Wielokryteriowa optymalizacja liniowa

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wielokryteriowa optymalizacja liniowa"

Transkrypt

1 Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia do decyzji wielokryterialnej. Podstawowe rozróżnienie sposobów postępowania wynika z charakteru zbioru decyzji. Zbiór decyzji może mieć charakter ciągły lub dyskretny. 2. W sytuacji kiedy zbiór decyzji ma charakter ciągły często zagadnienie decyzyjne formułowane jest w postaci tzw. programowania celowego. Cele, które chcemy osiągnąć mogą być różnie formułowane: - w postaci wartości liczbowych celów, - w postaci określonych przedziałów liczbowych dla celów, - z uwzględnieniem wag dla kryteriów, - w postaci hierarchii celów. Zakładamy, że wszystkie cele są maksymalizowane (są stymulantami). Jeżeli oryginalnie sformułowany cel ma być minimalizowany (jest destymulantą), to w przypadku optymalizacji liniowej parametry funkcji kryterium mnożymy przez (-1).

2 Zadaniem wielokryteriowego programowania liniowego WPL (lub wielokryteriowej optymalizacji liniowej) nazywamy następujące zadanie: z 1 = c 11 x c 1n x n max z K = c K1 x c Kn x n max a 11 x a 1n x n b 1 a m1 x a mn x n b m x 1,, x n 0 n liczba zmiennych decyzyjnych, K liczba kryteriów, funkcji celu, m liczba ograniczeń Zakładamy, że sformułowane zadanie wielokryteriowe posiada niepusty zbiór rozwiązań dopuszczalnych (jest niesprzeczne) oraz skończone rozwiązanie optymalne dla każdej z K funkcji celu.

3 Zapis wektorowy zadania WPL: F(x) = [ z 1 (x) = c T 1 x ] max, z K (x) = c T K x Ax b x 0 gdzie x = [x 1,, x n ] T ; A = [a ij ] ; b = [b i ] i = 1,, m; j = 1,, n. W przypadku zadania WPL możemy zdefiniować dwa rodzaje zbiorów rozwiązań dopuszczalnych: Zbiór rozwiązań dopuszczalnych w przestrzeni decyzyjnej zbiór punktów o współrzędnych równych wartościom zmiennych decyzyjnych x 1,, x n, dla których spełniony jest układ ograniczeń zadania. Zbiór rozwiązań dopuszczalnych w przestrzeni kryterialnej zbiór wszystkich wyników, jakie możemy osiągnąć rozpatrując wszystkie możliwe rozwiązania dopuszczalne w przestrzeni decyzyjnej z uwzględnieniem zadanego zestawu K kryteriów z 1,, z K. Zbiór ten jest wielościanem wypukłym, którego wierzchołki są obrazami wierzchołków zbioru rozwiązań dopuszczalnych w przestrzeni decyzyjnej. Twierdzenie 1. Zbiór rozwiązań dopuszczalnych zadania w przestrzeni kryterialnej jest wielościanem wypukłym. Każdy wierzchołek tego wielościanu jest obrazem pewnego wierzchołka zbioru decyzji dopuszczalnych w przestrzeni decyzyjnej, natomiast pozostałe punkty to zbiór wszystkich kombinacji wypukłych punktów wierzchołkowych.

4 PRZYKŁAD (na podstawie Miszczyńska D., Miszczyński M.) Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum galonów paliwa X i minimum galonów paliwa Y. Paliwa te mogą być wytwarzane niezależnie w dwóch procesach: P1 i P2. W ciągu 1 godziny trwania procesu P1 zużywa się 1 baryłkę ropy A oraz 3 baryłki ropy B i otrzymuje 100 galonów paliwa X oraz 30 galonów paliwa Y. W ciągu 1 godziny trwania procesu P2 zużywa się 4 baryłki ropy A oraz 2 baryłki ropy B i otrzymuje 50 galonów paliwa X oraz 40 galonów paliwa Y. Zasób ropy A wynosi 320 baryłek, a ropy B 240 baryłek. Zysk z godziny produkcji według procesu P1 wynosi 200$, a koszty 800$. Zysk z godziny produkcji według procesu P2 wynosi 500$, a koszty 1200$. Przykład 1. Szef produkcji poszukuje takiej kombinacji procesów P1 i P2 (tzn. chce ustalić na ile godzin uruchomić proces P1, a na ile P2), aby osiągnąć: maksymalny zysk oraz maksymalną ilość paliw X i Y.

