Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
|
|
- Karol Szewczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni R n, zaś kolumny macierzy A możemy traktować jako wektory przestrzeni R m Rzedem wierszowym macierzy A nazywamy maksymalna ilość jej liniowo niezależnych wierszy Natomiast rzedem kolumnowym macierzy A nazywamy maksymalna ilość jej liniowo niezależnych kolumn Rzad wierszowy i rzad kolumnowy macierzy A oznaczamy odpowiednio symbolami: r w (A) i r k (A) Z tego określenia wynika od razu, że dla dowolnej macierzy A: r w (A) = r k (A T ) oraz r k (A) = r w (A T ) (1) Ponadto z określenia rz edu macierzy mamy natychmiast, że r w (0 m n ) = r k (0 m n ) = 0 (2) Z twierdzenia 78 wynika od razu, że rzad wierszowy macierzy A jest równy wymiarowi podprzestrzeni generowanej przez jej wektory wierszowe, zaś rzad kolumnowy macierzy A jest równy wymiarowi podprzestrzeni generowanej przez wektory kolumnowe macierzy A Ponadto z w lasności operacji elementarnych rzad wierszowy macierzy A nie zmienia sie przy stosowaniu operacji elementarnych na wierszach tej macierzy oraz rzad kolumnowy macierzy A nie zmienia sie przy stosowaniu operacji elementarnych na kolumnach tej macierzy Lemat 81 Jeżeli do pewnego wiersza macierzy dodamy inny jej wiersz pomnożony przez dowolny skalar, to rzad kolumnowy tej macierzy nie ulegnie zmianie Dowód Niech A = [a ij ] bedzie m n-macierza Dla uproszczenia znakowania za lożymy, że do pierwszego wiersza macierzy A dodano drugi jej wiersz pomnożony przez skalar a i oznaczmy przez B = [b ij ] macierz uzyskana w wyniku tej operacji Niech r = r k (A) Oznacza to, że pewne r-kolumn macierzy A sa liniowo niezależne Dla uproszczenia znakowania za lóżmy, że pierwsze r-kolumny macierzy A sa liniowo niezależne Udowodnimy, że wówczas pierwsze r-kolumny macierzy B też sa liniowo niezależne Niech A j oraz B j oznaczaja j-ta kolumne macierzy A i B odpowiednio Weźmy dowolne x 1,, x r R takie, że x 1 B x r B r = θ Wtedy a 11 + aa 21 a 21 x 1 a m1 + + x r 1 a 1r + aa 2r a 2r a mr = 0 m 1,
2 wi ec (a 11 + aa 12 )x (a 1r + aa 2r )x r = 0 a 21 x a 2r x r = 0 a m1 x a mr x r = 0, skad po odjeciu od pierwszej równości równości drugiej pomnożonej przez a uzyskamy, że x 1 A x r A r = θ Zatem z liniowej niezależności kolumn A 1,, A r wynika, że x 1 = = x r = 0 i kolumny B 1,, B r sa liniowo niezależne Zatem r k (B) r k (A) Ale macierz A powstaje z macierzy B przez dodanie do pierwszego wiersza drugiego wiersza pomnożonego przez skalar ( a), wiec z pierwszej cześci dowodu r k (A) r k (B) i ostatecznie r k (A) = r k (B) Z (1) i z lematu 81 wynika od razu, że prawdziwy jest też nastepuj acy Lemat 82 Jeżeli do pewnej kolumny macierzy dodamy inna jej kolumne pomnożona przez dowolny skalar, to rzad wierszowy tej macierzy nie ulegnie zmianie Lemat 83 Niech m, n 2 i niech A = [a ij ] bedzie m n-macierza taka, że dla pewnych s, t jest a st 0 oraz a it = 0 dla wszystkich i s i a sj = 0 dla wszystkich j t Wówczas r k (A) = 1 + r k (A st ) oraz r w (A) = 1 + r w (A st ) Dowód Niech r = r k (A st ) Istnieja wówczas kolumny B 1,, B r macierzy A st, które sa liniowo niezależne i takie, że każda kolumna macierzy A st jest ich kombinacja liniowa Oznaczmy przez A j kolumne macierzy A powstajac a przez dopisanie 0 w s-tym wierszu macierzy B j dla j = 1,, r Niech A r+1 oznacza t-ta kolumne macierzy A Weźmy dowolne x 1,, x r+1 R takie, że x 1 A 1 + +x r+1 A r+1 = θ Wtedy x r+1 a st = 0, skad x r+1 = 0 oraz x 1 B 1 + +x r B r = θ Zatem z liniowej niezależności B 1,, B r jest x 1 = = x r = 0 Stad kolumny A 1,, A r+1 sa liniowo niezależne Niech X bedzie dowolna kolumna macierzy A o numerze różnym od t Niech Y bedzie kolumna macierzy A st powstajac a z X przez wykreślenie s-tego wiersza (który sk lada sie z jednego zera!) Wtedy istnieja a 1,, a r R takie, że Y = a 1 B a r B r, skad X = a 1 A 1 + +a r A r Wynika stad, że wszystkie kolumny macierzy A sa kombinacjami liniowymi kolumn A 1,, A r, A r+1 Oznacza to, że r k (A) = r + 1 = 1 + r k (A st ) Dowód drugiej cześci lematu wynika natychmiast z (1) i z pierwszej jego cześci Twierdzenie 84 Rzad kolumnowy dowolnej macierzy równy jest jej rzedowi wierszowemu Dowód Indukcja wzgledem liczby m wierszy macierzy Jeżeli m = 1, to A = [a 1 a 2 a n ] dla pewnych skalarów a 1,, a n Jeżeli a 1 = = a n = 0, to r w (A) = 0 = r k (A) Jeżeli zaś a j 0 dla pewnego j = 1,, n, to r w (A) = 1 = r k (A) Zatem teza zachodzi dla m = 1 Niech teraz m bedzie liczba naturalna wieksz a od 1 i taka, że teza zachodzi dla wszystkich macierzy, które maja mniej niż m wierszy Weźmy dowolna m n-macierz A = [a ij ] Jeśli A = 0 m n, to r w (A) = 0 = r k (A) Niech zatem A 0 m n Wtedy istnieja k, l takie, że 0 Jeśli n = 1, to r w (A) = r k (A T ), wiec z za lożenia indukcyjnego r k (A T ) = r w (A T ) = r k (A), czyli r w (A) = r k (A) Niech dalej n > 1 Niech B = [b ij ] bedzie macierza powstajac a z macierzy A przez wykonanie operacji elementarnych: w i a il w k dla wszystkich i k 2
3 Wtedy r w (B) = r w (A) oraz z lematu 81, r k (B) = r k (A) Niech dalej C bedzie macierza powstajac a z macierzy B przez wykonanie operacji elementarnych: k j b kj k l dla wszystkich j l Wtedy r k (C) = r k (B) oraz z lematu 82, r w (C) = r w (B) Ale z lematu 83 mamy, że r w (C) = 1 + r w (C kl ) oraz r k (C) = 1 + r k (C kl ) Z za lożenia indukcyjnego r w (C kl ) = r k (C kl ) Zatem r w (A) = 1 + r k (C kl ) = r k (A) 2 Metody obliczania rz edu macierzy Wspólna wartość rzedu kolumnowego i wierszowego macierzy A nazywamy rzedem macierzy A i oznaczamy przez r(a) Z twierdzenia 84 oraz z poczatkowej cześci tego rozdzia lu mamy od razu nastepuj ace Twierdzenie 85 Operacje elementarne wykonywane na wierszach lub kolumnach macierzy nie zmieniaja jej rzedu Z twierdzenia 84 oraz ze wzoru (1) wynika od razu nastepuj ace Twierdzenie 86 Dla dowolnej macierzy A: r(a) = r(a T ) Twierdzenie 87 Niech A = [a ij ] bedzie taka m n-macierza, że 0 dla pewnych k, l oraz a il = 0 dla wszystkich i k Wtedy r(a) = 1 + r(a kl ) Dowód Oznaczmy przez B macierz powstajac a z macierzy A przez wykonanie operacji elementarnych: k j a kj k l dla wszystkich j l Wtedy B kl = A kl oraz na mocy twierdzenia 85, r(a) = r(b) Ponadto z twierdzenia 84 i z lematu 83, r(b) = 1 + r(b kl ) Zatem r(a) = 1 + r(a kl ) Twierdzenie 88 Niech A = [a ij ] bedzie macierza kwadratowa stopnia n Wówczas równoważne sa warunki: (i) r(a) = n, (ii) det(a) 0 Dowód (i) (ii) Ponieważ wszystkie kolumny A 1,, A n macierzy A sa liniowo niezależne i jest ich n, wiec tworza one baze przestrzeni R n Wynika stad, że dla każdego i = 1,, n istnieja skalary x i1,, x in K takie, że x i1 A x in A n = ε i Niech X = [x ij ] i,j=1,,n Wtedy A X = I n, skad z twierdzenia Cauchy ego det(a) 0 (ii) (i) Ponieważ det(a) 0, wiec istnieje macierz X = [x ij ] M n (R) taka, że A X = I n Wtedy dla każdego i = 1,, n mamy, że ε i = x i1 A x in A n, wiec kolumny macierzy A generuja przestrzeń R n Stad na mocy twierdzenia 78 te kolumny sa liniowo niezależne, czyli r(a) = n Definicja 89 Niech A bedzie m n-macierza oraz niech k bedzie liczba naturalna taka, że k min{m, n} Minorem stopnia k macierzy A nazywamy wyznacznik macierzy kwadratowej stopnia k, która powstaje z macierzy A przez wykreślenie m k wierszy oraz n k kolumn 3
4 Twierdzenie 810 Rzad niezerowej macierzy jest równy maksymalnemu stopniowi jej niezerowego minora Dowód Niech A bedzie niezerowa m n-macierza Oznaczmy przez k maksymalny stopień niezerowego minora macierzy A oraz przez r rzad tej macierzy Wtedy pewne r wierszy macierzy A jest liniowo niezależnych Wykreślajac pozosta le wiersze uzyskamy k n-macierz B o rzedzie r Zatem z twierdzenia 86 pewne r kolumn macierzy B sa liniowo niezależne Wykreślajac w macierzy B pozosta le kolumny uzyskamy macierz kwadratowa C stopnia r o rzedzie r Zatem z twierdzenia 88, det(c) 0 Ale det(c) jest minorem stopnia r macierzy A, wiec r k Niech teraz D bedzie macierza kwadratowa stopnia k powstajac a z macierzy A przez wykreślenie pewnych m k wierszy i n k kolumn taka, że det(d) 0 Wtedy z twierdzenia 88 mamy, że r(d) = k Niech X bedzie macierza powstajac a z macierzy A przez wykreślenie tych samych wierszy, co dla macierzy D Wtedy r(x) k oraz wszystkie kolumny macierzy D sa liniowo niezależne, wiec r(x) k i ostatecznie r(x) = k Stad z definicji rzedu wierszowego macierzy k r i ostatecznie r = k 3 Twierdzenie Kroneckera-Capellego Niech dany bedzie teraz dowolny uk lad m-równań liniowych z n-niewiadomymi x 1,, x n : a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2, (3) a m1 x 1 + a m2 x a mn x n = b m Przypomnijmy, że macierza wspó lczynników uk ladu (3) nazywamy macierz: a 11 a 12 a 1n a A = 21 a 22 a 2n, (4) a m1 a m2 a mn zaś macierza uzupe lniona uk ladu (3) nazywamy macierz: a 11 a 12 a 1n b 1 a A u = 21 a 22 a 2n b 2 a m1 a m2 a mn b m (5) Twierdzenie 811 (Kroneckera-Capellego) Uk lad (3) ma rozwiazanie wtedy i tylko wtedy, gdy r(a) = r(a u ) Ponadto uk lad (3) ma dok ladnie jedno rozwiazanie wtedy i tylko wtedy, gdy r(a) = r(a u ) = n Dowód Oznaczmy przez α j j-ta kolumne macierzy A i niech β = [b 1,, b m ] Uk lad (3) można wtedy zapisać jako równanie wektorowe: x 1 α x n α n = β (6) 4
5 Jeżeli (a 1,, a n ) jest rozwiazaniem uk ladu (3), to a 1 α a n α n = β, skad na mocy twierdzenia 68 i twierdzenia 611 mamy, że lin(α 1,, α n, β) = lin(α 1,, α n ), czyli r(a u ) = r(a) Na odwrót, za lóżmy, że r(a u ) = r(a) Wtedy dim lin(α 1,, α n ) = dim lin(α 1,, α n, β), wiec z twierdzenia 722 mamy, że lin(α 1,, α n, β) = lin(α 1,, α n ), skad β lin(α 1,, α n ), czyli istnieja a 1,, a n R takie, że β = a 1 α a n α n i wówczas (a 1,, a n ) jest rozwiazaniem uk ladu (3) Pozostaje udowodnić druga cześć twierdzenia Za lóżmy najpierw, że r(a u ) = r(a) = n Wówczas kolumny α 1,, α n sa liniowo niezależne, wiec tworza baze podprzestrzeni lin(α 1,, α n ) Ale wtedy dim lin(α 1,, α n ) = dim lin(α 1,, α n, β), skad lin(α 1,, α n ) = lin(α 1,, α n, β), czyli β lin(α 1,, α n ) Zatem z twierdzenia 79 istnieje dok ladnie jeden ciag (a 1,, a n ) R n taki, że β = a 1 α a n α n, wiec uk lad (3) ma dok ladnie jedno rozwiazanie Na odwrót, za lóżmy, że uk lad (3) posiada dok ladnie jedno rozwiazanie (a 1,, a n ) Wówczas z pierwszej cześci dowodu r(a u ) = r(a) Wystarczy zatem wykazać, że wektory α 1,, α n sa liniowo niezależne Ale jeżeli b 1,, b n R sa takie, że b 1 α b n α n = θ, to (a 1 +b 1 ) α 1 + +(a n +b n ) α n = a 1 α 1 + +a n α n +Θ = β, wiec (a 1 +b 1,, a n +b n ) jest rozwiazaniem uk ladu (3), skad a i + b i = a i, czyli b i = 0 dla i = 1,, n, a wiec wektory α 1,, α n sa liniowo niezależne Z rezultatów uzyskanych dotychczas wynika, że można stosować nastepuj acy schemat poste- powania dla znalezienia wszystkich rozwiazań uk ladu (3) Najpierw obliczamy r(a) i r(a u ) Jeżeli r(a) r(a u ), to uk lad (3) nie ma rozwiazania Jeśli zaś r = r(a) = r(a u ), to uk lad posiada rozwiazanie Wyznaczamy wówczas r liniowo niezależnych wierszy w macierzy A u i wykreślamy wszystkie pozosta le jej wiersze W otrzymanej macierzy znajdujemy r liniowo niezależnych kolumn Nastepnie w przekszta lconym uk ladzie równań przenosimy na prawa strone wszystkie niewiadome o numerach pozosta lych n k kolumn i stosujemy wzory Cramera dla obliczenia pozosta lych niewiadomych (natomiast niewiadome przenoszone na drugie strony a dowolnymi liczbami) s 5
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Bardziej szczegółowoWyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Bardziej szczegółowoWyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
Bardziej szczegółowoWyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
Bardziej szczegółowoWyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
Bardziej szczegółowoWyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
Bardziej szczegółowoWyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
Bardziej szczegółowoWyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Bardziej szczegółowoWyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Bardziej szczegółowoWyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
Bardziej szczegółowoWyk lad 11 Przekszta lcenia liniowe a macierze
Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β
Bardziej szczegółowoWyk lad 3 Wyznaczniki
1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1
Bardziej szczegółowoWyk lad 13 Funkcjona ly dwuliniowe
1 Izomorfizmy kanoniczne Wyk lad 13 Funkcjona ly dwuliniowe Definicja 13.1. Niech V i W bed przestrzeniami liniowymi. Funkcje ξ : V W R nazywamy funkcjona lem dwuliniowym, jeżeli i a,b R α,β V γ W ξa α
Bardziej szczegółowoWyk lad 10 Przestrzeń przekszta lceń liniowych
Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych
Bardziej szczegółowo1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Bardziej szczegółowoWyk lad 4 Dzia lania na macierzach. Określenie wyznacznika
Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n
Bardziej szczegółowoUkłady równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Bardziej szczegółowo13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Bardziej szczegółowoZastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
Bardziej szczegółowodet[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...
Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i
Bardziej szczegółowoTreść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Bardziej szczegółowoRozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
Bardziej szczegółowoZadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Bardziej szczegółowoWyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
Bardziej szczegółowoWyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Bardziej szczegółowo= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4
17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,
Bardziej szczegółowoWykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Bardziej szczegółowoWyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
Bardziej szczegółowoWyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Bardziej szczegółowoWłasności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Bardziej szczegółowoa 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Bardziej szczegółowoWyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013
Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia
Bardziej szczegółowoWyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy
Bardziej szczegółowoUkłady równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
Bardziej szczegółowoO MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Bardziej szczegółowoRównania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
Bardziej szczegółowoZagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
Bardziej szczegółowoWyznaczniki 3.1 Wyznaczniki stopni 2 i 3
3 Wyznaczniki 31 Wyznaczniki stopni 2 i 3 Wyznacznik macierzy 2 2 Dana jest macierz [ ] a b A Mat c d 2 2 (R) Wyznacznikiem macierzy A nazywamy liczbę mamy a A c b ad bc d Wyznacznik macierzy A oznaczamy
Bardziej szczegółowoAlgebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Bardziej szczegółowoUkłady równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Bardziej szczegółowowszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów
KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją
Bardziej szczegółowoZadania o liczbach zespolonych
Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i
Bardziej szczegółowoPrzekształcenia liniowe
Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7
Bardziej szczegółowoMacierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Bardziej szczegółowoWykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Bardziej szczegółowoDB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Bardziej szczegółowoRozwiązania, seria 5.
Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.
Bardziej szczegółowoWyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
Bardziej szczegółowodr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Bardziej szczegółowoPrzestrzenie liniowe w zadaniach
Przestrzenie linioe zadaniach Zadanie 1. Cz ektor [3, 4, 4 jest kombinacja linioa ektoró [1, 1, 1, [1, 0, 1, [1, 3, 5 przestrzeni R 3? Roziazanie. Szukam x,, z R takich, że [3, 4, 4 x [1, 1, 1 + [1, 0,
Bardziej szczegółowoKombinacje liniowe wektorów.
Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =
Bardziej szczegółowoBaza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Bardziej szczegółowoNiezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )
Bardziej szczegółowoWstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Bardziej szczegółowoUKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
Bardziej szczegółowo1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Bardziej szczegółowo5 Wyznaczniki. 5.1 Definicja i podstawowe własności. MIMUW 5. Wyznaczniki 25
MIMUW 5 Wyznaczniki 25 5 Wyznaczniki Wyznacznik macierzy kwadratowych jest funkcją det : K m n K, (m = 1, 2, ) przypisującą każdej macierzy kwadratowej skalar, liniowo ze względu na każdy wiersz osobno
Bardziej szczegółowo(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach
Rozdzia l 4 Przestrzenie liniowe 4.1 Przestrzenie i podprzestrzenie 4.1.1 Definicja i podstawowe w lasności Niech X z dzia laniem dodawania + b edzie grupa przemienna (abelowa). Oznaczmy przez 0 element
Bardziej szczegółowoEndomorfizmy liniowe
Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy
Bardziej szczegółowo2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9
Spis treści 1 Podstawowe struktury algebraiczne 2 11 Grupa, pierścień, ciało 2 12 Grupy permutacji 4 13 Pierścień wielomianów, algorytm Euklidesa, największy wspólny dzielnik 6 14 Zadania 7 2 Rachunek
Bardziej szczegółowoSterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
Bardziej szczegółowoDziałania na przekształceniach liniowych i macierzach
Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,
Bardziej szczegółowoWyk lad 14 Cia la i ich w lasności
Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,
Bardziej szczegółowo1 Rząd macierzy. 2 Liniowa niezależność. Algebra liniowa. V. Rząd macierzy. Baza podprzestrzeni wektorowej
1 Rząd macierzy Rozpatrzmy równanie jednorodne Ax = 0, gdzie A M(n, k). Wiemy, że posiada ono rozwiązanie. Jednakże wymiar macierzy A, a tym samym liczba równań w odpowiadającym jej układzie równań liniowych
Bardziej szczegółowo2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Bardziej szczegółowoWyk lad 1 Podstawowe struktury algebraiczne
Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość
Bardziej szczegółowoUkłady liniowo niezależne
Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1
Bardziej szczegółowo, A T = A + B = [a ij + b ij ].
1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m
Bardziej szczegółowo1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
Bardziej szczegółowoMacierze i Wyznaczniki
dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz
Bardziej szczegółowoRozwiazywanie układów równań liniowych. Ax = b
Rozwiazywanie układów równań liniowych Ax = b 1 PLAN REFERATU: Warunki istnienia rozwiazań układu Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów - algorytm rekurencyjny Rozwiazanie układu
Bardziej szczegółowo6 Homomorfizmy przestrzeni liniowych
konspekt wykladu - 2009/10 1 6 Homomorfizmy przestrzeni liniowych Definicja 6.1. Niech V, U be przestrzeniami liniowymi nad cialem K. Przeksztalcenie F : V W nazywamy przeksztalceniem liniowym (homomorfizmem
Bardziej szczegółowoRozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Bardziej szczegółowoMACIERZE I WYZNACZNIKI
Wykłady z matematyki inżynierskiej IMiF UTP 07 MACIERZ DEFINICJA. Macierza o m wierszach i n kolumnach nazywamy przyporza dkowanie każdej uporza dkowanej parze liczb naturalnych (i, j), gdzie 1 i m, 1
Bardziej szczegółowoUkłady równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Bardziej szczegółowo1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Bardziej szczegółowoMATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Bardziej szczegółowoUkłady równań liniowych
Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1
Bardziej szczegółowoWarunki dzia lań na wektorach - aksjomaty przestrzeni liniowej a) b) daja podobnie do wektorów: strza lki, si la, pre
PRZESTRZENIE LINIOWE V = V, +,,, 0, K Warunki dzia lań na wektorach - aksjomaty przestrzeni liniowej a) b) c) d) e) f) g) h) v V v V u V u V (v + u = u + v) w V v V (v + 0 = v) (v + v V v = 0) (1 v = v)
Bardziej szczegółowo"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.
Bardziej szczegółowodet A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
Bardziej szczegółowoUkłady równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Bardziej szczegółowo15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Bardziej szczegółowoDB Algebra liniowa 1 semestr letni 2018
DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,
Bardziej szczegółowo5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Bardziej szczegółowoZestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
Bardziej szczegółowoSuma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,
Bardziej szczegółowoLista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Bardziej szczegółowoKrótkie wprowadzenie do macierzy i wyznaczników
Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11
Bardziej szczegółowo3 Przestrzenie liniowe
MIMUW 3 Przestrzenie liniowe 8 3 Przestrzenie liniowe 31 Przestrzenie liniowe Dla dowolnego ciała K, analogicznie jak to robiliśmy dla R, wprowadza się operację dodawania wektorów kolumn z K n i mnożenia
Bardziej szczegółowoAlgebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Bardziej szczegółowoPraca domowa - seria 6
Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x
Bardziej szczegółowoRachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe
Bardziej szczegółowoUkłady równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
Bardziej szczegółowoMacierze. Układy równań.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Macierze Układy równań 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie
Bardziej szczegółowo9 Układy równań liniowych
122 II PRZESTRZENIE WEKTOROWE 9 Układy równań liniowych 1 Istnienie rozwiązań układu równań liniowych W tym paragrafie przerwiemy chwilowo ogólną analizę struktur pojawiających się w przestrzeniach wektorowych,
Bardziej szczegółowoWNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Bardziej szczegółowoWektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Bardziej szczegółowoDiagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa,listopad
Bardziej szczegółowo