Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
|
|
- Michalina Markowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x a n x n = b a 2 x + a 22 x a 2n x n = b 2, () a m x + a m2 x a mn x n = b m (w którym a ij 0 dla pewnych i, j) przy pomocy operacji elementarnych równoważnego mu (czyli posiadajacego taki sam zbiór rozwiazań) uk ladu (2), który po ewentualnej permutacji niewiadomych x,, x n ma postać: x + c, k+ x k+ + + c n x n = d x 2 + c 2, k+ x k+ + + c 2n x n = d 2 x + c, k+ x k+ + + c n x n = d (2) x k + c k, k+ x k+ + + c kn x n = d k 0 = d k+ Jeżeli d k+ 0, to uk lad (2) nie ma rozwiazania, a wiec też uk lad () nie ma rozwiazania (czyli jest sprzeczny) Jeżeli d k+ = 0 i k = n, to uk lad () posiada dok ladnie jedno rozwiazanie: x = d, x 2 = d 2,, x n = d n () Jeżeli d k+ = 0 oraz k < n, to x k+, x k+2,, x n sa dowolnymi skalarami (nazywamy je parametrami), zaś pozosta le niewiadome wyliczamy z równań uk ladu (2), tzn x i = d i c i k+ x k+ c in x n dla i =, 2,, k (4) Aby sprowadzić uk lad () do postaci (2) należy najpierw przy pomocy operacji elementarnych przekszta lcić go do uk ladu postaci: x + a 2 x 2+ + a n x n = b a 2 x + a 22 x 2+ + a 2n x n = b 2 (5) a m x + a m2 x 2+ + a mnx n = b m
2 Robimy to np w ten sposób, że najpierw znajdujemy element a ij 0, a nastepnie przez operacje: x x j, r r i, a ij r doprowadzamy uk lad () do postaci (5) Nastepnie przy pomocy równania pierwszego eliminujemy zmienna x z pozosta lych równań uk ladu (5) przez wykonanie operacji: r 2 a 2 r, r a r,,r m a m r Otrzymamy wówczas uk lad postaci: x + a 2 x a n x n = b a 22 x a 2n x n = b 2 (6) a m2 x a mn x n = b m Z kolei stosujemy nasz algorytm do uk ladu: a 2 x a n x n = b a 22 x a 2n x n = b 2 a m2 x a mn x n = b m (7) nie ruszajac pierwszego równania uk ladu (6) Po skończonej liczbie kroków uzyskamy uk lad postaci: x + e 2 x 2 + e x + + e k x k + e k+ x k+ + + e n x n = f x 2 + e 2 x + + e 2k x k + e 2 k+ x k+ + + e 2n x n = f 2 x + + e k x k + e k+ x k+ + + e n x n = f x k + e k k+ x k+ + + e kn x n = f k 0 = f k+ Jeżeli f k+ 0, to otrzymany uk lad jest sprzeczny, a wiec też uk lad () jest sprzeczny Jeżeli zaś f k+ = 0, to przy pomocy operacji: r e k r k, r 2 e 2k r k,,r k e k k r k eliminujemy zmienna x k z poczatkowych k równań Później eliminujemy zmienna x k z wcześniejszych równań przy pomocy k -szego równania, itd W końcu, po skończonej liczbie kroków, uzyskamy w ten sposób uk lad (2) Omówiony wyżej sposób rozwiazywania uk ladu równań metoda Gaussa zawiera dużo elementów dowolnych Dowolność zachodzi na każdym etapie rozważań, ponieważ możemy eliminować dowolna niewiadoma (pod warunkiem, że odpowiedni wspó lczynnik nie równa sie 0) Oprócz tego dowolna jest również kolejność równań w danym uk ladzie Jeżeli np w jakikolwiek sposób zmienimy kolejność równań w wyjściowym uk ladzie, to proces stopniowego eliminowania niewiadomych przebiegać bedzie inaczej Jednak zawsze musimy otrzymać te sama liczbe parametrów! W praktyce proces rozwiazywania uk ladu () możemy znacznie uprościć, jeżeli zamiast przekszta lceń uk ladu równań bedziemy przekszta lcać jego macierz uzupe lniona A u Oczywiste jest, że każdej operacji elementarnej uk ladu () odpowiada odpowiednia operacja elementarna macierzy A u, a mianowicie: 2
3 operacji r i r j odpowiada operacja w i w j, operacji a r i odpowiada operacja a w i, operacji r i + a r j odpowiada operacja w i + a w j, wykreślaniu i-tego równania odpowiada wykreślanie i-tego wiersza, operacji x i x j odpowiada operacja k i k j (należy przy tym pami etać, że nie wolno ruszać ostatniej kolumny i na koniec należy jeszcze uwzgl ednić wszystkie przenumerowania niewiadomych!) Przyk lad 7 Stosujac metode eliminacji Gaussa rozwiażemy nad cia lem R x x 2 9x + 6x 4 + 7x 5 + 0x 6 = 6x + 4x 4 + 2x 5 + x 6 = 2 x + 2x 4 x 5 5x 6 = B edziemy wykonywali rachunki na macierzy uzupe lnionej naszego uk ladu: w w, w 2 2w x 2 x x x x 4 x x 2 x x 2 x x x x 4 x 5 0 w 40w, w w w 2 w 2 w 2, x x 4 x 5 x 2 x x x x x 4 x x 2 x oraz x = x 2, x 4 = x 6 x 6, x 5 = 8 x 6 St rozwiazań danych wzorami: x x x x 4 x 5 24 w 0 40 x 2 x x Zatem zmiennymi bazowymi sa x 2, x, x 6 ad uk lad posiada nieskończenie wiele x = a, x 2 = a, x = b, x 4 = b 6 c, x 5 = 8 c, x 6 = c, gdzie a, b, c s liczbami rzeczywistymi Przyk lad 72 Stosujac metode eliminacji Gaussa rozwiażemy 2x + x 2 x + x 4 = x 2x 2 + 2x x 4 = 2 5x + x 2 x + 2x 4 = 2x x 2 + x x 4 = 4 a dowolnymi Rachunki bedziemy wykonywali na macierzy uzupe lnionej A u naszego uk ladu Mamy, że x 2 x x x x x w 2 +2w, w w, w 4 +w A u =
4 x 2 x x 2 x x 2 x 4 x x x x 4 w 4 +w x 2 x 4 x x x 2 x 4 x x w +w 2, w 4 2w 2 sprzeczny (nie posiada rozwiazania), bo ostatnie równanie ma postać: 0 x x x + 0 x = Zatem nasz uk lad jest Przyk lad 7 Stosujac metode eliminacji Gaussa rozwiażemy 2x x 2 + x x 4 = 2x x 2 x 4 = 2 x x + x 4 = 2x + 2x 2 2x + 5x 4 = 6 Rachunki bedziemy wykonywali na macierzy uzupe lnionej A u naszego uk ladu Mamy, że x x 2 2 x x x x w +w, w 4 +2w A u = x x 2 x x 4 x x 2 x x ( )w Wykonujemy operacje w + w 2 : x x 2 x x 4 x x 2 x x w 4 2w Wykonujemy operacje w i ( )w 4: x x 2 x x 4 x x 2 x x w +w 4, w 2 w 4, w w Wykonujemy operacje w 2w i w 2 + 2w : x x 2 x x 4 x 0 0 x 2 x x w +w Zatem uk lad posiada dok ladnie jedno rozwiazanie: x = 0, x 2 = 2, x = 5, x 4 = 4 4
5 2 Wzory Cramera Niech dany b edzie uk lad n równań liniowych z n niewiadomymi x, x 2,, x n nad cia lem K: a x + a 2 x a n x n = b a 2 x + a 22 x a 2n x n = b 2 a n x + a n2 x a nn x n = b n Wyznacznikiem g lównym uk ladu (8) nazywamy a a 2 a n a W = 2 a 22 a 2n a n a n2 a nn (8) Oznaczmy przez W i (dla i =, 2,, n) wyznacznik powstajacy z W przez zastapienie i-tej b kolumny W kolumna wyrazów wolnych 2 b b n Zatem b a 2 a n a b a n a a 2 b b W = 2 a 22 a 2n a, W 2 = 2 b 2 a 2n a,, W n = 2 a 22 b 2 b n a n2 a nn a n b n a nn a n a n2 b n Wówczas zachodzi nastepuj ace Twierdzenie 74 (Cramera) Jeżeli wyznacznik g lówny uk ladu (8) jest różny od zera, to uk lad ten posiada dok ladnie jedno rozwiaza-nie dane wzorami Cramera: x = W W, x 2 = W 2 W,, x n = W n W (9) Jeżeli zaś W = 0, ale W i 0 dla pewnego i =,, n, to uk lad (8) jest sprzeczny (a wiec nie posiada rozwiazania) Przyk lad 7 Stosujac wzory Cramera rozwiażemy nad cia lem R x + 2x 2 x x 4 = 2 2x x 2 x + 2x 4 = 4x 5x 2 + 2x + x 4 = 5 x x 2 x x 4 = 2 5
6 Obliczamy najpierw wyznacznik g lówny naszego uk ladu Stosujemy kolejno: operacje k 4 +k, k +k, k 2 +k, rozwiniecie Laplace a wzgledem czwartego wiersza, operacje k 2 k, rozwiniecie Laplace a wzgledem pierwszej kolumny: W= = = ( ) 4+ 4 = ( ) ( ) = ( ) (7 24) = ( ) ( 7) = 5 St ad W = 5 0, wiec z twierdzenia Cramera uk lad nasz posiada dok ladnie jedno rozwiazanie Obliczamy teraz wyznacznik W stosujac kolejno: operacje k + k 2, k k 4, k k 4, rozwiniecie Laplace a wzgledem pierwszego wiersza, operacje k 2 + k, rozwini ecie Laplace a wzgl edem drugiego wiersza: W = = = = ( ) +4 ( ) = 0 0 = 0, bo w ostatnim wyznaczniku mamy dwie identyczne 0 0 kolumny Postepuj ac podobnie obliczamy: W 2 = 0 i W = 5 Zatem ze wzorów Cramera: x = W W = 0, x 2 = W 2 W = 0 oraz x = W W = Wyznacznika W 4 nie musimy już obliczać, bo z pierwszego równania x 4 = x + 2x 2 x + 2 = = Zadania do samodzielnego rozwiazania Zadanie 75 Stosujac metode eliminacji Gaussa rozwiaż nad cia lem liczb rzeczywistych x + x 2 = x + x 2 + x = 4 x 2 + x + x 4 = x + x 4 + x 5 = 2 x 4 + x 5 = Odp Uk lad ma nieskończenie wiele rozwiazań danych wzorami: x = 6 t, x 2 = t 5, x =, x 4 = t, x 5 = t, gdzie t R Zadanie 76 Stosujac metode eliminacji Gaussa rozwiaż nad cia lem liczb rzeczywistych 4x x 2 + 2x x 4 = 8 x 2x 2 + x x 4 = 7 2x x 2 5x 4 = 6 5x x 2 + x 8x 4 = 6
7 Odp Uk lad jest sprzeczny Zadanie 77 Stosujac metode eliminacji Gaussa rozwiaż nad cia lem liczb rzeczywistych 4x x 2 + x + 5x 4 = 7 x 2x 2 2x x 4 = x x 2 + 2x = 2x + x 2 + 2x 8x 4 = 7 Odp Uk lad posiada dok ladnie jedno rozwiazanie: x = 2, x 2 =, x =, x 4 = Zadanie 78 Stosujac metode eliminacji Gaussa rozwiaż nad cia lem liczb rzeczywistych 2x 8x x 74x 4 26x 5 = 2 4x 2x 2 + 9x 20x 4 252x 5 = 54 x + 2x 4 + 2x 5 = 4x + 5x 4 + 6x 5 = 2 7x + 8x 4 + 9x 5 = Odp Uk lad posiada nieskończenie wiele rozwiazań danych wzorami: x = x 2, x 2 -dowolna liczba rzeczywista, x =, x 4 = 2, x 5 = 0 Zadanie 79 Stosujac wzory Cramera rozwiaż nad cia lem Q 2x + x 2 + x + 5x 4 = 2 x + x 2 + 5x + 2x 4 = 2x + x 2 + x + 2x 4 = x + x 2 + x + 4x 4 = Odp Uk lad posiada dok ladnie jedno rozwiazanie: x = 2, x 2 = 0, x =, x 4 = Zadanie 70 Stosujac wzory Cramera rozwiaż nad cia lem Q 2x + 5x 2 + 4x + x 4 = 20 x + x 2 + 2x + x 4 = 2x + 0x 2 + 9x + 7x 4 = 40 x + 8x 2 + 9x + 2x 4 = 7 Odp Uk lad posiada dok ladnie jedno rozwiazanie: x =, x 2 = x = 2, x 4 = 0 Zadanie { 7 Stosujac wzory Cramera rozwiaż { nad cia lem C uk lady równań: 2(2 + i)z i( + 2i)w = 5 + 4i ( i)z + 2(2 + i)w = 2( + i), b) a) { (2 + i)z + (2 i)w = 6b a + (2a b)i c) ( i)z + ( + i)w = a + 9b + (a + b)i { { z w 2 i + +i = 2 d) 5z 2w + =, e) (2 i) 2 (+i) 2 (4 i)z + (2 + i)w = 5( + i) (2 i)z (2 + i)w = ( + i), (a, b R), ( + i)z + ( i)w = + i ( i)z + ( + i)w = + i 7
8 Odp a) z = i oraz w = i b) z = i oraz w = c) z = ai oraz w = b d) z = 2i oraz w = + i e) z = i oraz w = + i Zadanie 72 równań: W zależności od wartości parametru a R rozwiaż nad cia lem R uk lad x + ay + z = 2x + y + z = a x + y + az = a 2 Odp Dla a = 0 uk lad jest sprzeczny Dla a 0 i a uk lad posiada dok ladnie jedno rozwiazanie: x = a 2a, y = 2a 2a, z = a + 2a Natomiast dla a = uk lad ma nieskończenie wiele rozwiazań danych wzorami: x = 0, y-dowolna liczba rzeczywista, z = y { Zadanie 7 Stosujac twierdzenie Cramera rozwiaż nad cia lem Z 5 2x + x 2 = 2 x 2x 2 = Odp Uk lad posiada dok ladnie jedno rozwiazanie: x = 4, x 2 = 8
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
Bardziej szczegółowoWyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Bardziej szczegółowoWyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
Bardziej szczegółowoWyk lad 3 Wyznaczniki
1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1
Bardziej szczegółowoWyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
Bardziej szczegółowoWyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
Bardziej szczegółowoWyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Bardziej szczegółowoWyk lad 4 Dzia lania na macierzach. Określenie wyznacznika
Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n
Bardziej szczegółowoZadania o liczbach zespolonych
Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i
Bardziej szczegółowo5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Bardziej szczegółowoWyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
Bardziej szczegółowoTreść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Bardziej szczegółowoa 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Bardziej szczegółowoUkłady równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
Bardziej szczegółowoWstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Bardziej szczegółowoUKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...
Bardziej szczegółowoWyk lad 1 Podstawowe struktury algebraiczne
Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość
Bardziej szczegółowoUKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który
Bardziej szczegółowoUKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
Bardziej szczegółowoWyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Bardziej szczegółowoUkłady równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Bardziej szczegółowodet[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...
Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i
Bardziej szczegółowoUkłady równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
Bardziej szczegółowoO MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Bardziej szczegółowoUkłady równań liniowych
Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1
Bardziej szczegółowoRozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Bardziej szczegółowoUkłady równań liniowych. Ax = b (1)
Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m
Bardziej szczegółowo= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4
17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,
Bardziej szczegółowoWyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Bardziej szczegółowo1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
Bardziej szczegółowoWYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na
Bardziej szczegółowoMacierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Bardziej szczegółowoWyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
Bardziej szczegółowo, A T = A + B = [a ij + b ij ].
1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m
Bardziej szczegółowoNiezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )
Bardziej szczegółowoMetoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
Bardziej szczegółowo13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Bardziej szczegółowoZagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
Bardziej szczegółowo3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Bardziej szczegółowoWyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
Bardziej szczegółowo2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Bardziej szczegółowoWstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Bardziej szczegółowoWykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
Bardziej szczegółowoZastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
Bardziej szczegółowoDB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Bardziej szczegółowoEkonomia matematyczna i dynamiczna optymalizacja
Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać
Bardziej szczegółowoRozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
Bardziej szczegółowoUkłady równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Bardziej szczegółowoWyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Bardziej szczegółowoWłasności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Bardziej szczegółowo3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Bardziej szczegółowoRozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Bardziej szczegółowo"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.
Bardziej szczegółowoMETODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
Bardziej szczegółowoUKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Bardziej szczegółowoGrupy i cia la, liczby zespolone
Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n
Bardziej szczegółowoUKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Bardziej szczegółowoEgzamin z algebry liniowej 2003 r.
Egzamin z algebry linioej 003 r. Cześć I na ocene dostateczna Zadanie. Wyznacz szystkie liczby zespolone z takie, że a) z = 8 + 6i, b) ( + 3i) z = i. Zadanie. Wykonaj podane dzia lania macierzoe: [ 3 0
Bardziej szczegółowoRównania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
Bardziej szczegółowoWyznaczniki, macierz odwrotna, równania macierzowe
Wyznaczniki, macierz odwrotna, równania macierzowe Adam Kiersztyn Katolicki Uniwersytet Lubelski Jana Paw a II Lublin 013 Adam Kiersztyn (KUL) Wyznaczniki, macierz odwrotna, równania macierzowe marzec
Bardziej szczegółowo1 Układy równań liniowych
II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Bardziej szczegółowoLista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
Bardziej szczegółowoWyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Bardziej szczegółowoRachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe
Bardziej szczegółowoWyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
Bardziej szczegółowoRozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady
Rozdzia l 10 Formy dwuliniowe i kwadratowe 10.1 Formy dwuliniowe 10.1.1 Definicja i przyk lady Niech X K b edzie przestrzenia liniowa nad cia lem K, dim(x K ) = n. Definicja 10.1 Przekszta lcenie ϕ : X
Bardziej szczegółowocelu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n
123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki
Bardziej szczegółowo15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Bardziej szczegółowoWyznaczniki 3.1 Wyznaczniki stopni 2 i 3
3 Wyznaczniki 31 Wyznaczniki stopni 2 i 3 Wyznacznik macierzy 2 2 Dana jest macierz [ ] a b A Mat c d 2 2 (R) Wyznacznikiem macierzy A nazywamy liczbę mamy a A c b ad bc d Wyznacznik macierzy A oznaczamy
Bardziej szczegółowoIndeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej
Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej
Bardziej szczegółowoMATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Bardziej szczegółowoSterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
Bardziej szczegółowoMetoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
Bardziej szczegółowoProgramowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Bardziej szczegółowoWyk lad 11 Przekszta lcenia liniowe a macierze
Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β
Bardziej szczegółowoFunkcje wielu zmiennych
Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem
Bardziej szczegółowoMetoda eliminacji Gaussa
Metoda eliminacji Gaussa Rysunek 3. Rysunek 4. Rozpoczynamy od pierwszego wiersza macierzy opisującej nasz układ równań (patrz Rys.3). Zakładając, że element a 11 jest niezerowy (jeśli jest, to niezbędny
Bardziej szczegółowoy 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
Bardziej szczegółowoWyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
Bardziej szczegółowoDyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
Bardziej szczegółowoAnaliza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Bardziej szczegółowoWyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013
Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia
Bardziej szczegółowoZestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
Bardziej szczegółowoWykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym
1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji
Bardziej szczegółowoWyk lad 13 Funkcjona ly dwuliniowe
1 Izomorfizmy kanoniczne Wyk lad 13 Funkcjona ly dwuliniowe Definicja 13.1. Niech V i W bed przestrzeniami liniowymi. Funkcje ξ : V W R nazywamy funkcjona lem dwuliniowym, jeżeli i a,b R α,β V γ W ξa α
Bardziej szczegółowoAnaliza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.
Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania
Bardziej szczegółowoWyk lad 10 Przestrzeń przekszta lceń liniowych
Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych
Bardziej szczegółowoφ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Bardziej szczegółowoUkłady równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi
Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi
Bardziej szczegółowo= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
Bardziej szczegółowoMatematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia
Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej
Bardziej szczegółowowszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów
KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją
Bardziej szczegółowoObliczenia naukowe Wykład nr 8
Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany
Bardziej szczegółowo1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Bardziej szczegółowo1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Bardziej szczegółowo