STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1
|
|
- Sylwester Tomczyk
- 5 lat temu
- Przeglądów:
Transkrypt
1 1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy jedynie informacje o zbiorze możliwych wyników tego doświadczenia. Wynik doświadczenia losowego wykluczaj acy inne możliwe wyniki nazywamy zdarzeniem elementarnym. UWAGA: Zak lada siȩ, że w wyniku doświadczenia losowego zachodzi dok ladnie jedno zdarzenie elementarne. Zbiór wszystkich zdarzeń losowych nazywamy przestrzeni a zdarzeń elementarnych i oznaczamy przez Ω. Zdarzeniem losowym nazywamy dowolny wynik doświadczenia losowego. Każde zdarzenie losowe jest zbiorem zdarzeń elementarnych UWAGA: Jeżeli Ω jest zbiorem skończonym lub przeliczalnym, to zdarzeniem losowym jest dowolny podzbiór zbioru Ω Zdarzenie nazywamy zdarzeniem niemożliwym. Zdarzenie Ω nazywamy zdarzeniem pewnym. Zdarzenie A = Ω \ A nazywamy zdarzeniem przeciwnym do A. Jeżeli dla dwóch zdarzeń A i B zachodzi A B =, to mówimy, że zdarzenia te wykluczaj a siȩ (s a roz l aczne). Przyk lady. Zdarzenie A = miesi ac kwiecień ma 31 dni jest zdarzeniem niemożliwym. Zdarzenie B = miesi ac kwiecień ma 30 dni jest zdarzeniem pewnym. Zdarzeniem przeciwnym do C = dzisiaj jest niedziela jest zdarzenie C = dzisiaj jest inny dzień tygodnia niż niedziela. Przyk lad. Rozważmy doświadczenie losowe polegaj ace na jednokrotnym rzucie monet a. Przestrzeń zdarzeń elementarnych sk lada sie z dwóch elementów, zdarzenia ω O polegajacego na wypadniȩciu or la i ω O, które oznacza wypadniȩcie reszki. Wypiszmy wszystkie możliwe podzbiory zbioru Ω (zdarzenia losowe): A 1 = Ω = {ω O, ω R }, A 2 = {ω O }, A 3 = {ω R }, A 4 =. Zdarzenie A 1 polega na wypadniȩciu or la lub reszki. Jest to zdarzenie pewne. Zdarzenie A 4 polegaj ace na niewypadniȩciu ani or la ani reszki nie może zajść w wyniku naszego doświadczenia losowego. Jest to zdarzenie niemożliwe. Zdarzeniem przeciwnym do A 2 - wypad l orze l jest zdarzenie A 3 - wypad la reszka. Zwróćmy uwagȩ na to, że A 2 A 3 = Ω (w wyniku rzutu monet a wypadnie orze l lub reszka) oraz A 2 A 3 = (nie może wypaść jednocześnie orze l i reszka). 2. Klasyczna definicja prawdopodobieństwa. Niech Ω bȩdzie zbiorem skończonym, to znaczy Ω = {ω 1, ω 2..., ω N }. Dla dowolnego zdarzenia A Ω takiego, że A = {ω i1, ω i2,..., ω ik }, gdzie i 1, i 2,..., i k {1, 2,... N}, definiuje siȩ funkcjȩ prawdopodobieństwa w nastȩpuj acy sposób: P (A) = P ({ω i1 }) + P ({ω i2 }) P ({ω ik }). W przypadku, gdy zdarzenia elementarne s a jednakowo prawdopodobne, to znaczy P (ω 1 ) = P (ω 2 ) =... = P (ω N ) = 1, otrzymujemy nastȩpuj acy wzór: N P (A) = A Ω = k N liczba zdarzeń elementarnych sprzyjaj acych zdarzeniu A =. liczba wszystkich zdarzeń elementarnych Powyższa definicja prawdopodobieństwa nie jest poprawna w ogólności, gdyż zbiór Ω nie musi być skończony a zdarzenia elementarne nie musz a byċ jednakowo prawdopodobne.
2 2 3. Aksjomatyczna definicja prawdopodobieństwa. Niech Ω bȩdzie przestrzeni a zdarzeń elementarnych, Z zbiorem zdarzeń losowych. Funkcj a prawdopodobieństwa nazywamy funkcjȩ P : Z [0, 1] spe lniaj ac a nastȩpuj ace trzy aksjomaty: P 1) P (A) 0 dla każdego A Z, P 2) P (Ω) = 1 P 3) jeżeli A 1, A 2,..., A n... jest ci agiem zdarzeń roz l acznych (to znaczy A i A j = dla i j), to P (A 1 A 2... A n...) = P (A 1 ) + P (A 2 ) P (A n ) +... Wartość funkcji P na zbiorze A nazywamy prawdopodobieństwem zdarzenia A 4. W lasności funkcji prawdopodobieństwa. 1. P ( ) = Jeśli A B, to P (A) P (B). 3. Dla dowolnego A Ω P (A) Jeśli A B, to P (B \ A) = P (B) P (A). 5. Dla dowolnego A Ω P (A) + P (A) = P (A B) = P (A) + P (B) P (A B). 7. Jeżeli zdarzenia A 1, A 2,..., A n s a parami roz l aczne, to P (A 1 A 2... A n ) = P (A 1 ) + P (A 2 ) P (A n ). 5. Prawdopodobieństwo warunkowe i niezależnośċ. Prawdopodobieństwo zajścia zdarzenia A pod warunkiem, że zasz lo zdarzenie B: P (A B) = P (A B) P (B) albo Doświadczenia niezależne = dowolny wynik jednego z nich nie wpywa na wynik drugiego. Zdarzenia niezależne = zdarzenia A, B, dla których: P (A B) = P (A) P (B) P (A B) = P (A) lub P (B A) = P (B) Informacja o zajściu jednego z nich nie zmienia szans wyst apienia drugiego. 5. Zupe lny uk lad zdarzeń. Wzór Bayesa Zdarzenia A 1,..., A n tworz a zupe lny uk lad zdarzeń jeśli: 1. A 1... A n = Ω, 2. A i A j = dla każdego i j, i, j = 1, 2,..., n
3 3 Twierdzenie o prawdopodobieństwie zupe lnym Jeśli zdarzenia A 1,..., A n tworz a zupe lny uk lad zdarzeń, to dla każdego zdarzenia B : P (B) = P (A 1 B) P (A n B) = P (A 1 ) P (B A 1 ) P (A n ) P (B A n ) Wzór Bayesa Jeśli zdarzenia A 1,..., A n tworz a zupe lny uk lad zdarzeń, to dla każdego zdarzenia B takiego, że P (B) > 0 oraz dowolnego j = 1, 2,..., n zachodzi wzór : = P (A j B) = P (A j B) P (A 1 B) P (A j B) P (A n B) = P (A j ) P (B A j ) P (A 1 ) P (B A 1 ) +... P (A j ) P (B A j ) P (A n ) P (B A n ) Zmienna losowa jednowymiarowa Intuicyjnie: zmienna, która przyjmuje pewn a wartość liczbow a w wyniku doświadczenia losowego. Formalnie: Funkcja X : Ω R przyporz adkowuj aca każdemu zdarzeniu losowemu pewn a wartość liczbow a Dystrybuanta zmiennej losowej X - funkcja F X : R R zdefiniowana nastȩpuj aco: F (x) = P (X < x) dla każdego x R Zmienna losowa typu skokowego Zmienna X, dla której zbiór wartości przyjmowanych przez t a zmienn a jest skończony lub przeliczalny, tzn W X = {x 1, x 2,..., x n } albo W X = {x 1, x 2,..., x n, ldots} Rozk lad prawdopodobieństwa: funkcja P, która każdemu punktowi skokowemu x i W X przyporz adkowuje skok prawdopodobieństwa p i = P (X = x i ) w taki sposób, że: 1) dla każdego i : p i > 0 oraz. 2) i p i = 1 Zmienna losowa typu ci ag lego Zmienna X, dla której zbiór wartości przyjmowanych przez t a zmienn a jest przedzia lem liczbowym lub sum a przedzia lów. Rozk lad prawdopodobieństwa: funkcja f zwana gȩstości a prawdopodobieństwa taka, że. 1) dla każdego x R : f(x) 0 oraz 2) + f(x)dx = 1 Podstawowe parametry zmiennej losowej 1. Wartość oczekiwana zmiennej losowej X = liczba E(X) bȩd aca średnia ważon a rozk ladu prawdopodobieństwa przy za lożeniu, że wag a jest prawdopodobieństwo (dla zmiennej losowej typu skokowego) albo środkiem ciȩżkości rozk ladu prawdopodobieństwa przy za lożeniu, że gȩstości a jest funkcja gȩstości prawdopodobieństwa (dla zmiennej losowej typu ci ag lego).
4 2. Wariancja zmiennej losowej X= D 2 (X) = wartość oczekiwana kwadratu odchylenia zmiennej od jej wartości oczekiwanej - miara średniego odchylenia kwadratowego. 3. Odchylenie standardowe zmiennej losowej X = D(X)= pierwiastek z wariancji - miara średniego odchylenia zmiennej od jej wartości oczekiwanej. 4. Kwantyl rzȩdu p = x p = punkt, w którym skumulowane prawdopodobieństwo (dystrybuanta) osi aga (przekracza) wartość p. mediana=me=kwantyl rzȩdu 1 2 kwartyl dolny=q 1 =kwantyl rzȩdu 1 4 kwartyl dolny=q 3 =kwantyl rzedu 3 4 i-ty decyl= przedzia l miȩdzy kwantylem rzȩdu (i 1) 0.1 a kwantylem rzȩdu i 0.1 i-ty percentyl= przedzia l miȩdzy kwantylem rzȩdu (i 1) 0.01 a kwantylem rzȩdu i Moda (dominanta; wartośċ modalna) = punkt, w którym funkcja prawdopodobieństwa osi aga najwiȩksz a wartośċ. Podstawowe teoretyczne rozk lady prawdopodobieństwa zmiennej losowej jednowymiarowej Typu skokowego 1. Rozk lad jednopunktowy. Funkcja prawdopodobieństwa : P (X = c) = 1 dla pewnej sta lej c Wartośċ oczekiwana: E(X) = c Wariancja: D 2 (X) = 0 Interpretacja: Rozk lad dowolnej sta lej liczbowej X. 2. Rozk lad dwupunktowy (zerojedynkowy). Funkcja prawdopodobieństwa : P (X = 1) = p, P (X = 0) = q = 1 p Wartośċ oczekiwana: E(X) = p Wariancja: D 2 (X) = p q = p (1 p) Interpretacja: Rozk lad dowolnej zmiennej X, która odpowiada na pewne pytanie albo TAK (X = 1- sukces ) albo NIE (X = 0- porażka ), rozk lad dowolnej cechy zero-jedynkowej (obiekt albo j a posiada (X = 1) albo nie posiada (X = 0). 3. Rozk lad Bernoulliego (dwumianowy) - B(n, p) Schemat doświadczeń Bernoulliego: - n niezależnych doświadczeń, - w każdym doświadczeniu albo sukces z prawdopodobieństwem p albo porażka (z prawdopodobieństwem q = 1 p); Interpretacja: Zmienna losowa X ma rozk lad B(n, p) jeśli mówi o liczbie sukcesów w schemacie n niezależnych doświadczeń Bernoulliego z prawdopodobieństwem sukcesu p w każdym z nich. Jest sum a n niezależnych zmiennych losowych o rozk ladzie zerojedynkowym. ) pk q n k dla k = 0, 1, 2,..., n, q = 1 p. Funkcja prawdopodobieństwa : P (X = k) = ( n k Wartośċ oczekiwana: E(X) = np Wariancja: D 2 (X) = n p q 4. Rozk lad Poissona - Po(λ) Funkcja prawdopodobieństwa : P (X = k) = e λ λk k! dla k = 0, 1, 2,... Wartośċ oczekiwana: E(X) = λ Wariancja: D 2 (X) = λ Interpretacja: Rozk lad graniczny dla rozk laadu B(n, p) przy n +. Dla dostatecznie dużych n, zmienna losowa o rozk ladzie B(n, p) ma w przybliżeniu rozk lad Poissona z 4
5 5 parametrem λ = n p. Typu ci ag lego 1. Rozk lad jednostajny na przedziale (a; b) - U(a, b) Funkcja gȩstości prawdopodobieństwa : f(x) = { 1 b a, dla a < x < b 0, dla pozosta lych x Wartośċ oczekiwana: E(X) = a+b 2 Wariancja: D 2 (X) = (b a)2 12 Interpretacja Zmienna losowa X ma rozk lad U(a, b) jeśli przyjȩcie przez t a zmienn a dowolnej wartości z przedzia lu (a; b) jest jednakowo prawdopodobne. 2. Rozk lad normalny (Gaussa) - N(m, σ) Funkcja gȩstości prawdopodobieństwa : f(x) = 1 2πσ e (x m)2 2σ 2 dla x R Wartośċ oczekiwana: E(X) = m Wariancja: D 2 (X) = σ 2 Wykresem powyższej funkcji gȩstości prawdopodobieństwa jest krzywa Gaussa Zmienna losowa standaryzowa dla zmiennej losowej o rozk ladzie N(m, σ): ma rozk lad normalny standardowy N(0, 1). X = X m σ Dystrybuanta rozk ladu normalnego standardowego N(0, 1): Φ(x) = x 1 2π e t2 2 dt dla x R Z parzystości funkcji gȩstości prawdopodobieństwa rozk ladu N(0, 1) wynika, że: Φ( x) = 1 Φ(x). u α - kwantyl rzȩdu α zmiennej losowej o rozk ladzie N(0, 1) (tzn. Φ(u α ) = α) 3. Rozk lad chi kwadrat o n stopniach swobody Zmienna losowa χ 2 = X 2 1 +X X 2 n, gdzie X 1, X 2,... X n zmienne o rozk ladzie N(0, 1) ma rozk lad chi-kwadrat o n stopniach swobody Wartośċ oczekiwana: E(χ 2 ) = n Wariancja: D 2 (χ 2 ) = 2n Dla dużych n (n > 40) rozk lad chi-kwadrat o n stopniach swobody można przybliżaċ rozk ladem N(n, 2n). χ 2 (α, n) = kwantyl rzȩdu 1 α zmiennej o rozk ladzie chi-kwadrat o n stopniach swobody 4. Rozk lad t-studenta o n stopniach swobody. Zmienna losowa T = X χ 2 n, gdzie X zmienna losowa o rozk ladzie N(0, 1) a zmienna χ 2 ma rozk lad chi-kwadrat o n stopniach swobody.
6 6 Wartośċ oczekiwana: E(T ) = 0. Wariancja: D 2 (T ) = n. n 2 Dla dużych n (n > 40) rozk lad t-studenta o n stopniach swobody można przybliżaċ rozk ladem N(0, 1). t(α, n) = kwantyl rzȩdu 1 α zmiennej o rozk ladzie t-studenta o n stopniach swobody. 2
STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA
1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.
Bardziej szczegółowoPROBABILISTYKA - test numery zestawów 1,3,5,7,9,...,41
1 numery zestawów 1,3,5,7,9,...,41 (a) Jeśli P (A) = 0.5 oraz P (B) = 0.3 oraz B A, to P (B \ A) = 0.2. (b) Przy jednokrotnym rzucie kostk a prawdopodobieństwo, że wypadnie szóstka pod warunkiem, że wypad
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA. Spis pojȩċ teoretycznych
1 RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA Spis pojȩċ teoretycznych 1. Podstawowe pojȩcia: doświadczenie losowe, zdarzenie elementarne, zdarzenie losowe, przestrzeń zdarzeń elementarnych, zbiór zdarzeń
Bardziej szczegółowoElementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
Bardziej szczegółowoPrzykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Bardziej szczegółowoPODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Bardziej szczegółowoTemat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
Bardziej szczegółowoPRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW Rachunek prawdopodobieństwa (probabilitis - prawdopodobny) zajmuje się badaniami pewnych prawidłowości (regularności) zachodzących przy wykonywaniu doświadczeń
Bardziej szczegółowoWykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Bardziej szczegółowoPrzestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Bardziej szczegółowoRozkłady prawdopodobieństwa
Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład
Bardziej szczegółowoPEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
10 marca 2014 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Bardziej szczegółowoJednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Bardziej szczegółowoStatystyka. Magdalena Jakubek. kwiecień 2017
Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Bardziej szczegółowoWYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Bardziej szczegółowoBiostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowo1 Elementy kombinatoryki i teorii prawdopodobieństwa
1 Elementy kombinatoryki i teorii prawdopodobieństwa 1.1 Elementy kombinatoryki W rozwiązywaniu pewnych problemów związanych z obliczaniem prawdopodobieństwa o skończonej liczbie zdażeń elementarnych bardzo
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Bardziej szczegółowoP (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Bardziej szczegółowoW rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Bardziej szczegółowoRozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Bardziej szczegółowoZmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
Bardziej szczegółowoJeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Bardziej szczegółowoLiteratura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Bardziej szczegółowo1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie z rejestracja jakiś sygna lów (danych). Moga to być na
Bardziej szczegółowoMatematyka z el. statystyki, # 3 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoStatystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może
Bardziej szczegółowoRozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Bardziej szczegółowoWNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Bardziej szczegółowoProcesy Stochastyczne - Zestaw 1
Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie
Bardziej szczegółowoWYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Bardziej szczegółowoRachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
Bardziej szczegółowoPrawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Bardziej szczegółowoIII. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Bardziej szczegółowoMETODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,
Bardziej szczegółowoII WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15
II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
Bardziej szczegółowoStatystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona
Bardziej szczegółowoMatematyka stosowana i metody numeryczne
Adam Wosatko Magdalena Jakubek Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 4 Podstawy statystyki 4. Wstęp Statystyka nauka o metodach badań właściwości populacji (zbiorowości),
Bardziej szczegółowoNajczęściej spotykane rozkłady dyskretne:
I. Rozkład dwupunktowy: Najczęściej spotykane rozkłady dyskretne: Def. Zmienna X ma rozkład dwupunktowy z prawdopodobieostwem 1 przyjmuje tylko dwie wartości, tzn. P(X = x 1 ) = p i P(X = x 2 ) = 1 p =
Bardziej szczegółowo4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
Bardziej szczegółowoWYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
Bardziej szczegółowoDyskretne zmienne losowe
Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która
Bardziej szczegółowoWybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Bardziej szczegółowoWykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 5 Magdalena Alama-Bućko 1 kwietnia 2019 Magdalena Alama-Bućko Statystyka matematyczna 1 kwietnia 2019 1 / 19 Rozkład Poissona Po(λ), λ > 0 - parametr tzw. rozkład zdarzeń
Bardziej szczegółowoZmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III)
Zmienne losowe tpu ciągłego. Parametr zmiennch losowch. Izolda Gorgol wciąg z prezentacji (wkład III) Zmienna losowa tpu ciągłego Zmienna losowa X o ciągłej dstrbuancie F nazwa się zmienną losową tpu ciągłego,
Bardziej szczegółowoWażne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
Bardziej szczegółowoĆwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoWybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Bardziej szczegółowoRozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
Bardziej szczegółowoZdarzenia losowe i prawdopodobieństwo
Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne
Bardziej szczegółowoElementy rachunku prawdopodobieństwa. Statystyka matematyczna. w zastosowaniach
Statystyka matematyczna w zastosowaniach Elementy rachunku prawdopodobieństwa Robert Pietrzykowski STATYSTYKA: nauka poświęcona metodom badania(analizowania) zjawisk masowych; polega na systematyzowaniu
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO
STATYSTYKA I DOŚWIADCZALNICTWO dla studiów magisterskich kierunku ogrodnictwo Wykład 1 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi
Bardziej szczegółowoMetody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),
Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: Fx sinx, Fx a e x mogą być dystrybuantami?. Podaj twierdzenie Lindeberga
Bardziej szczegółowoZmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski
Powtórzenie Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 1 Podręcznik podstawowy Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodnicznych,
Bardziej szczegółowoZestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Bardziej szczegółowozadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Bardziej szczegółowoPodstawy nauk przyrodniczych Matematyka
Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118
Bardziej szczegółowo1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Bardziej szczegółowoZmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Bardziej szczegółowoZwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X
Własności EX, D 2 X i DX przy przekształceniach liniowych Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X Przemnożenie wartości zmiennej losowej przez wartość stałą: Y=a*X
Bardziej szczegółowoZmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej
Statystyka i opracowanie danych Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne losowe Zmienna
Bardziej szczegółowoStatystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Bardziej szczegółowoWSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.
Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja
Bardziej szczegółowoRozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Bardziej szczegółowoSIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
Bardziej szczegółowoLista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,
Bardziej szczegółowoStatystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Bardziej szczegółowoZmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej
Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie
Bardziej szczegółowoRachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń
Bardziej szczegółowoStatystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Bardziej szczegółowoσ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;
Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia
Bardziej szczegółowoPODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH
PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH Szkic wykładu 1 Podstawowe rozkłady zmiennej losowej skokowej Rozkład dwupunktowy Rozkład dwumianowy Rozkład Poissona 2 Rozkład dwupunktowy Rozkład dwumianowy Rozkład
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne 5. Zmienne losowe: wprowadzenie Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 8..208 / 42 Motywacja Często bardziej niż same zdarzenia losowe
Bardziej szczegółowoWybrane rozkłady zmiennych losowych i ich charakterystyki
Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych
Bardziej szczegółowo3.1 Wprowadzenie teoretyczne i przyk lady
Rozdzia l 3 Model probabilistyczny Ko lmogorowa 3.1 Wprowadzenie teoretyczne i przyk lady Przez model probabilistyczny Ko lmogorowa, zwany też przestrzeni a probabilistyczn a, bȩdziemy rozumieli nastȩpuj
Bardziej szczegółowoWykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Bardziej szczegółowoStatystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Bardziej szczegółowoWykład 4, 5 i 6. Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej
Wykład 4, 5 i 6 Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak
Bardziej szczegółowoMATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie
1 MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś Wprowadzenie Istniej a dwa różne kryteria mówi ace, które narzȩdzia matematyczne należy zaliczyć do matematyki dyskretnej. Pierwsze definiuje matematykȩ
Bardziej szczegółowoEstymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie
Bardziej szczegółowoRozdzia l 6. Wstȩp do statystyki matematycznej. 6.1 Cecha populacji generalnej
Rozdzia l 6 Wstȩp do statystyki matematycznej 6.1 Cecha populacji generalnej W rozdziale tym zaprezentujemy metodȩ probabilistycznego opisu zaobserwowanego zjawiska. W takim razie (patrz rozdzia l 2.4)zjawiskotobȩdziemy
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Zmienna losowa i jej rozkład ZMIENNA LOSOWA Funkcja X przyporządkowująca każdemu zdarzeniu elementarnemu jedną i tylko jedną liczbę x. zmienna losowa skokowa skończona
Bardziej szczegółowo