5 Model decyzyjny: x 1 - czas trwania procesu P1 (w godzinach) x 2 - czas trwania procesu P2 (w godzinach). z 1 = 200x x 2 max z 2 = 130x x 2 max (zysk) (produkcja paliwa) 100x x x x x 1 + 4x (paliwo X) (paliwo Y) (ropa A) 3x 1 + 2x (ropa B) x 1 0, x 2 0

6 Przykład 2 Dla sytuacji decyzyjnej opisanej w przykładzie szef produkcji poszukuje takiej kombinacji procesów P1 i P2 (tzn. chce ustalić na ile godzin uruchomić proces P1, a na ile P2), aby osiągnąć: maksymalny zysk oraz minimalny koszt. Zadanie WPL ma tutaj postać: z 1 = 200x x 2 max (zysk) z 3 = 800x x 2 min 100x x x x x 1 + 4x (koszty) (paliwo X) (paliwo Y) (ropa A) 3x 1 + 2x (ropa B) x 1 0, x 2 0

7 Po przekształceniu funkcji kosztów na stymulantę zadanie przyjmuje postać: z 1 = 200x x 2 max z 3 = 800x x 2 max 100x x x x x 1 + 4x (zysk) ( koszty) (paliwo X) (paliwo Y) (ropa A) 3x 1 + 2x (ropa B) x 1 0, x 2 0

8 Zbiór rozwiązań dopuszczalnych w przestrzeni decyzyjnej oraz rozwiązania jednokryteriowe: z1 maksymalizacja zysku

9

10 Kryterium z2 maksymalizacja produkcji

11

12 Kryterium z3 minimalizacja kosztów:

13 Tabela 1. Współrzędne punktów wierzchołkowych zbioru rozwiązań dopuszczalnych w przestrzeni decyzji wierzchołki A B C D x x Tabela 2. Wartości funkcji celu dla punktów wierzchołkowych zbioru decyzji dopuszczalnych w przestrzeni kryteriów Wartości kryteriów w wierzchołkach A B C D z z z

14 z2 Przestrzeń kryteriów z1 i z D' C' B' A' z1 Rys. Rozwiązania dopuszczalne i idealne w przestrzeni kryteriów Przykład 1. Punkt C odpowiada rozwiązaniu idealnemu obie funkcje kryterium z1 i z2 przyjmują wartości maksymalne. Rozwiązanie idealne należy do zbioru rozwiązań dopuszczalnych w przestrzeni kryteriów. W przestrzeni decyzji odpowiada mu punkt C o współrzędnych x 1 =32 godziny, x 2 =72 godziny. Optymalne (maksymalne) wartości funkcji celu wynoszą: zysk z 1 max = $, produkcja paliwa z 2 max = galonów.

15 -z Przestrzeń kryteriów z1 i z D' A' Rozwiązanie idealne B' z1 C' Rys. Rozwiązania dopuszczalne i idealne w przestrzeni kryteriów Przykład 2. Rozwiązanie idealne nie należy do zbioru rozwiązań dopuszczalnych w przestrzeni kryteriów. Nie można wskazać rozwiązania maksymalizującego jednocześnie z 1 i z 3.

16 Stożki rozwiązań dominujących i zdominowanych Zaznaczmy w przestrzeni kryteriów dowolny punkt Y. Punkt taki podzieli przestrzeń na cztery obszary (stożki). Będą to w sensie WPL następujące stożki: stożek punktów (rozwiązań) dominujących punkt Y, stożek punktów (rozwiązań) zdominowanych przez punkt Y oraz dwa stożki punktów (rozwiązań) nieporównywalnych z punktem Y. Rys. Ilustracja stożków rozwiązań dominujących i zdominowanych w dwuwymiarowej przestrzeni kryteriów.

17 Rozwiązania niezdominowane w przestrzeni kryteriów i rozwiązania sprawne w przestrzeni decyzji Z punktów wyróżnionych na rysunku, rozwiązaniem niezdominowanym w przestrzeni kryteriów przez punkt Y będzie on sam (czyli punkt Y). Twierdzenie 2. W zadaniach WPL rozwiązania niezdominowane zawierają się na brzegu zbioru rozwiązań dopuszczalnych w przestrzeni kryteriów. Żaden punkt wewnętrzny tego zbioru nie może być punktem niezdominowanym. Def. Rozwiązania w przestrzeni decyzyjnej, odpowiadające rozwiązaniom niezdominowanym z przestrzeni kryteriów, nazywamy rozwiązaniami sprawnymi. Są to rozwiązania optymalne WPL w sensie Pareto (rozwiązania Paretooptymalne).

18 W przykładzie 2 zbiór rozwiązań niezdominowanych w przestrzeni kryteriów (rozwiązań Paretooptymalnych) pokazano na rysunku poniżej (pogrubione krawędzie). Zbiorem tym są wszystkie punkty leżące na łamanej D A, A, B B C. Niezdominowanymi punktami wierzchołkowymi zbioru rozwiązań dopuszczalnych w przestrzeni kryteriów są wierzchołki D, A, B oraz C.

19 Wierzchołkowymi rozwiązaniami sprawnymi są ich odpowiedniki w przestrzeni decyzji, tj. wierzchołki D, A, B oraz C. Na rysunku pokazano zbiór rozwiązań sprawnych dla przykładu 2 w przestrzeni decyzji (pogrubione krawędzie). Zbiorem tym są wszystkie punkty leżące na łamanej DA, AB, BC.

20 Możliwe wyniki porównania dwóch rozwiązań dopuszczalnych: 1. Wartości wszystkich kryteriów dla pierwszego rozwiązania >= wartościom odpowiadających kryteriów dla drugiego rozwiązania i w przynajmniej jednym przypadku zachodzi ostro >, 2. Wartości wszystkich odpowiadających kryteriów równe, 3. Wartości pewnych kryteriów dla pierwszego rozwiązania większe niż dla drugiego a jednocześnie, w przypadku przynajmniej jednego z kryteriów, relacja przeciwna. Zbiór rozwiązań dopuszczalnych w przestrzeni decyzyjnej zbiór punktów o współrzędnych równych wartościom zmiennych decyzyjnych, dla których spełniony jest układ ograniczeń zadania. Zbiór rozwiązań dopuszczalnych w przestrzeni kryterialnej zbiór wszystkich wyników, jakie możemy osiągnąć rozpatrując wszystkie możliwe rozwiązania dopuszczalne w przestrzeni decyzyjnej z uwzględnieniem zadanego zestawu kryteriów. Zbiór ten jest wielościanem wypukłym, którego wierzchołki są obrazami wierzchołków zbioru rozwiązań dopuszczalnych w przestrzeni decyzyjnej. Rozwiązanie optymalne wektorowo dominujące, nie gorsze od wszystkich pozostałych ze względu na wszystkie cele a w przynajmniej jednym przypadku ostro lepsze.

21 Rozwiązania niezdominowane w przestrzeni kryteriów (Pareto-optymalne) - rozwiązania, dla których nie istnieją rozwiązania lepsze, w tym sensie, że nie można poprawić wartości żadnego z kryteriów bez konieczności obniżenia wartości przynajmniej jednego innego kryterium. Rozwiązania niezdominowane zawierają się w brzegu zbioru rozwiązań dopuszczalnych w przestrzeni kryterialnej. Rozwiązania w przestrzeni decyzyjnej odpowiadające rozwiązaniom niezdominowanym w przestrzeni kryteriów nazywamy rozwiązaniami sprawnymi. Rozwiązań sprawnych bazowych (wierzchołkowych) bywa wiele. Zwykle jest także nieskończenie wiele rozwiązań sprawnych niebazowych. Poszukujemy rozwiązania końcowego. Do podjęcia końcowej decyzji, najczęściej, nie jest potrzebne wygenerowanie zbioru WSZYSTKICH rozwiązań sprawnych. W przypadku nieporównywalnych decyzji Pareto-optymalnych, wprowadzając dodatkowe warunki zawężamy zbiór decyzji do tzw. decyzji kompromisowej problem optymalizacji wielokryteriowej sprowadzamy do problemu optymalizacji jednokryteriowej za pomocą konstrukcji kryterium zastępczego metakryterium.

22 Metody poszukiwania końcowych rozwiązań sprawnych: Metoda satysfakcjonujących poziomów kryteriów dokonuje się wyboru jednego z kryteriów zadania wielokryterialnego a pozostałe uwzględnia w warunkach ograniczających ustalając ich satysfakcjonujący poziom. Jeżeli tak utworzone zadanie jest niesprzeczne, to rozwiązując je uzyskamy rozwiązanie sprawne. Zmieniając kryteria uzyskamy różne rozwiązania sprawne. Wykorzystanie współczynników wagowych kryteriom nadaje się wagi i tworzy nowe kryterium zastępcze jako ważoną sumę kryteriów, Hierarchizacja kryteriów zadanie rozwiązywane jest sekwencyjnie jako zbiór zadań jednokryterialnych o ustalonym priorytecie ważności. W każdym kroku przyjmując kryterium o niższej ważności dołącza się jako nowy warunek ograniczający żądanie, aby wszystkie ważniejsze cele były zrealizowane na poziomie nie gorszym niż dotychczas, bądź określa się progi ich wartości (np. procentowo) - rozwiązanie nie jest dopuszczalne jeżeli nie są spełnione dodatkowe ograniczenia związane z progami wartości kryteriów ważniejszych w hierarchii. Programowanie celowe dążymy do nalezienia rozwiązania, które spełniałoby oczekiwania odnośnie sformułowanych celów. Cele mogą być punktowe bądź przedziałowe. Jeżeli osiągnięcie wartości wszystkich pożądanych celów jednocześnie jest niemożliwe, szukamy rozwiązania, które zminimalizuje sumę odchyleń osiągniętych wartości od wartości pożądanych. Metoda punktu idealnego definiuje się rozwiązanie idealne, które nie musi być osiągalne. Minimalizuje się odległość np. euklidesową rozwiązania od punktu idealnego, Metody interaktywne decydent w trakcie postępowania dokonuje określenia satysfakcjonujących go poziomów kryteriów, iteracyjnie może je zmieniać.

Wielokryteriowa optymalizacja liniowa cz.2

Wielokryteriowa optymalizacja liniowa cz.2 Wielokryteriowa optymalizacja liniowa cz.2 Metody poszukiwania końcowych rozwiązań sprawnych: 1. Metoda satysfakcjonujących poziomów kryteriów dokonuje się wyboru jednego z kryteriów zadania wielokryterialnego

Bardziej szczegółowo

Metody wielokryterialne. Tadeusz Trzaskalik

Metody wielokryterialne. Tadeusz Trzaskalik Metody wielokryterialne Tadeusz Trzaskalik 4.1. Wprowadzenie Słowa kluczowe Zadanie wielokryterialne Zadanie wielokryterialne programowania liniowego Przestrzeń decyzyjna Zbiór rozwiązań za dopuszczalnych

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE

BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE DR ADAM SOJDA Czasem istnieje wiele kryteriów oceny. Kupno samochodu: cena prędkość maksymalna spalanie kolor typ nadwozia bagażnik najniższa najwyższa najniższe {czarny*, czerwony, } {sedan, coupe, SUV,

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1]

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1] D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1] Co to są badania operacyjne? Termin "badanie operacji" (Operations' Research) powstał podczas II wojny światowej i przetrwał do dzisiaj. W terminologii

Bardziej szczegółowo

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego: Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te

Bardziej szczegółowo

Analiza wielokryterialna wstęp do zagadnienia

Analiza wielokryterialna wstęp do zagadnienia Organizacja, przebieg i zarządzanie inwestycją budowlaną Analiza wielokryterialna wstęp do zagadnienia dr hab. Mieczysław Połoński prof. SGGW 1 Wprowadzenie Jednym z podstawowych, a równocześnie najważniejszym

Bardziej szczegółowo

Analiza wielokryterialna

Analiza wielokryterialna Analiza wielokryterialna dr hab. inż. Krzysztof Patan, prof. PWSZ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa w Głogowie k.patan@issi.uz.zgora.pl Wprowadzenie Wielokryterialny wybór wariantu

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Definicja problemu programowania matematycznego

Definicja problemu programowania matematycznego Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i

Bardziej szczegółowo

Optymalizacja wielokryterialna

Optymalizacja wielokryterialna Optymalizacja wielokryterialna Optymalizacja wielokryterialna Dział badań operacyjnych zajmujący się wyznaczaniem optymalnej decyzji w przypadku, gdy występuje więcej niż jedno kryterium Problem wielokryterialny

Bardziej szczegółowo

Teoretyczne podstawy programowania liniowego

Teoretyczne podstawy programowania liniowego Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i

Bardziej szczegółowo

1 Przykładowe klasy zagadnień liniowych

1 Przykładowe klasy zagadnień liniowych & " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych - wykład 2 i 3

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.

Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody bezgradientowe optymalizacji bez ograniczeń Materiały pomocnicze do ćwiczeń

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ

Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ 1 Iwona Konarzewska Programowanie celowe - wprowadzenie Katedra Badań Operacyjnych UŁ 2 Programowanie celowe W praktycznych sytuacjach podejmowania decyzji często występuje kilka celów. Problem pojawia

Bardziej szczegółowo

Programowanie liniowe. Tadeusz Trzaskalik

Programowanie liniowe. Tadeusz Trzaskalik Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków

Bardziej szczegółowo

Standardowe zadanie programowania liniowego. Gliwice 1

Standardowe zadanie programowania liniowego. Gliwice 1 Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce

Bardziej szczegółowo

Algorytmy ewolucyjne

Algorytmy ewolucyjne Algorytmy ewolucyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Problemy świata rzeczywistego często wymagają

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Metody ilościowe w badaniach ekonomicznych

Metody ilościowe w badaniach ekonomicznych prof. dr hab. Tadeusz Trzaskalik dr hab. Maciej Nowak, prof. UE Wybór portfela projektów z wykorzystaniem wielokryterialnego programowania dynamicznego Metody ilościowe w badaniach ekonomicznych 19-06-2017

Bardziej szczegółowo

TOZ -Techniki optymalizacji w zarządzaniu

TOZ -Techniki optymalizacji w zarządzaniu TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy

Bardziej szczegółowo

budowlanymi - WAP Aleksandra Radziejowska

budowlanymi - WAP Aleksandra Radziejowska budowlanymi - WAP Aleksandra Radziejowska Co to jest optymalizacja wielokryterialna? ustalenie kryterium poszukiwania i oceny optymalnego. Co to jest optymalizacja wielokryterialna? pod zakup maszyny budowlanej

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar

Bardziej szczegółowo

14. Przestrzenie liniowe

14. Przestrzenie liniowe 14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego część III Analiza rozwiązania uzyskanego metodą simpleksową

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Ćwiczenia 2 Programowanie liniowe Metoda geometryczna Plan zajęć Programowanie liniowe metoda geometryczna Przykład 1 Zbiór rozwiązań dopuszczalnych Zamknięty zbiór rozwiązań dopuszczalnych

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp

Bardziej szczegółowo

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną binarną są określane mianem zadania programowania binarnego. W stosunku do dyskretnych modeli decyzyjnych stosuje się odrębną klasę metod ich rozwiązywania. W dalszych częściach niniejszego rozdziału zostaną

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10

Bardziej szczegółowo

PROGRAMOWANIE WIELOKRYTERIALNE (CELOWE)

PROGRAMOWANIE WIELOKRYTERIALNE (CELOWE) PROGRAMOWANIE WIELOKRYTERIALNE (CELOWE) Przykład 14. Zakład zamierza rozpocząć produkcję wyrobów W 1 i W 2. Wśród środków produkcyjnych, które zostaną użyte w produkcji dwa są limitowane. Limity te wynoszą:

Bardziej szczegółowo

Optymalizacja. doc. dr inż. Tadeusz Zieliński r. ak. 2013/14. Metody komputerowe w inżynierii komunikacyjnej. ograniczenie kosztów budowy.

Optymalizacja. doc. dr inż. Tadeusz Zieliński r. ak. 2013/14. Metody komputerowe w inżynierii komunikacyjnej. ograniczenie kosztów budowy. koszty optimum ograniczenie kosztów budowy Metody komputerowe w inżynierii komunikacyjnej Optymalizacja koszty całkowite koszty budowy koszty eksploatacji zła jakość rozwiązania dobra doc. dr inż. Tadeusz

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 1 (Materiały)

Badania Operacyjne Ćwiczenia nr 1 (Materiały) Wprowadzenie Badania operacyjne (BO) to stosunkowo młoda dyscyplina naukowa, która powstała w czasie II Wojny Światowej, w związku z utworzeniem przy niektórych sztabach sił zbrojnych specjalnych grup

Bardziej szczegółowo

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2 Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

MODELOWANIE PREFERENCJI UŻYTKOWNIKA W SYSTEMIE WSPOMAGANIA DECYZJI

MODELOWANIE PREFERENCJI UŻYTKOWNIKA W SYSTEMIE WSPOMAGANIA DECYZJI Scientific Bulletin of Che lm Section of Mathematics and Computer Science No. 1/2008 MODELOWANIE PREFERENCJI UŻYTKOWNIKA W SYSTEMIE WSPOMAGANIA DECYZJI ANDRZEJ ŁODZIŃSKI Wydział Zastosowań Informatyki

Bardziej szczegółowo

Microsoft EXCEL SOLVER

Microsoft EXCEL SOLVER Microsoft EXCEL SOLVER 1. Programowanie liniowe z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Programowanie wielocelowe lub wielokryterialne

Programowanie wielocelowe lub wielokryterialne Programowanie wielocelowe lub wieloryterialne Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

WYKŁAD 9 METODY ZMIENNEJ METRYKI

WYKŁAD 9 METODY ZMIENNEJ METRYKI WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki

Bardziej szczegółowo

Excel - użycie dodatku Solver

Excel - użycie dodatku Solver PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym

Bardziej szczegółowo

Programowanie wielocelowe lub wielokryterialne

Programowanie wielocelowe lub wielokryterialne Programowanie wielocelowe lub wieloryterialne Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe.

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

PROGRAMOWANIE NIELINIOWE

PROGRAMOWANIE NIELINIOWE PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 2 (Materiały)

Badania Operacyjne Ćwiczenia nr 2 (Materiały) Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Zbiory wypukłe i stożki

Zbiory wypukłe i stożki Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0

METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 cx MAX Ax < b x > 0 Postać standardowa (kanoniczna): z = 5 x 1 + 6x 2 + 0x 3 + 0x 4 MAX

Bardziej szczegółowo

OCENA ZAAWANSOWANIA TECHNICZNEGO INFRASTRUK- TURY SIECIOWEJ OBSZARÓW SPÓŁKI DYSTRYBUCYJNEJ

OCENA ZAAWANSOWANIA TECHNICZNEGO INFRASTRUK- TURY SIECIOWEJ OBSZARÓW SPÓŁKI DYSTRYBUCYJNEJ Barbara KASZOWSKA, Andrzej WŁÓCZYK Politechnika Opolska OCENA ZAAWANSOWANIA TECHNICZNEGO INFRASTRUK- TURY SIECIOWEJ OBSZARÓW SPÓŁKI DYSTRYBUCYJNEJ Przedmiotem oceny jest zaawansowanie techniczne obszarów

Bardziej szczegółowo

Programowanie matematyczne

Programowanie matematyczne dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH

OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza Wydział Zarządzania Katedra Metod Ilościowych OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH Prowadzący: dr Tomasz Pisula e-mail: tpisula@prz.edu.pl Treści kształcenia:

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

OPTYMALIZACJA DYSKRETNA

OPTYMALIZACJA DYSKRETNA Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji

Bardziej szczegółowo

Planowanie przedsięwzięć

Planowanie przedsięwzięć K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania

Bardziej szczegółowo

Ekstrema globalne funkcji

Ekstrema globalne funkcji SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW

WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW Uniwersytet Ekonomiczny we Wrocławiu WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW Wprowadzenie Wrażliwość wyników analizy wielokryterialnej na zmiany wag kryteriów, przy

Bardziej szczegółowo

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np. Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

1-2. Formułowanie zadań decyzyjnych. Metoda geometryczna

1-2. Formułowanie zadań decyzyjnych. Metoda geometryczna -. Formułowanie zadań decyzyjnych. Metoda geometryczna Zagadnienie wyznaczania optymalnego asortymentu produkcji Firma zamierza uruchomić produkcję dwóch wyrobów A i B. Cenę zbytu oszacowano na zł/kg dla

Bardziej szczegółowo