Niestacjonarne zmienne czasowe własności i testowanie
|
|
- Marta Markowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Maeriał dla sudeów Niesacjoare ziee czasowe własości i esowaie (sudiu przypadku) Część : Przypoieie eorii Nazwa przediou: ekooeria fiasowa I (04), aaliza szeregów czasowych i progozowaie (1301); Kieruek sudiów: Fiase i rachukowość, Meody ilościowe w ekooii i sysey iforacyje Sudia I sopia/sudia II sopia Opracowała: dr hab. Ewa M. Syczewska, Isyu Ekooerii, Kolegiu Aaliz Ekooiczych SGH Warszawa, 011
2 SPza Maeriał dla sudeów przypoieie eorii Maeriał dla sudeów przypoieie eorii Niesacjoarość szeregów czasowych Jedy z ajprosszych przykładów procesu iesacjoarego jes proces błądzeia losowego (auoregresyjy sopia 1, o paraerze przy zieej opóźioej rówy 1). Jego wykres przypoia zachowaie ideksów giełdowych lub kursów waluowych, są oe bowie rówież zieyi iesacjoaryi. Posać rówaia opisującego proces błądzeia losowego asuęła ideę esowaia iesacjoarości Rys. 1. Przykład zieej iesacjoarej oowaia ideksu SP500, źródło: sooq.pl Najprosszy ese iesacjoarości, ożliwy do przeprowadzeia awe w arkuszu kalkulacyjy, pod warukie posłużeia się odpowiedii ablicai warości kryyczych, jes es Dickeya-Fullera. Hipoeza zerowa zakłada iesacjoarość szeregu, hipoeza aleraywa jego sacjoarość. Sposób przeprowadzeia esu polega a oszacowaiu regresji zieej względe zieej opóźioej i porówaiu obliczoej saysyki z warościai kryyczyi z odpowiedich ablic. Mio iż saysyka esu Dickeya-Fullera jes rówa ilorazowi ocey paraeru przez błąd szacuku, ależy paięać, że jej rozkład jes ieypowy, asyeryczy; warości kryycze (p. dla poziou isoości 0,05) są ujee. Trzeba sięgać do odpowiedich ablic warości kryyczych. Iy ese jes es Kwiakowskiego-Phillipsa-Schida-Shia (w skrócie KPSS), kóry a odwroy układ hipoez: hipoeza zerowa zakłada sacjoarość szeregu, aleraywa jego iesacjoarość. R.Egle i C.W.J. Grager wprowadzili defiicję zieej ziegrowaej oraz koiegracji. Ziea jes ziegrowaa, jeśli jes iesacjoara, ale oża ją sprowadzić do zieej sacjoarej poprzez wyzaczaie jej przyrosów. Sopień (lub rząd) iegracji o liczba przyrosów porzebych do uzyskaia sacjoarości. Ziea jes ziegrowaa rzędu 1, jeśli jes iesacjoara ale jej pierwsze przyrosy są sacjoare. Przykłade oże być dochód do dyspozycji gospodarsw doowych, dla kórego dae dosępe są w pliku greee5_1.gd dołączoy do grel: sa dochód jes iesacjoary, bo podlega redowi wzrosoweu. Naoias jego przyrosy ają iej więcej sałą warość oczekiwaą.
3 d_realdpi realdpi Maeriał dla sudeów przypoieie eorii Rys.. Wykres dochodu do dyspozycji gospodarsw doowych, dae z podręczika Greee a dołączoe do pakieu grel Rys. 3. Wykres przyrosów dochodu do dyspozycji gospodarsw doowych. Jeśli sprawdziy warości współczyików korelacji zieej z jej warościai opóźioyi o 1,,3, id., o dla zieej iesacjoarej okaże się, że korelacja jes sila awe dla zaczej liczby opóźień. A jeśli ziea jes sacjoara, współczyiki korelacji aleją w iarę wzrosu liczby opóźień. Koiegracja zieych iesacjoarych obiżeie sopia iegracji dzięki dobraiu odpowiediej kobiacji liiowej zieych Jeśli chcey zbudować sesowy jedorówaiowy odel ekooeryczy, a ziee objaśiaa i objaśiające są iesacjoare, ziegrowae, o oża poszukać zw. relacji koiegrującej iędzy ii. Jes o dla zieych ziegrowaych pierwszego sopia aka kobiacja liiowa zieych iesacjoarych, kóra jes sacjoara. Jeśli sopień 3
4 Maeriał dla sudeów przypoieie eorii iegracji zieych jes wyższy, za skoiegrowae uzajey ziee, dla kórych isieje kobiacja liiowa, kóra a iższy sopień iegracji iż poszczególe ziee. Relacja koiegrująca odpowiada rówowadze dyaiczej iędzy badayi zieyi iesacjoaryi. Najprossza eoda badaia koiegracji polega a oszacowaiu regresji zieej y względe pozosałych zieych, i, i = 1,,,k, wyzaczeiu resz regresji i sprawdzeiu, czy są sacjoare (jedy z wyieioych esów ADF lub KPSS). Jeśli ak, ozacza o że wekor MNK oce paraerów jes wekore koiegrujący. Jeśli ie, e wekor ie jes wekore koiegrujący, ale ziee ogą być skoiegrowae ogą isieć ie wekory koiegrujące. Meodą uożliwiającą ich zalezieie jes eoda Johasea. Wyzacza oa bazę przesrzei wekorów koiegrujących dla daego zesawu zieych. Wysępowaie relacji koiegrującej jes rówoważe isieiu zapisu odelu dla badaych zieych w posaci odelu z echaize koreky błędu (ECM, error correcio echais), łączącego opis króko- i długookresowych zależości zieych. Ujęcie forale defiicji i esów Przypoiy eraz porzebe pojęcia i wzory. Zakładay, że szereg czasowy obserwacji zieej jes realizacją pewego procesu sochasyczego. Proces sochasyczy jes ciągie zieych losowych, ideksowaych idekse. Poieważ większość zieych ekooiczych jes obserwowaa w odrębych oeach więc zajiey się u procesai z czase dyskrey. 1. Defiicja procesu sacjoarego według oeów do drugiego rzędu włączie: Proces jes sacjoary (według oeów do rzędu drugiego włączie), jeśli są spełioe jedocześie rzy waruki: a) Warość oczekiwaa procesu jes sała w czasie: E( X ) cos b) Wariacja procesu jes sała w czasie: D ( X ) cos c) Kowariacja zieych pochodzących z różych okresów zależy ylko od odległości iędzy oeai obserwacji i jes iezależa od czasu: Cov ( X, X s ) s Niespełieie kóregoś lub wszyskich waruków ozacza iesacjoarość procesu sochasyczego (a zae szeregu czasowego obserwacji zieej). Zachowaie procesów, kóre ie są sacjoare, oże być bardzo zróżicowae: Przykład 1: Dochód do dyspozycji gospodarsw doowych oraz kosupcja zagregowaa są zieyi iesacjoaryi ze względu a wysępowaie redu rosącego. Nie spełiają więc pierwszego waruku. Przykład : Składik losowy regresji liiowej, kórego wariacja ie jes sała w czasie, a sałą warość oczekiwaą (rówą zeru), czyli spełia pierwszy waruek, ale a wariację zieą w czasie, czyli ie spełia drugiego waruku. 4
5 Maeriał dla sudeów przypoieie eorii. Charakerysyki procesu sacjoarego 1 : a) Średia z próby dla procesu sacjoarego: b) Kowariacja procesu: C c) Fukcja auokorelacji: R C ( )( ) 1 C 0 Fukcja auokorelacji i auokorelacji cząskowej z próby: Powiedzieliśy wcześiej, że zachowaie jakościowe auokorelacji szeregu sacjoarego i iesacjoarego jes róże fukcja auokorelacji zieej sacjoarej dość szybko wygasa. Niezaa warość oczekiwaa i wariacja sacjoarego procesu oże być szacowaa a podsawie wzorów:. Ocea współczyika korelacji zieych jes rówa, k=1,, ; T liczba obserwacji. Współczyiki korelacji z próby worzą fukcję auokorelacji z próby, ACF (ag. auocorrelaio fucio). Współczyik korelacji większy co do odułu od jes saysyczie isoy. Współczyiki korelacji cząskowej ierzy korelację zieych bez wpływu korelacji zieych pośredich. Wyzaczay jes a podsawie regresji zieej względe jej opóźień do rzędu k włączie, ocea paraeru przy zieej opóźioej o k jes rówa oceie współczyika korelacji cząskowej rzędu k. Współczyiki korelacji cząskowej worzą fukcję auokorelacji cząskowej z próby (ag. parial auocorrelaio fucio, PACF). 3. Tes Dickeya-Fullera Hipoeza zerowa zakłada, że szereg jes iesacjoary z powodu wysępowaia pierwiaska jedoskowego, hipoeza aleraywa zakłada sacjoarość szeregu. Sposób przeprowadzeia esu jes asępujący. A) Szacujey regresję posaci y y y u, (1) 1 j j Wyzaczay warość saysyki esu ADF = / s, gdzie ocea paraeru, s błąd szacuku paraeru. Rozkład saysyki jes iesadardowy, asyeryczy i przesuięy w lewo ależy sięgąć do odpowiedich ablic warości kryyczych. Jeśli obliczoa warość saysyki jes większa iż warość kryycza, ie a podsaw do odrzuceia hipoezy zerowej szereg jes iesacjoary. 1 T. Kufel, Ekooeria. Rozwiązywaie probleów z wykorzysaie prograu GRETL, PWN, Warszawa 004, sr Warości kryycze p. w książce Nowa ekooeria Charezy i Deadaa, z kórej zaczerpięo przykładowy frage ablic. Warości kryycze wbudowae w pakieach ekooeryczych są opare a ablicach warości asypoyczych Davidsoa i MacKioa. 5
6 Maeriał dla sudeów przypoieie eorii Jeśli obliczoa warość saysyki ADF jes iejsza iż warość kryycza, hipoezę zerową odrzucay a rzecz sacjoarości zieej. Moża rówież zasosować wariay regresji: z wyraze woly y y y u, () 1 j j Oraz z wyraze woly i rede: y y y u, (3) 1 j j Tesowaie przebiega podobie, rzeba jeszcze sprawdzić isoość wyrazu wolego (ese Sudea) lub łączą isoość obu paraerów dla redu (ese F). Liczba opóźioych przyrosów zieej w każdej z ych regresji jes ak dobraa, aby składiki losowe ie wykazywały auokorelacji. B) Jeśli ie a podsaw do odrzuceia hipoezy o iesacjoarości zieej, przechodziy do esowaia iesacjoarości przyrosów. Odpowiedia regresja jes aalogicza do (1), orzyujey ją po podsawieiu przyrosów zieej zaias y, więc a posać: y y y u, (1a) 1 j j Na ogół obliczoa warość saysyki esu jes iejsza iż warość kryycza, zae hipoezę o iesacjoarości przyrosów ależy odrzucić. Jeżeli ak jes, o zgodie z defiicją iegracji zieych (por. arykuł Egle a i Gragera) ziea jes iesacjoara, ale jej pierwsze przyrosy są sacjoare, więc ówiy, że ziea jes ziegrowaa sopia 1, co ozaczay y ~ I(1) 4. Tes Kwiakowskiego, Phillipsa, Schida, Shia. Tes zway w skrócie ese KPSS a jako hipoezę zerową sacjoarość szeregu, jako hipoezę aleraywą jego iesacjoarość. 5. Meoda Egle a-gragera badaia koiegracji. Pierwsza, ajprossza eoda esowaia koiegracji zosała opisaa przez Egle'a i Gragera (zob. arykuł w Ecooerice z1987 roku). Załóży, że ziee Y, X 1, X,...,X k są wszyskie ziegrowae sopia 1 i podejrzeway, że ogą być skoiegrowae. Idea eody Egle'a-Gragera polega a y, żeby 1. oszacować eodą ajiejszych kwadraów rówaie regresji zieej Y względe zieych X i, i=1,,...,k; po oszacowaiu orzyujey: y k k e. do resz e ej regresji zasosować es Dickeya Fullera (lub es ADF): 6
7 Maeriał dla sudeów przypoieie eorii e e e u, (4) 1 j j Sposób obliczaia saysyki esu aalogiczy jak dla (1). Hipoeza zerowa: reszy e są iesacjoare, ozacza, że wekor [1, -bea] orzyay a podsawie oce paraerów regresji, ie jes wekore koiegrujący dla zieych Y, X 1, X,...,X k. Hipoeza aleraywa: reszy e są sacjoare, ozacza, że ziee Y, X 1, X,...,X k są skoiegrowae, a wekor [1, -bea] jes dla ich wekore koiegrujący. Zaleą eody Egle'a-Gragera jes jej prosoa. Wadą jes o, że a) ie ay pewości, że oszacowaia paraerów regresji rzeczywiście wyzaczą a wekor koiegrujący dla badaych zieych, b) awe jeśli ak się saie, orzyay wekor koiegrujący oże być jedy z ożliwych wekorów (z. będzie eleee przesrzei koiegrującej, czyli podprzesrzei liiowej geerowaej przez wszyskie ożliwe wekory koiegrujące). Nie zay liczby wszyskich akich liiowo iezależych wekorów koiegrujących dla badaych zieych. Lepsza jes eoda Johasea. Po pierwsze, pozwala a przeesowaie liczby (liiowo iezależych) wekorów koiegrujących dla daego zesawu zieych, po drugie, jeśli wekory koiegrujące isieją, w eodzie Johasea orzyujey wszyskie akie wekory. 6. Model z echaize koreky błędu Jeśli ziee y, y, i, i 1,,..., k są ziegrowae sopia 1 i skoiegrowae, o oża dla ich zbudować odel łączący opis zależości króko- i długookresowych: zw. odel z echaize koreky błędu (ECM Error Correcio Mechais), posaci: y c c... ck k ( y... k k ) u (5) , 1, 1, 1 Gdzie wyrażeie w awiasie (ozaczae jako ECM) jes odchyleie układu od ścieżki rówowagi w poprzedi okresie. Jeśli relacja rówowagi jes sabila, z. układ wyrącoy z rówowagi powraca a ę ścieżkę, o po oszacowaiu regresji (5) eodą ajiejszych kwadraów powiiśy orzyać oceę paraeru ze zakie (ius). 7
, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x
Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )
Statystyka Inżynierska
aysyka Iżyierska dr hab. iż. Jacek Tarasik AG WFiI 4 Wykład 5 TETOWANIE IPOTEZ TATYTYCZNYC ipoezy saysycze ipoezą saysyczą azywamy każde przypszczeie doyczące iezaego rozkład o prawdziwości lb fałszywości
t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody
ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji
Niestacjonarne zmienne czasowe własności i testowanie
Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:
EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą
EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/
Stanisław Cichocki Natalia Nehrebecka. Wykład 4
Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne
Stanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje
ROZDZIAŁ 12 ANALIZA WSPÓŁZALEŻNOŚCI KURSÓW AKCJI SPÓŁEK BRANŻY CUKROWNICZEJ
leksadra Dudek ROZDZIŁ NLIZ WSPÓŁZLEŻNOŚCI KURSÓW KCJI SPÓŁEK BRNŻY CUKROWNICZEJ Wprowadzeie W związku z rosącą rolą ryków fiasowych jako miejsca, gdzie poprzez działaia spekulacyje dąży się do osiągięcia
D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.
D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań
Ćwiczenie 3. H 1 : p p 0 H 3 : p > p 0. b) dla małej próby statystykę testową oblicza się za pomocą wzoru:
Ćwiczeie ERYFIKACJA IPOTEZ Tesowaie hipoez: Zakładamy że wszyskie hipoezy będą weryfikowae a poziomie isoości α.. eryfikacja hipoezy o wskaźik srkry jedej zmieej losowej dyskreej Rozparjemy próbkę elemeową
Sygnały pojęcie i klasyfikacja, metody opisu.
Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić
Stanisław Cichocki Natalia Nehrebecka. Wykład 5
Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Stanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 2 1. Zmienne sacjonarne
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
Statystyka Wzory I. Analiza struktury
Uiwersytet Ekooiczy w Katowicach Wzory I. Aaliza struktury 1. Miary tedecji cetralej (średie, przecięte Średia arytetycza Dla sz. ważoego Dla sz. ważoego dla z. ciągłej Dla szeregu wyliczającego: dla zieej
MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń
MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
SZACOWANIE KOSZTÓW PROCESU MONTAŻU NA PRZYKŁADZIE WYBRANEGO TYPOSZEREGU WYROBÓW
SZACOWANIE KOSZTÓW PROCESU MONTAŻU NA PRZYKŁADZIE WYBRANEGO TYPOSZEREGU WYROBÓW Pior CHWASTYK, Domiika BINIASZ, Mariusz KOŁOSOWSKI Sreszczeie: W pracy przedsawioo meodę oszacowaie koszów procesu moażu
21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny.
OCENA POPYTU POPYT POJĘCIA WSTĘPNE Defiicja: Pop o ilość dobra, jaką abwc goowi są zakupić prz różch poziomach ce. Deermia popu: (a) Cea daego dobra (b) Ilość i ce dóbr subsucjch (zw. kokurecjch) (c) Ilość
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
ANALIZA PRZYCZYNOWOŚCI W ZAKRESIE ZALEŻNOŚCI NIELINIOWYCH. IMPLIKACJE FINANSOWE
Wiold Orzeszko Magdalea Osińska Uiwersye Mikołaja Koperika w Toruiu ANALIA PRCNOWOŚCI W AKRSI ALŻNOŚCI NILINIOWCH. IMPLIKACJ FINANSOW WSTĘP Przyczyowość w sesie Gragera jes jedym z kluczowych pojęć ekoomeryczej
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Metody oceny efektywności projektów inwestycyjnych
Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie
Prawdopodobieństwo i statystyka r.
Prawdopodobieństwo i statystyka.0.00 r. Zadaie Rozważy astępującą, uproszczoą wersję gry w,,woję. Talia składa się z 5 kart. Dobrze potasowae karty rozdajey dwó graczo, każdeu po 6 i układay w dwie kupki.
Integracja zmiennych Zmienna y
Inegracja zmiennych Zmienna y jes zinegrowana rzędu d jeśli jej różnice rzędu d są sacjonarne. Zapisujemy o y ~ I ( d ). Przyjmuje się również, że zmienna sacjonarna y (jako że nie rzeba jej różnicować,
Ekonometryczne modele nieliniowe
Ekonoeryczne odele nieliniowe Wykład 4 NMNK, MNW, eody radienowe Lieraura W. Greene Econoeric Analysis, rozdz. 7. sr. -4 J. Hailon 994 ie Series Analysis, sr. 33 5 Chun-Min Kuan 7 Inroducion o Econoeric
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Gretl konstruowanie pętli Symulacje Monte Carlo (MC)
Grel kosruowaie pęli Symulacje Moe Carlo (MC) W Grelu, aby przyspieszyć pracę, wykoać iesadardową aalizę (ie do wyklikaia ) możliwe jes użycie pęli. Pęle realizuje komeda loop, kóra przyjmuje zesaw iych
licencjat Pytania teoretyczne:
Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie
Niepewności pomiarowe
Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki
Klasyfikacja modeli. Metoda najmniejszych kwadratów
Konspek ekonomeria: Weryfikacja modelu ekonomerycznego Klasyfikacja modeli Modele dzielimy na: - jedno- i wielorównaniowe - liniowe i nieliniowe - sayczne i dynamiczne - sochasyczne i deerminisyczne -
Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
ANALIZA POWIĄZAŃ MIĘDZY INDEKSAMI GIEŁDY FRANCUSKIEJ, HOLENDERSKIEJ I BELGIJSKIEJ Z WYKORZYSTANIEM MODELU KOREKTY BŁĘDEM
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 083-86 Nr 89 06 Uniwersye Ekonomiczny w Kaowicach Wydział Ekonomii Kaedra Meod Saysyczno-Maemaycznych w Ekonomii pawel.prenzena@edu.ueka.pl
Parametryczny koder mowy - wokoder. Synteza mowy w odbiorniku: d=1 - mowa dźwięczna (T 0 = okres tonu krtaniowego) d=0 - mowa bezdźwięczna
Paraeryczny koder owy - wokoder Syneza owy w odbiorniku: d=1 - owa dźwięczna T 0 = okres onu kraniowego d=0 - owa bezdźwięczna Wokoder nadajnik Eksrakcja onu kraniowego 1. Przebieg czasowy sygnału i błędu
WNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału
Statystyczne testy nieparametryczne
Saysycze esy ieparamerycze Tesami ieparameryczymi azywamy esy służące do weryfikaci hipoez ieparameryczych, hipoez iedoyczących warości iezaych paramerów populaci (choć czasem poęcie o ozacza hipoezy ie
ESTYMACJA PARAMETRÓW FUNKCJI REGRESJI METODĄ KLASYCZNĄ ORAZ METODAMI BOOTSTRAPOWYMI**
Góricwo i Geoiżyieria Rok 30 Zeszy 3/ 006 Dariusz Foszcz* ESTYMACJA PARAMETRÓW FUNKCJI REGRESJI METODĄ KLASYCZNĄ ORAZ METODAMI BOOTSTRAPOWYMI**. Wsęp W zmieiającej się rzeczywisości przebiegu procesów
COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871
COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara
Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 0: Rówaie Schrödigera Dr iż. Zbigiew Szklarski Kaedra Elekroiki paw. C- pok.3 szkla@agh.edu.pl hp://layer.uci.agh.edu.pl/z.szklarski/ Rówaie Schrödigera jedo z podsawowych rówań ierelaywisyczej
DYNAMIKA. Dynamika jest działem mechaniki zajmującym się badaniem ruchu ciał z uwzględnieniem sił działających na ciało i wywołujących ten ruch.
DYNMIK Daika jes działe echaiki zajując się badaie uchu ciał z uwzględieie sił działającch a ciało i wwołującch e uch. Daika opiea się a pawach Newoa, a w szczególości a dugi pawie (zwa pawe daiki). Moża
Analiza szeregów czasowych w Gretlu (zajęcia 8)
Analiza szeregów czasowych w Grelu (zajęcia 8) Grel jes dość dobrym narzędziem do analizy szeregów czasowych. Już w samej podsawie Grela znajdziemy sporo zaimplemenowanych echnik służących do obróbki danych
EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.
EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b
Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
1. Szereg niesezonowy 1.1. Opis szeregu
kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany
Bezrobocie. wysiłek. krzywa wysiłku pracownika E * płaca realna. w/p *
dr Barłomiej Rokicki Bezrobocie Jedym z główych powodów, dla kórych a ryku pracy obserwujemy poziom bezrobocia wyższy od auralego (czyli akiego, kórego zasadiczo ie da się obiżyć) jes o, iż płace wyzaczae
Definicja interpolacji
INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję
Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych
Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe
Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Dr hab. iż. Władysław Arur Woźiak Wykład FIZYKA I. Kiemayka puku maerialego Dr hab. iż. Władysław Arur Woźiak Isyu Fizyki Poliechiki Wrocławskiej hp://www.if.pwr.wroc.pl/~woziak/fizyka1.hml Dr hab. iż.
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu
Badaia iezawodościowe i saysycza aaliza ich wyików. Eleme ieaprawialy, badaia iezawodości Model maemayczy elemeu - dodaia zmiea losowa T, określająca czas życia elemeu Opis zmieej losowej - rozkład, lub
DEA podstawowe modele
Marek Miszczński KBO UŁ 2008 - Aaliza dach graiczch (EA) cz.2 (przkład aaliza damiki rakigi) EA podsawowe modele WPROWAZENIE Efekwość (produkwość) obieku gospodarczego o es defiiowaa ako sosuek sum ważoch
Modelowanie i analiza szeregów czasowych
Modelowanie i analiza szeregów czasowych Małgorzaa Doman Plan zajęć Część. Modelowanie szeregów jednowymiarowych.. Szeregi jednowymiarowe własności i diagnozowanie. Modele auoregresji i średniej ruchomej
Porównanie dwu populacji
Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im
RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
Elementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
χ 2 = + 2π 2 Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej: σ
χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep d π Rozważy
Anna Czapkiewicz Przykłady zależności pomiędzy dochodem a wydatkami na konsumpcję w przypadku losowości zmiennej niezależnej
Przykłady zależości poiędzy dochode a wydatkai a kosupcję w przypadku losowości zieej iezależej Maagerial Ecooics, 65-74 27 Ekooia Meedżerska 27, r, s. 65 74 * Przykłady zależości poiędzy dochode a wydatkai
Rozkład χ 2 = + 2π 2. Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej:
Rozkład χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep
Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego
Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb
Wygładzanie metodą średnich ruchomych w procesach stałych
Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja
Konspekty wykładów z ekonometrii
Konspek wkładów z ekonomerii Budowa i werfikaca modelu - reść przkładu W wniku ssemacznch badań popu na warzwa w pewnm mieście, orzmano nasępuące szeregi czasowe: przros (zmian) popu na warzwa (w zł. na
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony
Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
PROGNOZY I SYMULACJE
orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Model ciągły wyceny opcji Blacka Scholesa - Mertona. Wzór Blacka - Scholesa na wycenę opcji europejskiej.
Model ciągły wycey opcji Blacka Scholesa - Mertoa Wzór Blacka - Scholesa a wyceę opcji europejskiej. Model Blacka Scholesa- Mertoa Przełomowe prace z zakresu wycey opcji: Fischer Black, Myro Scholes The
DYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Gdański Zasosowanie modelu
Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15
Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay
Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).
Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy
ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego
D. Miszczńska,M.Miszczński, Maeriał do wkładu 6 ze Saski, 009/0 [] ANALIZA DYNAMIKI ZJAWISK (dok.). szereg czasow, chroologicz (momeów, okresów). średi poziom zjawiska w czasie (średia armecza, średia
STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.
Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa
Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
Modele zmienności aktywów ryzykownych. Model multiplikatywny Rozkład logarytmiczno-normalny Parametry siatki dwumianowej
Moele zmieości akywów ryzykowych Moel muliplikaywy Rozkła logarymiczo-ormay Paramery siaki wumiaowej Moel muliplikaywy zmieości akywów Rekurecyjy moel muliplikaywy: (=, (k+ = (k u(k, k=,, Cea akywa w chwili
1 Twierdzenia o granicznym przejściu pod znakiem całki
1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
Wyznaczyć prędkości punktów A i B
Wyzaczaie prędkości i przyspieszeia puku ciała w ruchu płaskim (a) Wyzaczyć prędkości puków i Dae: rad/s; ε 0; 5 cm; 5 cm 48 mechaika echicza kiemayka 3 Wyzaczaie prędkości i przyspieszeia puku ciała w
Niestacjonarne zmienne czasowe własności i testowanie
Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń