(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:
|
|
- Bernard Domański
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej macierzy A o dwóch wierszach i trzech kolumnach Oblicz [ A A T ] oraz [ A T ] A 3 2 (3) Oblicz (4) Oblicz (5) Oblicz 2 5 [ [ ] [ ] ] (6) Oblicz A A T, gdy A = [ ] (7) Oblicz B B T oraz B T B, gdy B = [ 2 3 ] 2 2 (8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego (9) Rozwi aż podany układ równań stosuj ac wzory Cramera: (0) Rozwi aż układ równań 2x + y + 2z + t = 0 x + 2y + z + 2t = 0 3x 2y + z 2t = 0 x + 2y + z + t = x + 2y + z = 2x + y + z = x + y + 2z = stosuj ac wzory Cramera [ ] [ ] [ ] 4 5 (3): (4): (5): (6): A A T = [ 30 ] (7): B B T = [ 3 ] [ ] 4 6, B T B = (9): x = y = z = (0): x = 0, y =, z = 0, t = [3III] [] Oblicz pole trójkąta o wierzchołkach (3, 2, 4), (5, 2, 5), (4, 3, 6) [2] Oblicz objętość czworościanu o wierzchołkach (3, 2, 4), (5, 2, 5), (4, 3, 6), (4, 4, 4) oraz oblicz długość wysokości tego czworościanu opuszczonej z dowolnego wierzchołka (tego czworościanu) [3] Czy prosta x = y = z+2 i płaszczyzna x + 2y 5z + 9 = 0 s a równoległe? 2 [4] Czy prosta x = y = z+2 i płaszczyzna 2x+4y +2z + = 0 s a prostopadłe? 2 [5] Znajdź punkty przecięcia prostej x = y = z x2 z elipsoidą + y2 + z2 = [6] Znajdź punkty przecięcia prostej = y = z z hiperboloidą x 2 + y2 z2 = 8 2
2 [7] Znajdź rzut punktu (4,, 3) na płaszczyznę x y + 2z 3 = 0 [8] Dla jakiego m płaszczyzny 2x my+z+209 = 0 oraz x+y mz 209 = 0 są prostopadłe? [9] Napisz równanie płaszczyzny przechodzącej przez punkt P (, 2, 3) i prostopadłej do prostej = y = z+6 2 [0] Napisz równanie płaszczyzny przechodzącej przez punkt P (0, 2, ) i równoległej do prostej = y = z+6 2 []: 2 4 [2]: v = 7, wysokość z (4, 4, 4) to h = [3]: tak [4]: tak [5]: (,, 0), (0, 0, 2) [6]: prosta leży na hiperboloidzie (zawiera się) [7]: (5, 0, ) [8]: m = [9]: 2x + y z = 0 [0]: x + 2y + 4z = 0 [4IV] Naszkicuj dziedzinę funkcji f(x, y) = 4 9 x 2 y 2 + ln(x 2 + y 2 ) xy 2 Naszkicuj dziedzinę funkcji f(x, y) = arc sin( x) + arc 3 sin( 2 y) y x 3 Naszkicuj dziedzinę funkcji f(x, y) = arc sin(x 2 + y 2 ) + y 2 x 4 Naszkicuj dziedzinę funkcji f(x, y) = arc sin( 4 x2 + 9 y2 ) + xy 5 Naszkicuj dziedzinę funkcji f(x, y) = xy + y + x 6 Oblicz wszystkie pochodne cząstkowe pierwszego rzędu funkcji f(x, y) = x 2 y 3 + x 7 Oblicz wszystkie pochodne cząstkowe pierwszego rzędu funkcji f(x, y) = sin(x 2 y 3 + x) 8 Oblicz wszystkie pochodne cząstkowe pierwszego rzędu funkcji f(x, y) = y sin(x 2 y 3 e 2x ) 9 Oblicz wszystkie pochodne cząstkowe pierwszego rzędu funkcji f(x, y, z, t) = x2 y+z 3 +sin z y 3 +t 4 0 Oblicz wszystkie pochodne cząstkowe pierwszego rzędu funkcji f(x, y, z, t, u, v) = 3xz + arctg(y 3 + tu 2 ) + uv+ e v +cos v 2 x y 6: f x = 2xy 3 +, f y = 3x 2 y 2 7: f x = cos(x 2 y 3 + x) (2xy 3 + ), f y = cos(x 2 y 3 + x) 3x 2 y 2 8: f x = y cos(x 2 y 3 e 2x ) (2xy 3 e 2x + 2x 2 y 3 e 2x ), f y = sin(x 2 y 3 e 2x ) + y cos(x 2 y 3 e 2x ) 3y 2 x 2 e 2x 9: f x = 2xy, f y 3 +t 4 y = x2 (y 3 +t 4 ) (x 2 y+z 3 +sin z) 3y 2, f (y 3 +t 4 ) 2 z = 3z2 +cos z, y 3 +t 4 f t = (x2 y+z 3 +sin z) 4t 3 (y 3 +t 4 ) 2 0: f x = 3z, f y = 3y 2, f +(y 3 +tu 2 ) 2 z = 3x f t = +(y 3 +tu 2 ) 2 u 2, f u = +(y 3 +tu 2 ) 2 2tu + f v = u(ev +cos v 2 ) (uv+)(e v 2v sin v 2 ) (e v +cos v 2 ) 2 v e v +cos v 2
3 [28IV] (i) Znajdź ekstrema lokalne funkcji f(x, y) = x 0 + 0x + y 8 8y + (ii) Znajdź ekstrema lokalne funkcji f(x, y) = y 7 + 7xy + x 7 (iii) Znajdź ekstrema lokalne funkcji f(x, y) = y 7 7xy + x 7 (iv) Znajdź wartość najwiȩkszą i najmniejszą funkcji f(x, y) = x 2 y 2 w zbiorze D : x 2 + y 2 00, y 8 (v) Znajdź wartość najwiȩkszą i najmniejszą funkcji f(x, y) = 3x y 3 w trójkącie o wierzchołkach (0, 0), (2, 0), (2, 2) (vi) Znajdź wartość najwiȩkszą i najmniejszą funkcji f(x, y) = x 2 y 2 w prostokącie o wierzchołkach (, ), (, 2), (, ), (, 2) (vii) Znajdź wartość największą i najmniejszą funkcji f(x, y) = x y przy warunku x 2 + y 2 = 8 dla x 0 (viii) Znajdź wartość największą i najmniejszą funkcji f(x, y) = 2x + 3y przy warunku x 2 + y 2 = 3 (ix) Znajdź wartość największą i najmniejszą funkcji f(x, y) = 4x + y przy warunku 4x 2 + y 2 = 5 (x) Znajdź wartość największą i najmniejszą funkcji f(x, y) = x + y przy warunku x 4 + y 4 = 2 (i): minimum w punkcie (, ) (ii): maksimum w punkcie (, ); w punkcie (0, 0) nie ma ekstremum (iii): minimum w (, ); w punkcie (0, 0) nie ma ekstremum (iv): wartością największą funkcji jest 28, a najmniejszą 00 (v): wartością największą funkcji jest 6, a najmniejszą 2 (vi): wartością największą funkcji jest, a najmniejszą 4 (vii): wartością największą jest 4, a najmniejszą 2 2 (viii): wartością największą jest 3, a najmniejszą 3 (ix): wartością największą jest 5, a najmniejszą 5 (x): wartością największą jest 2, a najmniejszą 2 [2V] Oblicz: [α] D 2ydxdy, gdzie D to trójkąt o wierzchołkach (0, 0), (, 0), (, ); [β] D xdxdy, gdzie D to obszar ograniczony krzywymi y = x2, y = 0; [γ] D x2 dxdy, gdzie D to obszar ograniczony krzywymi y = x 2, y = 0; [δ] D xdxdy, gdzie D to trapez o wierzchołkach (0, 0), (, 0), (0, ), (, 2); [ɛ] D ydxdy, gdzie D to obszar ograniczony krzywymi y = x, y = x; [ζ] D (x2 + y 2 )dxdy, gdzie D to koło x 2 + y 2 ; [η] D (x2 + y 2 ) dxdy, gdzie D : x 2 + y 2 4, y 0; [ϑ] D (x2 + y 2 ) dxdy, gdzie D : x 2 + y 2 4, x 0; [ι] D xdxdy, gdzie D : x2 + y 2 4; [κ] D x2 + y 2 dxdy, gdzie D : x 2 + y 2 9, y x 0, y + x 0 [α]: /3, [β]: 0, [γ]: 4/5, [δ]: 5/6, [ɛ]: /2, [ζ]: π/2, [η]: π, [ϑ]: π, [ι]: 0, [κ]: 9π/2
4 [26V] [i] Oblicz B 7xz6 dxdydz, gdzie B to pięciościan o wierzchołkach (0, 0, 0), (2, 0, 0), (2, 2, 0), (0, 0, ), (2, 0, ), (2, 2, ) [ii] Oblicz B xdxdydz, gdzie B to sześciościan o wierzchołkach (0, 0, 0), (, 0, 0), (0,, 0), (,, 0), (0, 0, ), (, 0, 2), (0,, ), (,, 2) [iii] Oblicz B 2zdxdydz, gdzie B to pięciościan o wierzchołkach (0, 0, 0), (, 0, 0), (0,, 0), (,, 0), (, 0, ), (,, ) [iv] Oblicz B 7(x2 + y 2 + z 2 ) 2 dxdydz, gdzie B : x 2 + y 2 + z 2, z 0, x 0, y 0 [v] Oblicz B (x2 + y 2 + z 2 ) dxdydz, gdzie B : x 2 + y 2 + z 2 4 [vi] Rozwiąż równanie ( + e x )e x y = + y 2 [vii] Rozwiąż równanie ( + e 2x )e x y = + y 2 [viii] Rozwiąż równanie (sin y + cos y)e x y = y [ix] Rozwiąż równanie = z warunkiem początkowym y(0) = 0 e x +x 2 +x 3 +y 2 [x] Rozwiąż równanie y = (2+sin x) y 2 z warunkiem początkowym y(0) = 8 [i]:, [ii]: 5, [iii]:, [iv]: π, [v]: 4π, [vi]: arctgy = ln( + e x ) + C, [vii]: arctgy = arctge x + C, [viii]: cos y + sin y = e x + C, [ix]: y + 3 y3 = e x + 3 x3 + 4 x4, [x]: y = 2x cos x+2 [4VI] () Rozwi aż równanie różniczkowe: y = y + x 2 y x y() = 4 z warunkiem początkowym (b) Rozwi aż równanie różniczkowe: y = ( y x )3 ( y x )2 + (c) Rozwi aż równanie różniczkowe: y = (y + 3x + 4) 2 2 (2) Rozwi aż równanie różniczkowe liniowe: y + 2xy = (x + )e x2 (3) Rozwi aż równanie różniczkowe: y (5) + 6y (4) + 0y = 0 (4) Rozwi aż równanie różniczkowe: y (4) + y = 0 (4b) Rozwi aż równanie różniczkowe: y (4) 3y 4y = 0 (4c) Rozwi aż równanie różniczkowe: y + 3y + 3y + y = 0 (4d) Rozwi aż równanie różniczkowe: y + 8y + 25y = 0 (5) Zbadaj zbieżność szeregu: n= 2 n+ n! (5b) Zbadaj zbieżność szeregu: n= 9 n n 9 (5c) Zbadaj zbieżność szeregu: n= (n+3) n n 2n (5d) Zbadaj zbieżność szeregu: n= (n+)! (n!) ( 2 ) (6) Zbadaj zbieżność szeregu: n= n 2 +n+2 n πn 2 (7) Stosując kryterium Leibniza badaj zbieżność szeregu: n= ( ) n+ n ln n (8) Stosując kryterium całkowe zbadaj zbieżność szeregu: n= n ln n (9) Rozwiń w szereg potȩgowy (do wyrazu z x 8 ) funkcję: f(x) = cos x (9b) Rozwiń w szereg potȩgowy (do wyrazu z x 5 ) funkcję: f(x) = e x (9c) Rozwiń w szereg potȩgowy (do wyrazu z x 5 ) funkcję: f(x) = ln( x) (0) Rozwiń w szereg potȩgowy funkcję: f(x) = e 3x
5 (): y = x(ln x + 2) 2, (b): ( y 2 x )2 + ln y = ln x + C oraz y = 0, x (c): arctg(y + 3x + 4) = x + C, (2): y = e x2 ( 2 x2 + x + C), (3): y = C + C 2 x + C 3 x 3 + C 4 e 3x cos 2x + C 5 e 3x sin 2x, (4): y = C + C 2 x + C 3 cos x + C 4 sin x, (4b): y = C e 2x + C 2 e 2x + C 3 cos x + C 4 sin x, (4c): y = C e x + C 2 xe x + C 3 x 2 e x, (4d): y = C e 4x cos 3x + C 2 e 4x sin 3x, (5): zbieżny, (5b): rozbieżny, (5c): zbieżny, (5d): zbieżny, (6): zbieżny, (7): zbieżny, (8): rozbieżny, (9): f(x) = cos x = x2 x4 + x6 x8 +, 2! 4! 6! 8! (9b): f(x) = e x = x + x2 x3 + x4 x5 +,! 2! 3! 4! 5! (9c): f(x) = ln( x) = x x2 x3 x4 x5 +, (0): f(x) = e 3x = + 3x + 32 x x 3 + = 3 n! 2! 3! n= n! xn
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,
FUNKCJE WIELU ZMIENNYCH
FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin
Analiza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem
Analiza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),
ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
Geometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU
Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a
Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań
Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań Jacek Cichoń, WPPT PWr, 05/6 Pochodne i całki funkcji jednej zmiennej Zadanie Oblicz pierwszą i drugą pochodną następujących funkcji. f(x)
Analiza Matematyczna MAEW101 MAP1067
Analiza Matematyczna MAEW MAP67 Wydział Elektroniki Przykłady do Listy Zadań nr 4 Funkcje wielu zmiennych. Pochodne cząstkowe Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania 4.: Wyznaczyć
Rachunek różniczkowy funkcji wielu zmiennych
Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych
Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4.
Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Granice pochodne funkcji i ich zastosowania 0 4 Liczby zespolone 6 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich
Spis treści Liczby zespolone Macierze wyznaczniki równania liniowe 4 Geometria analityczna 9 4 Granice pochodne funkcji i ich zastosowania 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7 Pochodne
Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania
Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie
Opracowanie: mgr Jerzy Pietraszko
Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)
1 Układy równań liniowych
1 Układy równań liniowych 1. Rozwiązać układy równań liniowych metodą eliminacji Gaussa x + 2y z = 4 y 2z = 4x y + z = 0 x y + z = 0 2y + 5z = 1 6x 4y z = 1 x + y t = 1 x + y z = 0 y + z + t = 1 x + +
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
ANALIZA MATEMATYCZNA
ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej
x y = 2z. + 2y f(x, y) = ln(x3y ) y x
. Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,). Zad.. Wykazać, że każda funkcja z(x, y) = x f ( ) y x, gdzie f jest funkcją różniczkowalną jednej zmiennej,
x y = 2z, + 2y f(x, y) = ln(x3y ) y x
. Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,), Zad.. Obliczyć przybliżoną wartość wyrażenia, 8, 5, Zad. 3. Wykazać, że każda funkcja z(x, y) = x f
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =
Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć
ANALIZA MATEMATYCZNA 2.2B (2017/18)
ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać
Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n
V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n
Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Przestrzenie liniowe Granice, pochodne funkcji i ich
Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Przestrzenie liniowe 0 4 Granice pochodne funkcji i ich zastosowania 5 Liczby zespolone 8 6 Wielomiany 7 Całki nieoznaczone 8 Zastosowania
Rachunek różniczkowy i całkowy 2016/17
Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =
Zestaw zadań z Analizy Matematycznej II 18/19. Konwencja: pierwsze litery alfabetu są parametrami, do tego zazwyczaj dodatnimi
Literatura pomocnicza Zestaw zadań z Analizy Matematycznej II 8/9 G.M. Fichtenholz - Rachunek różniczkowy i całkowy. B. Demidowicz - Zbiór zadań z analizy matematycznej. T 2,3 Krysicki, Włodarski - Analiza
Analiza Matematyczna Ćwiczenia
Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności
Spis treści. Spis treści 2
Spis treści Spis treści Algebra. Liczby zespolone.................................................. Liczby zespolone - odpowiedzi.......................................... 5. Macierze......................................................
Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
ANALIZA MATEMATYCZNA 2
ANALIZA MATEMATYCZNA Opracowanie Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Kolokwia i egzaminy Wydanie dziewiąte powiększone GiS Oficyna Wydawnicza GiS Wrocław Projekt okładki: IMPRESJA Studio
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
Liczby zespolone. Zadanie 1. Oblicz: a) ( 3+i)( 1 3i) b) (3+i)2 (4i+1) i
Zadanie. Oblicz: a) ( 3+i)( 3i) +i b) (3+i)2 (4i+) i (2+i) 3 Liczby zespolone Zadanie 2. Zaznacz na płaszczyźnie Gaussa zbiór: a) {z : z > 3} b) {z : z i } c) {z : 4 z + + i < 9} Zadanie 3. Wykaż, że suma
Zestaw zadań przygotowujących do egzaminu z Matematyki 1
Uniwersytet Ekonomiczny w Katowicach Wydział Finansów i Ubezpieczeń, Kierunek: Finanse i Zarządzanie w Ochronie Zdrowia Zestaw zadań przygotowujących do egzaminu z Matematyki 1 Powtórka materiału przed
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,
postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n
Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:
MATEMATYKA II. znaleźć f(g(x)) i g(f(x)).
MATEMATYKA II PAWEŁ ZAPAŁOWSKI Równania i nierówności Zadanie Wyznaczyć dziedziny i wzory dla f f, f g, g f, g g, gdzie () f() =, g() =, () f() = 3 + 4, g() = Zadanie Dla f() = 3 5 i g() = 8 znaleźć f(g()),
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
Funkcje dwóch zmiennych
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
Analiza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3
WYMAGANIA WSTĘPNE Z MATEMATYKI
WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Egzamin z matematyki dla I roku Biochemii i Biotechnologii
Egzamin z matematyki dla I roku Biochemii i Biotechnologii 9..04 Zadanie (0 punktów). Rozwiązać układ + 3y z = 3 5y + z = a 5 ay + 3z = 3 dla a = oraz dla a = 4. Zadanie (0 punktów). Wyznaczyć dziedzinę,
Zadania z analizy matematycznej - sem. II Funkcje, ich granice i ciągłość
Zadania z analizy matematycznej - sem II Funkcje ich granice i ciągłość Zadanie 1 Wyznaczyć i naszkicować dziedziny naturalne podanych funkcji: a f y = 2 y 3 25 2 +y 2 16 b g y = ln1 2 y 2 c h y = ln 2
Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu
Wydział Matematyki Stosowanej Zestaw zadań nr 13 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 17 maja 2018r. Równania różniczkowe zwyczajne 1 Rozwiązywanie
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Jarosław Wróblewski Matematyka Elementarna, zima 2011/12
168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:
Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany
2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
ALGEBRA I GEOMETRIA ANALITYCZNA
ALGEBRA I GEOMETRIA ANALITYCZNA Opracowanie Marian Gewert Zbigniew Skoczylas ALGEBRA I GEOMETRIA ANALITYCZNA Kolokwia i egzaminy Wydanie piętnaste zmienione GiS Oficyna Wydawnicza GiS Wrocław 2014 Marian
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008
Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5
Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.
Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y
Analiza matematyczna 1 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 4 4 Granice funkcji, ciągłość 5 5 Rachunek różniczkowy
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą
ANALIZA MATEMATYCZNA 2
ANALIZA MATEMATYCZNA Lista zadań 3/4 Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Lista pierwsza Zadanie. Korzystając z definicji zbadać zbieżność podanych całek niewłaściwych pierwszego rodzaju:
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Przestrzenie liniowe
ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przestrzenie liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się w podręczniku
1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)
. Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny
x y = 2z. + 2y, z 2y df
. Funkcje wielu zmiennych i funkcje uwikłane Zadanie.. Obliczyć przybliżoną wartość wyrażenia (, ) (,). Korzystamy z przybliżenia f, y) f, y ) + x x, y ) + y y, y ), gdzie x = x x a y = y y. Przybliżenie
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
Analiza matematyczna 1 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki Spis treści I Elementy logiki, zbiory, funkcje 3 Zadania................................ 3....................... 4 II Funkcje trygonometryczne
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
Uniwersytet Warmińsko-Mazurski w Olsztynie
Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.
1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.
Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań
Geometria analityczna
Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Całka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
ANALIZA MATEMATYCZNA 1
ANALIZA MATEMATYCZNA 1 Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA 1 Kolokwia i egzaminy Wydanie siedemnaste zmienione GiS Oficyna Wydawnicza GiS Wrocław 2018 Marian Gewert Wydział Matematyki
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
ANALIZA MATEMATYCZNA 1
ANALIZA MATEMATYCZNA Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Kolokwia i egzaminy Wydanie szesnaste uzupełnione GiS Oficyna Wydawnicza GiS Wrocław 204 Marian Gewert Instytut Matematyki i Informatyki
Funkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1
KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego
Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.
Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.