Wyk lad 13 Funkcjona ly dwuliniowe
|
|
- Antoni Kaczmarek
- 5 lat temu
- Przeglądów:
Transkrypt
1 1 Izomorfizmy kanoniczne Wyk lad 13 Funkcjona ly dwuliniowe Definicja Niech V i W bed przestrzeniami liniowymi. Funkcje ξ : V W R nazywamy funkcjona lem dwuliniowym, jeżeli i a,b R α,β V γ W ξa α + b β, γ = a ξα, γ + b ξβ, γ oraz ii a,b R γ V α,β W ξγ, a α + b β = a ξγ, α + b ξγ, β. Zbiór wszystkich funkcjona lów dwuliniowych z V W w R oznaczamy przez LV, W ; R. Stwierdzenie LV, W ; R jest podprzestrzeni liniow przestrzeni R V W przekszta lceń ze zbioru V W w cia lo R. Dowód. Przede wszystkim zauważmy, że zbiór LV, W ; R jest niepusty, bo np. przekszta lcenie zerowe Θα, β = 0 dla wszystkich α V, β W jest funkcjona lem dwuliniowym z V W w R. Niech ξ, η LV, W ; R, a R. Wykażemy, że ξ + η LV, W ; K oraz a ξ LV, W ; R. W tym celu weźmy dowolne α, β V, γ W, b, c R. Wtedy ξ + ηb α + c β, γ = ξb α + c β, γ + ηb α + c β, γ = = b ξα, γ + c ξβ, γ + b ηα, γ + c ηβ, γ = = b ξ + ηα, γ + c ξ + ηβ, γ oraz a ξb α + c β, γ = a ξb α + c β, γ = = a b ξα, γ + c ξβ, γ = b a ξα, γ + c a ξβ, γ. W ten sposób wykazaliśmy liniowość przekszta lceń ξ + η i a ξ na pierwszej wspó lrz ednej. Analogicznie dowodzimy liniowości tych przekszta lceń na drugiej wspó lrz ednej. Uwaga Niech ξ LV, W ; R. Dla dowolnego ustalonego α V określamy przekszta lcenie ξ α: W R k ladac Wówczas dla dowolnych a 1, a 2 R, β 1, β 2 W ξ αβ = ξα, β dla β W. 1 ξ αa 1 β 1 + a 2 β 2 = ξα, a 1 β 1 + a 2 β 2 = = a 1 ξα, β 1 + a 2 ξα, β 2 = a 1 ξ αβ 1 + a 2 ξ αβ 2. Zatem ξ α W. W ten sposób mamy określone przekszta lcenie ξ : V W. 1
2 Analogicznie, dla dowolnego ustalonego β W określamy przekszta lcenie ξ β: V R k ladac ξ βα = ξα, β dla α V. 2 Wówczas dla dowolnych a 1, a 2 R, α 1, α 2 V ξ βa 1 α 1 + a 2 α 2 = ξa 1 α 1 + a 2 α 2, β = = a 1 ξα 1, β + a 2 ξα 2, β = a 1 ξ βα 1 + a 2 ξ βα 2. Zatem ξ β W. W ten sposób mamy określone przekszta lcenie ξ : W V. Twierdzenie Jeżeli V i W s przestrzeniami liniowymi, to przekszta lcenie ξ ξ jest izomorfizmem przestrzeni liniowej LV, W ; R na przestrzeń LV ; W oraz przekszta lcenie ξ ξ jest izomorfizmem przestrzeni liniowej LV, W ; R na przestrzeń LW ; V. Dowód. Dla dowolnych a, b R, α, β V, γ W mamy, że ξ a α + b βγ = ξa α + b β, γ = a ξα, γ + b ξβ, γ = a ξ αγ + b ξ βγ = a ξ α + b ξ βγ, skad wobec dowolności γ mamy, że ξ a α + b β = a ξ α + b ξ β. Zatem przekszta lcenie ξ ξ jest liniowe. Dla f LV ; W oznaczmy przez f przekszta lcenie V W w R dane wzorem fα, β = fαβ dla α V, β W. 3 Sprawdzimy, że f LV, W ; R. Aby wykazać prawdziwość warunku i definicji 13.1 weźmy dowolne a, b R oraz dowolne α, β V, γ W. Wtedy fa α + b β, γ = fa α + b βγ = a fα + b fβγ = a fαγ + b fβγ = a fα, γ + +b fβ, γ, czyli warunek ten zachodzi. Teraz wykażemy, że spe lniony jest warunek ii definicji W tym celu weźmy dowolne a, b R oraz dowolne γ V, α, β W. Wtedy fγ, a α + b β = fγa α + b β = a fγα + b fγβ = a fγ, α + b fγ, β, wiec warunek ten też jest spe lniony. Zatem f LV, W ; R i otrzymujemy odwzorowanie f f przestrzeni LV ; W w przestrzeń LV, W ; R. Udowodnimy, że f = f dla dowolnego f LV ; W. Dla dowolnych α V, β W : f αβ = fα, β = fαβ, skad wobec dowolności β, f α = fα, a wiec wobec dowolności α, f = f. Teraz udowodnimy, że dla dowolnego ξ LV, W ; R jest ξ = ξ. W tym celu weźmy dowolne α V, β W. Wtedy ξ α, β = ξ αβ = ξα, β, skad wobec dowolności α i β uzyskujemy, że ξ = ξ. Zatem przekszta lcenie f f jest odwrotne do ξ ξ, czyli przekszta lcenie ξ ξ jest bijekcj i ostatecznie jest ono izomorfizmem. W szczególności przekszta lcenie f f jest izomorfizmem przestrzeni liniowej LV ; W na przestrzeń LV, W ; R. Dla dowolnych a, b R, α, β W, γ V mamy, że ξ a α + b βγ = ξγ, a α + b β = a ξγ, α + b ξγ, β = 2
3 = a ξ αγ + b ξ βγ = a ξ α + b ξ βγ, skad wobec dowolności γ mamy, że ξ a α + b β = a ξ α + b ξ β. Zatem przekszta lcenie ξ ξ jest liniowe. Podobnie jak w i dowodzimy, że jest ono bijekcja. Zatem przekszta lcenie ξ ξ jest izomorfizmem przestrzeni liniowej LV, W ; R na przestrzeń LW ; V. Uwaga Izomorfizm ξ ξ nazywamy kanonicznym izomorfizmem przestrzeni LV, W ; R na przestrzeń LV ; W. Natomiast izomorfizm f f nazywamy kanonicznym izomorfizmem przestrzeni LV ; W na przestrze LV, W ; R. 2 Przypadek przestrzeni skończenie wymiarowych Twierdzenie Niech V i W bed skończenie wymiarowymi przestrzeniami liniowymi i niech ξ LV, W ; R. Przy naturalnym utożsamieniu przestrzeni V z przestrzeni V oraz przestrzeni W z przestrzeni W mamy, że ξ = ξ i ξ = ξ. Ponadto dim ξ V = dim ξ W. Dowód. Naturalne utożsamienie przestrzeni V z przestrzeni V polega na utożsamieniu wektora α V z przekszta lceniem α danym wzorem α ϕ = ϕα dla ϕ V. Zatem dla dowolnych α V, β W mamy, że ξ α β = α ξ β = α ξ β = = ξ βα = ξα, β = ξ αβ, skad wobec dowolności β, ξ α = ξ α. Ale α α, wiec wobec dowolności α, ξ = ξ. Stad dim ξ V = dimξ V. Analogicznie pokazujemy, że ξ = ξ. Ponadto, na mocy twierdzenia mamy, że dimξ V = dim ξ W, wiec dim ξ V = dim ξ W. Definicja Rzedem funkcjona lu dwuliniowego ξ LV, W ; R nazywamy rzad liniowego ξ LV ; W, czyli wymiar podprzestrzeni ξ V a wobec twierdzenia 13.6 jest to wymiar podprzestrzeni ξ W. Stwierdzenie Jeżeli V i W s skończenie wymiarowymi przestrzeniami liniowymi, to dim LV, W ; R = dim V dim W. Dowód. Z twierdzenia 13.4, dim LV, W ; R = dim LV ; W. Ponadto dim W <, wiec z twierdzenia 12.2, dim W = dim W. Ale dim V <, wiec dim LV ; W = dim V dim W = dim V dim W. Zatem dim LV, W ; R = dim V dim W. Twierdzenie Niech V i W bed przestrzeniami liniowymi. Niech α 1,..., α n bedzie uporzadkowan baz przestrzeni V i niech β 1,..., β m bedzie uporzadkowan baz przestrzeni W. Wówczas dla dowolnych i = 1,..., n, j = 1,..., m przekszta lcenie ξ ij : V W R dane wzorem ξ ij x k α k, y l β l = x i y j 4 jest funkcjona lem dwuliniowym oraz uk lad ξ ij i=1,...,n jest baz przestrzeni LV, W ; R. 3
4 Dowód. Z uwagi 12.4 wynika, że β1,..., β m jest baz przestrzeni W. Zatem, z twierdzenia 10.2, uk lad ϕ ji i=1,...,n, gdzie { Θ, gdy k i, ϕ ji α k = βj, gdy k = i. 5 jest baz przestrzeni LV ; W. Z dowodu twierdzenia 13.4 wynika zatem, że uk lad ϕ ji i=1,...,n jest baz przestrzeni LV, W ; R. Ponadto m m ϕ ji x k α k, y l β l = ϕ ji x k α k y l β l = x i βj y l β l = x i y j βj β j = x i y j, dla dowolnych i = 1,..., n, j = 1,..., m, x 1,..., x n, y 1,..., y m R. Stad ϕ ji = ξ ij dla wszystkich i = 1,..., n, j = 1,..., m i uk lad ξ ij i=1,...,n tworzy baze przestrzeni LV, W ; R. Definicja Macierz [ξα i, β j ] M n m R nazywamy funkcjona lu dwuliniowego ξ LV, W ; R w bazach α 1,..., α n, β 1,..., β m. Uwaga Niech A = [a ij ] M n m R bedzie funkcjona lu dwuliniowego ξ LV, W ; R w bazach α 1,..., α n, β 1,..., β m. Udowodnimy, że wówczas ξ = a ij ξ ij. Dla dowolnych x 1,..., x n, y 1,..., y m R na mocy wzoru 4 a ij ξ ij x k α k, y l β l = a ij x i y j oraz z dwuliniowości ξ mamy wi ec Zatem rzeczywiście ξ = ξ x k α k, y l β l = ξ x k α k, y l β l = x i y j ξα i, α j, a ij x i y j. 6 a ij ξ ij. Na odwrót, dla dowolnych a ij R, i = 1,..., n, j = 1,..., m przekszta lcenie ξ : V W R dane wzorem 6 jest równe a ij ξ ij na mocy pierwszej cześci naszej uwagi, a wiec ξ LV, W ; R i [a ij ] M n m R jest ξ w bazach α 1,..., α n, β 1,..., β m. Zatem każdy funkcjona l dwuliniowy ξ LV, W ; R jest dany wzorem 6. Zauważmy jeszcze, że przy utożsamieniu macierzy [a] ze skalarem a R wzór 6 można zapisać w postaci: ξ x k α k, y l β l = [x 1,..., x n ] A [y 1,..., y m ] T. 7 4
5 Twierdzenie Niech A bedzie funkcjona lu dwuliniowego ξ LV, W ; R danego wzorem 6 w bazach α 1,..., α n, β 1,..., β m. Wtedy A T jest liniowego ξ w bazach α 1,..., α n i β1,..., β m. W szczególności rzad funkcjona lu ξ jest równy rzedowi macierzy A. Dowód. Dla i = 1,..., n, j = 1,..., m mamy, że ξ α i β j = ξα i, β j = a ij oraz m a ik βk β j = a ij na mocy określenia ξ oraz wzoru 1 z wyk ladu 12. Stad ξ α i = a ik βk dla i = 1,..., n. Zatem wspó lrzedne wektora ξ α i tworz i-ty wiersz macierzy A, czyli tworz i-t kolumne macierzy A T. Stad liniowego ξ w bazach α 1,..., α n i β1,..., β m jest macierz A T. Z twierdzenia 10.8 mamy, że dim ξ V = ra T. Ale ra T = ra, wiec rzad funkcjona lu ξ jest równy ra. 3 Zmiana bazy a funkcjona ly dwuliniowe Twierdzenie Niech A bedzie funkcjona lu dwuliniowego ξ LV, W ; R danego wzorem 6 w bazach α 1,..., α n, β 1,..., β m. Niech P bedzie przejścia od bazy α 1,..., α n do bazy α 1,..., α n oraz niech Q bedzie przejścia od bazy β 1,..., β m do bazy β 1,..., β m. Wówczas P T A Q jest ξ w bazach α 1,..., α n, β 1,..., β m. Dowód. Ze wzoru 7, z definicji macierzy przejścia oraz z definicji 13.7 wynika, że dla dowolnych i = 1,..., n, j = 1,..., m ξα i, β j = i ta kolumna P T A j ta kolumna Q = = i ty wiersz P T A j ta kolumna Q. Ale z definicji iloczynu macierzy A j ta kolumna Q = j ta kolumna A Q, wiec ξα i, β j = [P T A Q] ij, skad mamy teze. Korzystajac ze wzoru 7 oraz z definicji macierzy endomorfizmu liniowego w bazie i z definicji 13.7 można udowodnić w podobny sposób nastepuj ace twierdzenie. Twierdzenie Niech A bedzie funkcjona lu dwuliniowego ξ LV, W ; R danego wzorem 6 w bazach α 1,..., α n, β 1,..., β m. Niech P bedzie endomorfizmu f przestrzeni V w bazie α 1,..., α n oraz niech Q bedzie endomorfizmu g przestrzeni W w bazie β 1,..., β m. Wówczas ξ 1 : V W R dane wzorem ξ 1 α, β = ξfα, gβ dla α V, β W jest funkcjona lem dwuliniowym i jego w bazach α 1,..., α n, β 1,..., β m jest P T A Q. 5
Wyk lad 10 Przestrzeń przekszta lceń liniowych
Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych
Bardziej szczegółowoWyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
Bardziej szczegółowoWyk lad 11 Przekszta lcenia liniowe a macierze
Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β
Bardziej szczegółowoWyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Bardziej szczegółowoWyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
Bardziej szczegółowoWyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Bardziej szczegółowoWyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
Bardziej szczegółowoWyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
Bardziej szczegółowoWyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Bardziej szczegółowoWyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
Bardziej szczegółowoWykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Bardziej szczegółowoPrzestrzenie wektorowe, liniowa niezależność wektorów, bazy przestrzeni wektorowych
Grupa, cia lo Zadanie 1. Jakie w lasności w zbiorze liczb naturalnych, ca lkowitych, wymiernych, rzeczywistych maj dzia lania a b = a b, a b = a 2 + b 2, a b = a+b, a b = b. 2 Zadanie 2. Pokazać, że (R
Bardziej szczegółowo1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
Bardziej szczegółowoWyk lad 4 Dzia lania na macierzach. Określenie wyznacznika
Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n
Bardziej szczegółowoAlgebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Bardziej szczegółowoA. Strojnowski - Twierdzenie Jordana 1
A Strojnowski - Twierdzenie Jordana 1 Zadanie 1 Niech f b edzie endomorfizmem skończenie wymiarowej przestrzeni V nad cia lem charakterystyki różnej od 2 takim, że M(f) nie jest diagonalizowalna ale M(f
Bardziej szczegółowoPraca domowa - seria 6
Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x
Bardziej szczegółowoWykład 5. Ker(f) = {v V ; f(v) = 0}
Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro
Bardziej szczegółowoWyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
Bardziej szczegółowoWyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy
Bardziej szczegółowoa 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Bardziej szczegółowoPrzestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Bardziej szczegółowoWyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Bardziej szczegółowo9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
Bardziej szczegółowoAlgebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
Bardziej szczegółowoBaza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Bardziej szczegółowoFormy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Definicja Niech V, W,
Bardziej szczegółowoWyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
Bardziej szczegółowoNiezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )
Bardziej szczegółowoPrzestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Bardziej szczegółowoALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
Bardziej szczegółowoWyk lad 1 Podstawowe struktury algebraiczne
Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość
Bardziej szczegółowo(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach
Rozdzia l 4 Przestrzenie liniowe 4.1 Przestrzenie i podprzestrzenie 4.1.1 Definicja i podstawowe w lasności Niech X z dzia laniem dodawania + b edzie grupa przemienna (abelowa). Oznaczmy przez 0 element
Bardziej szczegółowo1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Bardziej szczegółowoDB Algebra liniowa 1 semestr letni 2018
DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,
Bardziej szczegółowoWyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Bardziej szczegółowoWyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
Bardziej szczegółowoRozwiązania, seria 5.
Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.
Bardziej szczegółowoNormy wektorów i macierzy
Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,
Bardziej szczegółowoRozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady
Rozdzia l 10 Formy dwuliniowe i kwadratowe 10.1 Formy dwuliniowe 10.1.1 Definicja i przyk lady Niech X K b edzie przestrzenia liniowa nad cia lem K, dim(x K ) = n. Definicja 10.1 Przekszta lcenie ϕ : X
Bardziej szczegółowoWyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Bardziej szczegółowoAnaliza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Bardziej szczegółowoSuma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,
Bardziej szczegółowoPierścienie grupowe wyk lad 3. lewych podmodu lów prostych. Ogólniej, aby roz lożyć dany pierścień na sume. prosta
Pierścienie rupowe wyk lad 3 Już wiemy, że alebre rupowa CG skończonej rupy G można roz lożyć na sume lewych podmodu lów prostych Oólniej, aby roz lożyć dany pierścień na sume prosta jeo dwóch podmodu
Bardziej szczegółowo1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Bardziej szczegółowo13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Bardziej szczegółowoJak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).
Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich
Bardziej szczegółowoWyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
Bardziej szczegółowoRozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
Bardziej szczegółowoWyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
Bardziej szczegółowoDiagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa,listopad
Bardziej szczegółowoWyk lad 14 Cia la i ich w lasności
Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,
Bardziej szczegółowoZadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Bardziej szczegółowoZadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
Bardziej szczegółowoMacierz o wymiarach m n. a 21. a 22. A =
Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2
Bardziej szczegółowoPrzekształcenia liniowe
Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7
Bardziej szczegółowoUkłady równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Bardziej szczegółowoDiagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, grudzień 2011 Mirosław Sobolewski (UW) Warszawa, grudzień
Bardziej szczegółowoZmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2
Zmiana baz Jacek Jędrzejewski 2014 Spis treści 1 Macierz przejścia od bazy do bazy 2 2 Wektory a zmiana baz 2 21 Współrzędne wektora względem różnych baz 2 22 Wektory o tych samych współrzędnych względem
Bardziej szczegółowo1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Bardziej szczegółowoFormy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,
Bardziej szczegółowoZadania z GAL-u. 1 Rozwia. Listopad x + 3y = 1 3x + y = x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 1.2
Zadania z GAL-u Listopad 2004 1 Rozwia zać uk lady równań: 11 12 13 14 15 { 2x + 3y = 1 3x + y = 0 x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 3x + y + z = 1 x + 2z = 6 3y + 2z = 0 2x + 3y + 2z = 1 3x + 4y
Bardziej szczegółowoPrzestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Bardziej szczegółowoDiagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 29 Mirosław Sobolewski (UW) Warszawa, wrzesień
Bardziej szczegółowoGAL, konspekt wyk ladów: Tensory
GAL, konspekt wyk ladów: Tensory 8.6.2017 Notatki zawieraja odsy lacze do podre czników [Kos]=Kostrikin, [Tor]=Toruńczyk. [Kos roz. 6]. Materia l mniej standardowy jest opisany dok ladniej. 1 Iloczyn tensorowy
Bardziej szczegółowoAnaliza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Bardziej szczegółowodr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Bardziej szczegółowo1 Przestrzenie unitarne i przestrzenie Hilberta.
Przestrzenie unitarne i przestrzenie Hilberta.. Wykazać, że iloczyn skalarny w przestrzeni wektorowej X nad cia lem K ma nastepuj ace w lasności: (i) x, y + z = x, y + x, z, (ii) x, λy = λ x, y, (iii)
Bardziej szczegółowoALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N
Bardziej szczegółowoKOLOKWIUM Z ALGEBRY I R
Instrucje: Każde zadanie jest za 4 puntów. Rozwi azanie ażdego zadania musi znajdować siȩ na osobnej artce oraz być napisane starannie i czytelnie. W nag lówu ażdego rozwi azania musz a znajdować siȩ dane
Bardziej szczegółowoWykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Bardziej szczegółowo2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Bardziej szczegółowoB jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
Bardziej szczegółowo1 Endomorfizmy przestrzeni liniowych i ich macierze.
Ćwiczenia 26.02.2016 1 Endomorfizmy przestrzeni liniowych i ich macierze. 1.1. Niech f : V V będzie przekształceniem liniowym przestrzeni liniowych nad ciałem Z 3. Niech A = (α 1, α 2, α 3 ) będzie bazą
Bardziej szczegółowoSIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Bardziej szczegółowoKombinacje liniowe wektorów.
Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =
Bardziej szczegółowo1 Podobieństwo macierzy
GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa
Bardziej szczegółowoNiech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:
Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x
Bardziej szczegółowoZestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.
Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,
Bardziej szczegółowoWyk lad 3 Wyznaczniki
1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1
Bardziej szczegółowomacierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Bardziej szczegółowoPrzestrzenie liniowe w zadaniach
Przestrzenie linioe zadaniach Zadanie 1. Cz ektor [3, 4, 4 jest kombinacja linioa ektoró [1, 1, 1, [1, 0, 1, [1, 3, 5 przestrzeni R 3? Roziazanie. Szukam x,, z R takich, że [3, 4, 4 x [1, 1, 1 + [1, 0,
Bardziej szczegółowoSterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
Bardziej szczegółowoZestaw zadań 14: Wektory i wartości własne. ) =
Zestaw zadań 4: Wektory i wartości własne () Niech V = V V 2 będzie przestrzenią liniową nad ciałem K, w którym + 0 Znaleźć wszystkie podprzestrzenie niezmiennicze rzutu V na V wzdłuż V 2 oraz symetrii
Bardziej szczegółowoZagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
Bardziej szczegółowoGeometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Bardziej szczegółowoWYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
Bardziej szczegółowoSeria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie
Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie
Bardziej szczegółowoWektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
Bardziej szczegółowoz = x + i y := e i ϕ z. cos ϕ sin ϕ = sin ϕ cos ϕ
Izometrie liniowe Przypomnijmy, że jeśli V jest przestrzenią euklidesową (skończonego wymiaru), to U End V jest izometrią wtedy i tylko wtedy, gdy U U = UU = E, to znaczy, gdy jest odwzorowaniem ortogonalnym.
Bardziej szczegółowoMacierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Bardziej szczegółowo1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
Bardziej szczegółowoIndeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej
Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej
Bardziej szczegółowoPiotr Zakrzewski. Teoria mnogości. (skrypt wykładu) (wersja z )
Piotr Zakrzewski Teoria mnogości (skrypt wykładu) (wersja z 22.01.2018) WSTĘP Skrypt obejmuje aktualny program (dostępny na stronie https://usosweb.mimuw. edu.pl/kontroler.php?_action=actionx:katalog2/przedmioty/pokazprzedmiot(kod:
Bardziej szczegółowoR k v = 0}. k N. V 0 = ker R k 0
Definicja 1 Niech R End(V ). Podprzestrzeń W przestrzeni V nazywamy podprzestrzenią niezmienniczą odwzorowania R jeśli Rw W, dla każdego w W ; równoważnie: R(W ) W. Jeśli W jest różna od przestrzeni {0}
Bardziej szczegółowoφ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Bardziej szczegółowo4 Przekształcenia liniowe
MIMUW 4. Przekształcenia liniowe 16 4 Przekształcenia liniowe Obok przestrzeni liniowych, podstawowym obiektem algebry liniowej są przekształcenia liniowe. Rozpatrując przekształcenia liniowe między przestrzeniami
Bardziej szczegółowo2. Definicja pochodnej w R n
2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH
ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach
Bardziej szczegółowoAlgebra i jej zastosowania konspekt wyk ladu, czȩść druga
Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,
Bardziej szczegółowo