
19 Poszukiwanie ekstremum funkcji nieliniowej S = S x zmaksymalizować x 1 + x (x1 7) + (x 7) 7 7 x 1 Rozwiązanie optymalne nieograniczone!
20 Poszukiwanie ekstremum funkcji nieliniowej S = S f 0 (x) zminimalizować x 1 x x Rozwiązanie optymalne ograniczone, ale nieosiągalne!
21 Poszukiwanie ekstremum funkcji nieliniowej S = S optimum ograniczone wartość funkcji nieograniczona wartość funkcji ograniczona, ale optimum nieosiągalne
22 Gradient funkcji wielu zmiennych Wektor pochodnych cząstkowych funkcji f(x): n ze względu na x 1,..., x n nazywa się gradientem funkcji f(x) i oznacza się go przez f(x). x f x1 f x f x xn x jest punktem stacjonarnym funkcji f(x) wtw f(x)=0.
23 P Nieliniowa funkcja celu r + R Czy w punkcie R = r jest maksimum? 4,5 zmaksymalizować dp = dr strata mocy 4 r+ R v r+ R - r+ R v R v P = R r+r 4 3,5 3 P R rv r R 5 0,5 1,5 1 strata mocy 0,5 0 R
24 Hesjan funkcji f(x) H x f f f x 1 x x x x x x x 1 1 f f f x x x n 1 n n x x x x x n Zakładamy, że f f x x x x 1 1
25 Określoność macierzy Dla dowolnej macierzy M o wymiarach n x n i wektora z o długości n dodatnnio określona > 0 M jest dodatnio półokreślona ujemnie określona z T Mz jest 0 < 0 dla dowolnego z 0 ujemnie pólokreślona 0 W pozostałych przypadkach M jest nieokreślona.
26 Twierdzenie H(x*) jest dodatnio określona x* jest właściwym minimum lokalnym H(x) jest dodatnio określona dla wszystkich wartości x w pewnym otoczeniu x* x* jest minimum lokalnym x* jest minimum lokalnym H(x*) jest dodatnio półokreślona
27 Problem z ograniczeniami w postaci równań zminimalizować f 0 (x)=(x 1 1) + x +1 przy ograniczeniach: f 1 (x)= x 1 0.5x = 0
28 Metoda graficzna x 1 0.5x =0 x f 0 (x)=1,5 f 0 (x)=3,5 (0, 0) (1,0) x 1 f 0 (x)= zmin f 0 (x)=(x 1 1) + x +1 p.o. f (x)= x 0.5x = 0
29 Podstawienie zminimalizować f 0 (x)=(x 1 1) + x +1 przy ograniczeniach: f 1 (x)= x 1 0.5x = 0 Otrzymujemy problem z jedną zmienną bez ograniczeń. x 1 = 0.5 x zminimalizować f 0 (x)=(0.5x 1) + x +1
30 Metoda graficzna x 1 0.5x =0 x (0, 0) (1,0) x 1 zmin f 0 (x)=(x 1 1) + x +1 p.o. f (x)= x 0.5x = 0
31 Twierdzenie Lagrange a Niech dany będzie następujący problem nieliniowego programowania matematycznego zminimalizować z = f 0 (x 1,..., x n ) (1) przy ograniczeniach: f i (x 1,..., x n ) = 0, i = 1,, m () Jeżeli: ( * * x1,..., xn ) jest lokalnym optimum problemu (1)-() n>m f i mają ciągłe pierwsze pochodne ze względu na x j * * f są wektorami liniowo niezależnymi i x1,..., xn to istnieje wektor u = [u 1,..., u m ] T taki, że m * * * *,...,,..., n i i n f x x u f x x i1 0
32 Metoda Lagrange a 1. Sprawdzić, że n>m i każda funkcja f i ma ciągłe pochodne cząstkowe.. Zbudować funkcję Lagrange a x, u 0 x iix 3. Znaleźć wszystkie rozwiązania następującego układu równań nieliniowych 4. Sprawdzić każde rozwiązanie (x*, u*) aby stwierdzić, czy jest minimum lokalnym. m L f u f i1, 0 i i L x u f x u f x 0 L xu, u i x m i1 f 0, i 1,..., m i
33 Metoda Lagrange a 1. Sprawdzić, że n>m i każda funkcja f i ma ciągłe pochodne cząstkowe.. Zbudować funkcję Lagrange a m x, u 0 x iix L f u f 3. Znaleźć wszystkie rozwiązania następującego układu równań nieliniowych i1, 0 i i L x u f x u f x 0 L xu, u i x m i1 f 0, i 1,..., m i n równań m równań 4. Sprawdzić każde rozwiązanie (x*, u*) aby stwierdzić, czy jest minimum lokalnym.
34 Metoda Lagrange a Warunki Lagrange a 1. Sprawdzić, że n>m i każda funkcja f i ma ciągłe pochodne cząstkowe.. Zbudować funkcję Lagrange a x, u 0 x iix 3. Znaleźć wszystkie rozwiązania następującego układu równań nieliniowych 4. Sprawdzić każde rozwiązanie (x*, u*) aby stwierdzić, czy jest minimum lokalnym. m L f u f i1, 0 i i L x u f x u f x 0 L xu, u i x m i1 f 0, i 1,..., m i
35 Metoda Lagrange a Punkty Lagrange a 1. Sprawdzić, że n>m i każda funkcja f i ma ciągłe pochodne cząstkowe.. Zbudować funkcję Lagrange a x, u 0 x iix 3. Znaleźć wszystkie rozwiązania następującego układu równań nieliniowych 4. Sprawdzić każde rozwiązanie (x*, u*) aby stwierdzić, czy jest minimum lokalnym. m L f u f i1, 0 i i L x u f x u f x 0 L xu, u i x m i1 f 0, i 1,..., m i
36 Przykład zminimalizować f 0 (x)=(x 1 1) + x + 1 przy ograniczeniach: f 1 (x)= x 1 0.5x = 0
37 Przykład znajdowanie punktów Lagrange a Rozwiązanie: x 1 = x = 0 u 1 =
38 Sprawdzanie punktów Lagrange a Jeżeli (x*, u*) jest jedynym punktem Lagrange'a i wiadomo, że funkcja osiąga minimum, to x* jest minimum lokalnym. Twierdzenie zachodzi dla naszego przykładu. Zatem punkt (0,0) jest minimum.
39 Przykład
40 Sprawdzanie punktów Lagrange a Jeżeli (x*, u*) jest punktem Lagrange'a i hesjan H L (x*) funkcji Lagrange'a w punkcie x* dla u = u* spełnia warunek: x T H L (x*)x > 0 dla wszystkich x takich, że x T f i (x)=0, i=1,,m, to x* jest minimum lokalnym.
41 Sprawdzanie punktów Lagrange a Jeżeli założenia twierdzenia Lagrange'a są spełnione i nie istnieje u takie, że f 0 (x*) + u i f i (x*) = 0 w punkcie x*, to w tym punkcie na pewno nie występuje minimum.
42 Przykład zminimalizować f 0 (x) = x 1 +(x ) + x 3 przy ograniczeniach f 1 (x) = x x + x 3 1 = 0 f (x) = x + x 3 = 0 w punkcie: x
Metoda Karusha-Kuhna-Tuckera
Badania operacyjne i teoria optymalizacji Poznań, 2015/2016 Plan 1 Sformułowanie problemu 2 3 Warunki ortogonalności 4 Warunki Karusha-Kuhna-Tuckera 5 Twierdzenia Karusha-Kuhna-Tuckera 6 Ograniczenia w
Programowanie matematyczne
dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.
13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
1 Pochodne wyższych rzędów
1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje
3. Funkcje wielu zmiennych
3 Funkcje wielu zmiennych 31 Ciagłość Zanim podamy definicję ciagłości dla funkcji wielu zmiennych wprowadzimy bardzo ogólne i abstrakcyjne pojęcie przestrzeni metrycznej Przestrzeń metryczna Metryka w
Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Metody Numeryczne Optymalizacja. Wojciech Szewczuk
Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
Wykład 6, pochodne funkcji. Siedlce
Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami
2. Optymalizacja bez ograniczeń
2. Optymalizacja bez ograniczeń 1. Podaj definicję ścisłego minimum lokalnego zadania 2. Podaj definicję minimum lokalnego zadania 3. Podaj definicję ścisłego minimum globalnego zadania 4. Podaj definicję
Metody optymalizacji. notatki dla studentów matematyki semestr zimowy 2015/2016
Metody optymalizacji notatki dla studentów matematyki semestr zimowy 2015/2016 Aktualizacja: 11 stycznia 2016 Spis treści Spis treści 2 1 Wprowadzenie do optymalizacji 1 11 Podstawowe definicje i własności
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą
Formy kwadratowe. Rozdział 10
Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w
Dualność w programowaniu liniowym
2016-06-12 1 Dualność w programowaniu liniowym Badania operacyjne Wykład 2 2016-06-12 2 Plan wykładu Przykład zadania dualnego Sformułowanie zagadnienia dualnego Symetryczne zagadnienie dualne Niesymetryczne
Definicja pochodnej cząstkowej
1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem
wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów
KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
Metoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
Metoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1. Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient. Dla prostoty ograniczymy się do
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.
Zestaw zadań przygotowujących do egzaminu z Matematyki 1
Uniwersytet Ekonomiczny w Katowicach Wydział Finansów i Ubezpieczeń, Kierunek: Finanse i Zarządzanie w Ochronie Zdrowia Zestaw zadań przygotowujących do egzaminu z Matematyki 1 Powtórka materiału przed
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2017 Mirosław Sobolewski (UW) Warszawa, 2017 1 / 10 Definicja Funkcja
Programowanie liniowe
Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny
Funkcje wielu zmiennych
Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji
PROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
Ekstrema globalne funkcji
SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością
Rachunek różniczkowy funkcji dwóch zmiennych
Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Lokalna odwracalność odwzorowań, odwzorowania uwikłane
Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych
Pochodna funkcji odwrotnej
Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie
KADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
Równanie przewodnictwa cieplnego (II)
Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego
PROGRAMOWANIE NIELINIOWE
PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i
WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0
WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego
1 Wartości własne oraz wektory własne macierzy
Rozwiązania zadania umieszczonego na końcu poniższych notatek proszę przynieść na kartkach Proszę o staranne i formalne uzasadnienie odpowiedzi Za zadanie można uzyskać do 6 punktów (jeżeli przyniesione
Równania nieliniowe, nieliniowe układy równań, optymalizacja
4 maj 2009 Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań
1. Podstawowe pojęcia
1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
2. Definicja pochodnej w R n
2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)
Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:
Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Sterowanie optymalne
Sterowanie optymalne Sterowanie Procesami Ciągłymi 2017 Optymalizacja statyczna funkcji Funkcja celu/kryterialna/kosztów Ograniczenie Q(x) min x x = arg min Q(x) x x X, gdzie X zbiór rozwiązań dopuszczalnych
Funkcje wielu zmiennych
Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
Równania nieliniowe, nieliniowe układy równań, optymalizacja
Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań nieliniowych -metoda bisekcji
Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem.
Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I, Kierunek Oceanotechnika, Spec. Okrętowe Podstawy teorii optymalizacji Wykład 1 M. H. Ghaemi Marzec 2016 Podstawy teorii
Programowanie liniowe
Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania
Zadania o numerze 4 z zestawów licencjat 2014.
Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.
Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;
Pochodną funkcji w punkcie nazywamy granicę ilorazu różnicowego w punkcie gdy przyrost argumentu dąży do zera: lim
Definicja pochodnej Niech będzie funkcją określoną w pewnym przedziale i niech będzie punktem wewnętrznym tego przedziału. Liczbę dowolną, ale taką, że nazywamy przyrostem argumentu, a różnicę nazywamy
Badania Operacyjne Ćwiczenia nr 2 (Materiały)
Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy
Funkcje dwóch zmiennych
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach
KURS FUNKCJE WIELU ZMIENNYCH
KURS FUNKCJE WIELU ZMIENNYCH Lekcja 8 Ekstrema warunkowe (mnożnik Lagrange a) ZADANIE DOMOWE www.etrapez.pl Strona 1 Częśd 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Jak
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Optymalizacja ciągła
Optymalizacja ciągła 4. Metody kierunków poprawy (metoda spadku wzdłuż gradientu) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 21.03.2019 1 / 41 Plan wykładu Minimalizacja
Badania operacyjne egzamin
Imię i nazwisko:................................................... Nr indeksu:............ Zadanie 1 Załóżmy, że Tablica 1 reprezentuje jeden z kroków algorytmu sympleks dla problemu (1)-(4). Tablica
Wykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
Wykład 7 Informatyka Stosowana Magdalena Alama-Bućko 16 kwietnia 2018 Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 1 / 23 Programowanie liniowe Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 2 / 23
2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość
4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4b. wbadanie Krakowie)
Wprowadzenie z dynamicznej optymalizacji
Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2
KURS FUNKCJE WIELU ZMIENNYCH
KURS FUNKCJE WIELU ZMIENNYCH Lekcja Ekstrema (lokalne) funkcji wielu zmiennych ZADANIE DOMOWE www.etrapez.pl Strona Częśd : TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie Wykres
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Stabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z
1 Wideo 5 1.1 Zadanie 1 1.1.1 a) f(x) = x + x f (x) = x + f (x) = 0 x + = 0 x = 1 [SZKIC] zatem w x = 1 występuje minimum 1.1. b) f(x) = x x 4 f (x) = x(x 4) x (x) (x 4) f (x) = 0 x(x 4) x (x) (x 4) =
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Rachunek Różniczkowy
Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem
1. Wielomiany Podstawowe definicje i twierdzenia
1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH
7. WYZNCZNIE SIŁ WEWNĘTRZNYCH W ELKCH Zadanie 7.1 Dla belki jak na rysunku 7.1.1 ułożyć równania sił wewnętrznych i sporządzić ich wykresy. Dane: q, a, M =. Rys.7.1.1 Rys.7.1. W zależności od rodzaju podpór
Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1
Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi
Twierdzenia Rolle'a i Lagrange'a
Twierdzenia Rolle'a i Lagrange'a Zadanie 1 Wykazać, że dla dowolnych zachodzi. W przypadku nierówność (a właściwie równość) w treści zadania spełniona jest w sposób oczywisty, więc tego przypadku nie musimy
Zagadnienia - równania nieliniowe
Zagadnienia - równania nieliniowe Sformułowanie zadania poszukiwania pierwiastków. Przedział izolacji. Twierdzenia o istnieniu pierwiastków. Warunki zatrzymywania algorytmów. Metoda połowienia: założenia,
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie