Programowanie liniowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Programowanie liniowe"

Transkrypt

1 Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować (1) Przy ograniczeniach (2) (3) (4) 1, 2, 3 0 (5) Algorytm simple Metoda Chaczijana Algorytm programowania dynamicznego 8 Programowanie liniowe Algorytm sympleks 9 1

2 Plan wykładu Problem programowania liniowego Postać kanoniczna Postać standardowa Algorytm sympleks Początkowa baza dopuszczalna Tablica sympleks Warunek optymalności rozwiązania Zmiana bazy Transformacja tablicy Metoda sztucznej bazy Metoda graficzna 10 Przykład zastosowania PL Mały warsztat naprawia trzy rodzaje urządzeń B1, B2, B3. Każde urządzenie zawiera trzy podstawowe elementy: E 1, E 2, E 3. Naprawa polega na demontażu i/lub montażu elementów E 1,E 2,E 3 według określonej technologii. Tabela przedstawia przebieg każdej naprawy, zysk z naprawy urządzenia określonego typu oraz zapas elementów E 1,E 2, E 3 w firmie. 11 2

3 Przykład zastosowania PL Element Urządzenie E1 E2 E3 zysk [$/szt] B B B Zapas [szt.] Aby określić optymalny z punktu widzenia maksymalizacji zysku zakres napraw budujemy model liniowy problemu. 12 Sformułowanie problemu Niech 1 oznacza planowaną liczbę sztuk urządzenia B1 2 oznacza planowaną liczbę sztuk urządzenia B2 oznacza planowaną liczbę sztuk urządzenia B3 3 Całkowity zysk z naprawy urządzeń: Zakład ma zapas 7 sztuk elementu E1 Liczba sztuk elementu E1 potrzebna do realizacji produkcji: Podobnie dla elementów E2 i E3:

4 Sformułowanie problemu Zmaksymalizować (1) Przy ograniczeniach (2) (3) (4) 1, 2, 3 0 (5) 14 Model liniowy zmaksymalizować n j= 1 j= 1 c przy ograniczeniach a b, i = 1, K,m ograniczenia n j j ij j i 0, j = 1, K,n j funkcja celu (kryterium) 15 4

5 Model liniowy zmaksymalizować n j= 1 n j= 1 c przy ograniczeniach a b, i = 1, K,m parametry j j ij j i 0, j = 1, K,n j zmienna decyzyjna (i) (ii) (iii) 16 Model liniowy postać kanoniczna zmaksymalizować n j= 1 j= 1 c przy ograniczeniach a b, i = 1, K,m n j j ij j i 0, j = 1, K,n j 17 5

6 Model liniowy zminimalizować n j= 1 j= 1 c przy ograniczeniach a b, i = 1, K,m n j j ij j i 0, j = 1, K,n j 18 c = Model liniowy postać standardowa zmaksymalizować przy ograniczeniach [ c,c, K,c ] 1 2 n 1 2 = K n c A = b 0 a11 K a1n A = K K K am1 K amn b1 b 2 b = K bm 19 6

7 Podstawowe definicje Rozwiązaniem dopuszczalnym zagadnienia programowania liniowego jest wektor =( 1, 2,..., n ), spełniający warunki (ii) oraz (iii). Rozwiązaniem bazowym układu równań (ii) nazywamy rozwiązanie układu powstałego przez przyrównanie do zera n m zmiennych przy założeniu, że wyznacznik współczynników pozostałych m zmiennych jest niezerowy. Te m zmiennych nazywamy zmiennymi bazowymi. Niezdegenerowanym rozwiązaniem bazowym dopuszczalnym nazywamy bazowe rozwiązanie dopuszczalne, w którym wszystkie zmienne bazowe są dodatnie. Maksymalnym (minimalnym) rozwiązaniem dopuszczalnym jest rozwiązanie dopuszczalne, które maksymalizuje (minimalizuje) funkcję celu (i). 20 Algorytm sympleks 1. sprowadzić problem do postaci standardowej; 2. znaleźć dopuszczalne rozwiązanie bazowe; 3. zbudować początkową tablicę sympleks; 4. wybrać największy element wiersza wskaźnikowego ( m+1,k ); 5. jeżeli jego wartość jest dodatnia, to a. wyznaczyć element lk o najmniejszym ilorazie b ik / ik dla ik >0, i B; b. przekształcić tablicę sympleks przyjmując element lk za element centralny przekształcenia stosując następujące wzory: ' = ik ij ij c. wrócić do kroku 4. lk ' = lk 21 7

8 Algorytm sympleks 1. sprowadzić problem do postaci standardowej; 2. znaleźć dopuszczalne rozwiązanie bazowe; 3. zbudować początkową tablicę sympleks; 4. wybrać największy element wiersza wskaźnikowego ( m+1,k ); 5. jeżeli jego wartość jest dodatnia, to a. wyznaczyć element lk o najmniejszym ilorazie b ik / ik dla ik 0, i B; b. przekształcić tablicę sympleks przyjmując element lk za element centralny przekształcenia stosując następujące wzory: ' = ik ij ij c. wrócić do kroku 4. lk ' = lk 22 Postać kanoniczna problemu PL Zmaksymalizować: Przy ograniczeniach: , 2,

9 Postać standardowa problemu PL Wszystkie ograniczenia mają postać równań dodajemy zmienne osłabiające (s i 0), z Jak to zrobić? zerowymi współczynnikami w funkcji celu Wektor prawych stron ograniczeń jest nieujemny (b 0) mnożymy obustronnie równanie przez ( 1) Funkcja celu jest maksymalizowana Jak to zrobić? mnożymy funkcję celu przez ( 1) Jak to zrobić? 24 Sprowadzenie ograniczeń do postaci równań Funkcja celu jest maksymalizowana Zmaksymalizować: s 1 + 0s 2 + 0s 3 Przy ograniczeniach: s 1 = s 2 = s 3 10 = 10 Wektor prawych stron ograniczeń jest dodatni 1, 12, 23, s 31, s 2 0, s

10 Problem w postaci standardowej Zmaksymalizować: s 1 + 0s 2 + 0s 3 Przy ograniczeniach: s 1 = s 2 = s 3 = 10 1, 2, 3, s 1, s 2, s Algorytm sympleks 1. sprowadzić problem do postaci standardowej; 2. znaleźć dopuszczalne rozwiązanie bazowe; 3. zbudować początkową tablicę sympleks; 4. wybrać największy element wiersza wskaźnikowego ( m+1,k ); 5. jeżeli jego wartość jest dodatnia, to a. Wyznaczyć element lk o najmniejszym ilorazie b ik / ik dla ik 0, i B; b. Przekształcić tablicę sympleks przyjmując element lk za element centralny przekształcenia stosując następujące wzory: ' = ik ij ij c. wrócić do kroku 4. lk ' = lk 27 10

11 Dopuszczalne rozwiązanie bazowe Rozwiązaniem bazowym jest rozwiązanie, które powstaje przez przyrównanie do zera n m zmiennych i rozwiązanie powstałego układu równań. Jeżeli w rozwiązaniu bazowym Uwaga: wartości w postaci standardowej zawsze n>m wszystkich zmiennych są nieujemne, to jest ono rozwiązaniem bazowym dopuszczalnym. 28 Znalezienie bazy początkowej Zmaksymalizować: Przy ograniczeniach: s 1 = s 2 = s 3 = 10 Niech 1 = 2 = 3 = 0 1, 12, 23, s 13, s 2 0, s

12 Znalezienie bazy początkowej Niech 1 = 2 = 3 = s 1 = s 2 = s 3 = 10 Jest to rozwiązanie bazowe dopuszczalne 30 Algorytm sympleks 1. sprowadzić problem do postaci standardowej; 2. znaleźć dopuszczalne rozwiązanie bazowe; 3. zbudować początkową tablicę sympleks; 4. wybrać największy element wiersza wskaźnikowego ( m+1,k ); 5. jeżeli jego wartość jest dodatnia, to a. Wyznaczyć element lk o najmniejszym ilorazie b ik / ik dla ik 0, i B; b. Przekształcić tablicę sympleks przyjmując element lk za element centralny przekształcenia stosując następujące wzory: ' = ik ij ij c. wrócić do kroku 4. lk ' = lk 31 12

13 i i Numer wiersza tablicy. Liczba wierszy: m

14 i B Nazwy wektorów tworzących bazę. 1 s 1 2 s 2 3 s i B c B 1 s 1 0 Współczynniki przy zmiennych bazowych w funkcji celu. 2 s s

15 i B c B Wartości zmiennych RHS bazowych w bieżącym rozwiązaniu. 1 s s s i B c B RHS s 1 s 2 s 3 1 s s s Nazwy wszystkich zmiennych

16 Współczynniki przy zmiennych w funkcji celu s 1 s 2 s 3 1 s s s Współczynniki przy zmiennych w ograniczeniach s 1 s 2 s 3 1 s s s

17 j i B z = c s 1 s 2 s 3 i ij 1 s s s Wiersz wskaźnikowy. Wartości c j -z j 40 j i B z = c s 1 s 2 s 3 i ij 1 s s s Wiersz wskaźnikowy. Wartości c j -z j 41 17

18 1 2 3 s 1 s 2 s 3 1 s s s Wartość funkcji celu w bieżącym rozwiązaniu s 1 s 2 s 3 1 s s s

19 Algorytm sympleks 1. sprowadzić problem do postaci standardowej; 2. znaleźć dopuszczalne rozwiązanie bazowe; 3. zbudować początkową tablicę sympleks; 4. wybrać największy element wiersza wskaźnikowego ( m+1,k ); 5. jeżeli jego wartość jest dodatnia, to a. Wyznaczyć element lk o najmniejszym ilorazie b ik / ik dla ik 0, i B; b. Przekształcić tablicę sympleks przyjmując element lk za element centralny przekształcenia stosując następujące wzory: ' = ik ij ij c. wrócić do kroku 4. lk ' = lk s 1 s 2 s 3 1 s s s

20 1 2 3 s 1 s 2 s 3 1 s s s Algorytm sympleks 1. sprowadzić problem do postaci standardowej; 2. znaleźć dopuszczalne rozwiązanie bazowe; 3. zbudować początkową tablicę sympleks; 4. wybrać największy element wiersza wskaźnikowego ( m+1,k ); 5. jeżeli jego wartość jest dodatnia, to a. Wyznaczyć element lk o najmniejszym ilorazie b ik / ik dla ik >0, i B; b. Przekształcić tablicę sympleks przyjmując element lk za element centralny przekształcenia stosując następujące wzory: Jeżeli ' wszystkie = ik ij ij ik 0, i B, to funkcja celu może lk przyjmować dowolnie duże c. wrócić wartości do kroku (rozwiązanie 4. nieograniczone). ' = lk 47 20

21 kolumna k s 1 s 2 s 3 1 s s s kolumna k s 1 s 2 s 3 1 s s s /4 < 10/

22 kolumna k s 1 s 2 s 3 1 s s wiersz l 3 s element centralny przekształcenia 50 kolumna k s 1 s 2 s 3 wiersz l 1 s s zmienna 2 (z kolumny k) zastępuje w bazie zmienną s 2 (z wiersza l) 51 22

23 Algorytm sympleks 1. sprowadzić problem do postaci standardowej; 2. znaleźć dopuszczalne rozwiązanie bazowe; 3. zbudować początkową tablicę sympleks; 4. wybrać największy element wiersza wskaźnikowego ( m+1,k ); 5. jeżeli jego wartość jest dodatnia, to a. Wyznaczyć element lk o najmniejszym ilorazie b ik / ik dla ik 0, i B; b. Przekształcić tablicę sympleks przyjmując element lk za element centralny przekształcenia stosując następujące wzory: ' = ik ij ij c. wrócić do kroku 4. lk ' = lk 52 kolumna j kolumna k s 1 s 2 s 3 wiersz i wiersz l 1 s s

24 kolumna j kolumna k s 1 s 2 s 3 1 s wiersz i wiersz l 3 s * =2,5 54 kolumna k s 1 s 2 s 3 1 s 1 0 5/ / wiersz l 3 s 3 0 5/ / / /

25 kolumna k s 1 s 2 s 3 1 s 1 0 5/ / / /4 0 3 wiersz l 3 s 3 0 5/ / / / Algorytm sympleks 1. sprowadzić problem do postaci standardowej; 2. znaleźć dopuszczalne rozwiązanie bazowe; 3. zbudować początkową tablicę sympleks; 4. wybrać największy element wiersza wskaźnikowego ( m+1,k ); 5. jeżeli jego wartość jest dodatnia, to a. Wyznaczyć element lk o najmniejszym ilorazie b ik / ik dla ik 0, i B; b. Przekształcić tablicę sympleks przyjmując element lk za element centralny przekształcenia stosując następujące wzory: ' = ik ij ij c. wrócić do kroku 4. lk ' = lk 57 25

26 Tablica sympleks s 1 s 2 s 3 1 s 1 0 5/ / / / s 3 0 5/ / / / Tablica sympleks s 1 s 2 s 3 1 s 1 0 5/ / / / s 3 0 5/ / / /

27 Tablica sympleks s 1 s 2 s 3 1 s 1 0 5/ / / / s 3 0 5/ / / / Tablica sympleks s 1 s 2 s 3 1 s 1 0 5/ / / / s 3 0 5/ / / /

28 Końcowa tablica sympleks s 1 s 2 s /5 2/5 1/ /5 1/5 3/ s / /5-1/5-4/ =4 Rozwiązanie 2 =5 optymalne 3 =0 z=11 s 1 i=0 B c B RHS s 2 =0 s 3 = s 1 s 2 s /5 2/5 1/ /5 1/5 3/ s / /5-1/5-4/

29 Interpretacja rozwiązania Maksymalny zysk to 11$. Należy naprawić 4 szt. urządzenia B1 i 5 szt. urządzenia B2, natomiast nie należy przyjmować zleceń na naprawę urządzenia B3. Wartości zmiennych uzupełniających oznaczają zapas części, który pozostanie w magazynie po zakończeniu produkcji. Elementy E1 i E2 zostaną zużyte, natomiast pozostanie 11 szt. Elementu E3. 64 Problem w postaci standardowej Zmaksymalizować: s 1 + 0s 2 + 0s 3 Przy ograniczeniach: s 1 = s 2 = s 3 = 10 1, 2, 3, s 1, s 2, s

30 Przykład 2 Zminimalizować: Przy ograniczeniach: , 2, Postać standardowa Zmaksymalizować: - ( ) Przy ograniczeniach: s 1 = s 2 = 5 Baza dopuszczalna? s 3 = 2 1, 2,

31 Metoda sztucznej bazy Algorytm sympleks 68 Metoda sztucznej bazy I. Wprowadzamy k m zmiennych sztucznych. Zmienne te są nieujemne, a ich współczynniki w funkcji celu przyjmują wartość ( M), gdzie M jest dużą liczbą dodatnią. II. Tablicę sympleks ze sztucznymi wektorami przekształcamy jak zwykłą tablicę, dopóki: 1. wszystkie sztuczne wektory zostaną wyeliminowane z bazy, tj. mamy bazę dopuszczalną pierwotnego zagadnienia; 2. brak dodatnich współczynników przy M w wierszu wskaźnikowym a. jeżeli sztuczna część funkcji celu jest dodatnia, to zagadnienie nie ma rozwiązania dopuszczalnego; b. jeśli sztuczna część funkcji celu jest równa zero, to mamy zdegenerowane rozwiązanie dopuszczalne pierwotnego zagadnienia, które zawiera co najwyżej jeden sztuczny wektor. Przekształcamy tablicę sympleks wprowadzając do bazy wektor, który odpowiada największemu dodatniemu elementowi wiersza wskaźnikowego przy zerowej wartości współczynnika przy M. III. Kolumny odpowiadające zmiennym sztucznym, które opuściły bazę można eliminować z obliczeń. IV. Po otrzymaniu bazy dopuszczalnej zagadnienia pierwotnego kontynuujemy realizację algorytmu sympleks aż do otrzymania rozwiązania problemu pierwotnego

32 Sztuczna baza Zmaksymalizować: -( ) Ma 1 Ma 3 Przy ograniczeniach: s 1 + a 1 = s 2 = s 3 + a 3 = 2 1, 2, 3, s 1, s 2, s 3, a 1, a = 2 = 3 = s 1 = s 3 = 0 70 Sztuczna baza Zmaksymalizować: Ma 1 Ma 3 Przy ograniczeniach: a 1 = 3 s 2 = 5 a 3 = 2 1 = 2 = 3 = s 1 = s 3 =

33 i B c B M -M RHS s 1 s 2 s 3 a 1 a 3 1 a 1 -M s a 3 -M M 1+5M 1+2M -M 0 -M 0 0-5M 72 Rozwiązanie EploreLP.ee 73 33

34 Przykład 3 Zminimalizować: Przy ograniczeniach: , Rozwiązanie EploreLP.ee 75 34

35 Podsumowanie Sformułowanie problemu PL w postaci standardowej Algorytm sympleks Metoda sztucznej bazy Metoda graficzna 76 35

Dualność w programowaniu liniowym

Dualność w programowaniu liniowym 2016-06-12 1 Dualność w programowaniu liniowym Badania operacyjne Wykład 2 2016-06-12 2 Plan wykładu Przykład zadania dualnego Sformułowanie zagadnienia dualnego Symetryczne zagadnienie dualne Niesymetryczne

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce

Bardziej szczegółowo

Metoda simpleks. Gliwice

Metoda simpleks. Gliwice Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne

Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Piotr Kaczyński Badania Operacyjne Notatki do ćwiczeń wersja 0. Warszawa, 7 stycznia 007 Spis treści Programowanie

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

Definicja problemu programowania matematycznego

Definicja problemu programowania matematycznego Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Modele liniowe.......................... 5 1.1.

Bardziej szczegółowo

Programowanie liniowe. Tadeusz Trzaskalik

Programowanie liniowe. Tadeusz Trzaskalik Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Programowanie nieliniowe

Programowanie nieliniowe Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE (część 1)

ZAGADNIENIE TRANSPORTOWE (część 1) ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

Układy równań liniowych. Ax = b (1)

Układy równań liniowych. Ax = b (1) Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m

Bardziej szczegółowo

BADANIA OPERACYJNE Zagadnienie transportowe

BADANIA OPERACYJNE Zagadnienie transportowe BADANIA OPERACYJNE Zagadnienie transportowe Zadanie zbilansowane Zadanie zbilansowane Przykład 1 Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego część III Analiza rozwiązania uzyskanego metodą simpleksową

Bardziej szczegółowo

(Dantzig G. B. (1963))

(Dantzig G. B. (1963)) (Dantzig G.. (1963)) Uniwersalna metoda numeryczna dla rozwiązywania zadań PL. Ideą metody est uporządkowany przegląd skończone ilości rozwiązań bazowych układu ograniczeń, które możemy utożsamiać, w przypadku

Bardziej szczegółowo

Badania operacyjne egzamin

Badania operacyjne egzamin Imię i nazwisko:................................................... Nr indeksu:............ Zadanie 1 Załóżmy, że Tablica 1 reprezentuje jeden z kroków algorytmu sympleks dla problemu (1)-(4). Tablica

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

Wykład 6. Programowanie liniowe

Wykład 6. Programowanie liniowe Wykład 6. Programowanie liniowe Zakład może wytwarzać dwa produkty: P 1 i P 2. Ich produkcja jest limitowana dostępnymi zasobami trzech środków: S 1, S 2, S 3. Zasoby tych środków wynoszą odpowiednio,

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE

Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie

Bardziej szczegółowo

1 Przykładowe klasy zagadnień liniowych

1 Przykładowe klasy zagadnień liniowych & " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

BADANIA OPERACYJNE pytania kontrolne

BADANIA OPERACYJNE pytania kontrolne DUALNOŚĆ 1. Podać twierdzenie o dualności 2. Jaka jest zależność pomiędzy funkcjami celu w zadaniu pierwotnym i dualnym? 3. Prawe strony ograniczeń zadania pierwotnego, w zadaniu dualnym są 4. Współczynniki

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych - wykład 2 i 3

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j

Bardziej szczegółowo

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania

Bardziej szczegółowo

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego: Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.

Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie

Bardziej szczegółowo

A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1

A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1 A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe ZAGADNIENIE DUALNE Z każdym zagadnieniem liniowym związane jest inne zagadnienie nazywane dualnym. Podamy teraz teraz jak budować zagadnienie

Bardziej szczegółowo

Standardowe zadanie programowania liniowego. Gliwice 1

Standardowe zadanie programowania liniowego. Gliwice 1 Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci

Bardziej szczegółowo

Teoretyczne podstawy programowania liniowego

Teoretyczne podstawy programowania liniowego Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i

Bardziej szczegółowo

TOZ -Techniki optymalizacji w zarządzaniu

TOZ -Techniki optymalizacji w zarządzaniu TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach

Bardziej szczegółowo

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją

Bardziej szczegółowo

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1 A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA

Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe

Bardziej szczegółowo

METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0

METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 cx MAX Ax < b x > 0 Postać standardowa (kanoniczna): z = 5 x 1 + 6x 2 + 0x 3 + 0x 4 MAX

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

Wykład z modelowania matematycznego. Algorytm sympleks.

Wykład z modelowania matematycznego. Algorytm sympleks. Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania

Bardziej szczegółowo

OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH

OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza Wydział Zarządzania Katedra Metod Ilościowych OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH Prowadzący: dr Tomasz Pisula e-mail: tpisula@prz.edu.pl Treści kształcenia:

Bardziej szczegółowo

Laboratorium Metod Optymalizacji

Laboratorium Metod Optymalizacji Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena

Bardziej szczegółowo

ALGORYTM SIMPLEX. B.Gładysz Badania operacyjne 2007

ALGORYTM SIMPLEX. B.Gładysz Badania operacyjne 2007 ALGORYTM SIMPLEX 7 Zagadnienie asortymentu produkcji Firma produkuje dwa wyroby P, P. Ograniczeniem dla produkcji są trzy surowce S, S i S.Nakłady jednostkowe surowców są następujące: S S S Zysk jednostkowy

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 4 (Materiały)

Badania Operacyjne Ćwiczenia nr 4 (Materiały) Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów

Bardziej szczegółowo

Zadanie transportowe

Zadanie transportowe Zadanie transportowe Opracowanie planu przewozu jednorodnego produktu z różnych źródeł zaopatrzenia do punktów, które zgłaszają zapotrzebowanie na ten produkt. Wykład ARo Metody optymalizacji w ekonomii

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)

Bardziej szczegółowo

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy

Bardziej szczegółowo

PROGRAMOWANIE NIELINIOWE

PROGRAMOWANIE NIELINIOWE PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i

Bardziej szczegółowo

Algorytm simplex i dualność

Algorytm simplex i dualność Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko

Bardziej szczegółowo

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa Standardowe zadanie PL () Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny. akład może wytwarzać dwa wyroby: P i P. Ich produkcja jest limitowana

Bardziej szczegółowo

Programowanie dynamiczne. Tadeusz Trzaskalik

Programowanie dynamiczne. Tadeusz Trzaskalik Programowanie dynamiczne Tadeusz Trzaskalik 9.. Wprowadzenie Słowa kluczowe Wieloetapowe procesy decyzyjne Zmienne stanu Zmienne decyzyjne Funkcje przejścia Korzyści (straty etapowe) Funkcja kryterium

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,... Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

Metody wielokryterialne. Tadeusz Trzaskalik

Metody wielokryterialne. Tadeusz Trzaskalik Metody wielokryterialne Tadeusz Trzaskalik 4.1. Wprowadzenie Słowa kluczowe Zadanie wielokryterialne Zadanie wielokryterialne programowania liniowego Przestrzeń decyzyjna Zbiór rozwiązań za dopuszczalnych

Bardziej szczegółowo

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2 Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ

Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ 1 Iwona Konarzewska Programowanie celowe - wprowadzenie Katedra Badań Operacyjnych UŁ 2 Programowanie celowe W praktycznych sytuacjach podejmowania decyzji często występuje kilka celów. Problem pojawia

Bardziej szczegółowo

Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.

Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L. Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy

Bardziej szczegółowo

Wspomaganie Decyzji. Roman Słowiński. Zakład Inteligentnych Systemów Wspomagania Decyzji. Instytut Informatyki. Politechniki Poznańskiej

Wspomaganie Decyzji. Roman Słowiński. Zakład Inteligentnych Systemów Wspomagania Decyzji. Instytut Informatyki. Politechniki Poznańskiej Wspomaganie Decyzji Roman Słowiński Zakład Inteligentnyc Systemów Wspomagania Decyzji Instytut Informatyki Politecniki Poznańskiej Roman Słowiński Problem decyzyjny Istnieje cel lub cele do osiągnięcia

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo