Podstawowe działania w rachunku macierzowym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawowe działania w rachunku macierzowym"

Transkrypt

1 Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004

2 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy: A = a ij = a 11 a a 1n a 21 a a 2n a m1 a m2... a mn gdzie a ij jest elementem macierzy i-tego wiersza i j-tej kolumny. 2 Wiersze i kolumny macierzy Macierz składająca się z jednego wiersza jest nazywana macierzą jednowierszową i jest zapisywana jak poniżej: A = a 11 a a 1n (2) Macierz składająca się z pojedynczej kolumny jest nazywana macierzą kolumnową lub wektorem i jest zapisywana na dwa równoważne sposoby: A = a 11 a a m1 { } a 11 a a m1 3 Dodawanie i odejmowanie macierzy Dodawanie i odejmowanie macierzy może zostać wykonane tylko na macierzach o takich samych wymiarach. Działanie to polega na wykonaniu dodawania lub odejmowania właściwych elementów macierzy, jak w przykładzie: a11 a 12 b11 b ± 12 a11 ± b = 11 a 12 ± b 12 (4) a 21 a 22 b 21 b 22 a 21 ± b 21 a 22 ± b 22 Dodawanie i odejmowanie macierzy jest przemienne, jak w przykładzie: (1) (3) A B = B + A (5)

3 4 MNOŻENIE MACIERZY PRZEZ SKALAR 2 Dodawanie i odejmowanie macierzy jest łączne, jak w przykładzie: (A + B) C = A + (A C) (6) 4 Mnożenie macierzy przez skalar Macierz liczbową o wymiarach 1 1 nazywamy skalarem. Niech k będzie skalarem, wtedy: ka = ka 11 ka ka 1n ka 21 ka ka 2n ka ka m1 ka m2... ka mn (7) Na przykład, jeśli: wtedy: A = B = 2A + 3B 4C = = 2 C = Mnożenie macierzy Jeżeli macierz A ma wymiar m p, macierz B ma wymiar p n, to macierz C będąca wynikiem mnożenia AB ma wymiar m n. Element i-tego wiersza oraz j-tej kolumny macierzy C, możemy zapisać wzorem: p c ij = a ik b kj = a i1 b 1j + a i2 b 2j + a i3 b 3j a ip b pj (8) k=1 Na przykład, mnożenie C = A B (9a)

4 5 MNOŻENIE MACIERZY 3 Rysunek 1: Ilustracja mnożenia macierzy C = AB w rozbiciu na poszczególene element macierzy ma postać b c11 c 12 a11 a = 12 a 11 b b c 21 c 22 a 21 a 22 a 21 b b 31 b 32 a11 b = 11 + a 12 b 21 + a 13 b 31 a 11 b 12 + a 12 b 22 + a 13 b 32 a 21 b 11 + a 22 b 21 + a 23 b 31 a 21 b 12 + a 22 b 22 + a 23 b 32 Sposób mnożenia macierzy został zilustrowany na rysunku 1. Jeśli: A = B = wtedy: C = A B (9b) (10a) (10b) Na rysunku 1 pokazano jak obliczany jest każdy element macierzy w powiązaniu z wierszem i kolumną z których powstaje. Na przykład: 6 c 24 = a 2k b k4 = 6 k=1 Reguły dotyczące mnożenia macierzy (10c)

5 5 MNOŻENIE MACIERZY 4 1. Mnożenie macierzy nie jest przemienne: AB BA (11) Na przykład: AB = BA = = = Dwie macierze A i B mogą zostać pomnożeone prze siebie tylko wtedu gdy są konforemne tzn.: liczba kolumn macierzy A musi być równa liczbie wierszy macierzy B. A m p B l n = C m n tylko jeśli p = l (12) A m p B l q C r x = D m n tylko jeśli q = r i p = l (13) 3. Mnożenie macierzy jest łączne: ABC = (AB)C = A(BC) (14) Na przykład: A = B = C = (AB)C = A(BC) = = =

6 6 TRANSPOZYCJA MACIERZY 5 Rysunek 2: Ilustracja mnożenia macierzy C = AB oraz D = B T A T 6 Transpozycja macierzy Transpozycja macierzy polega na przestawieniu wierszy macierzy w miejsce kolumn (i odwrotnie) z zachowaniem ich kolejności. Jeżeli macierz A ma wymiar m n, to A T ma wymiar: n m. Na przykład jeżeli: wtedy: A 2 3 = A T 3 2 = a11 a 12 a 13 a 21 a 22 a 23 a 11 a 21 a 12 a 22 a 13 a 23 Z definicji transpozycji macierzy jest oczywiste że: (15) (16) (A T ) T = A (17) A T + B T = (A + B) T (18) Niech macierz C będzie wynikiem mnożenia C = AB oraz D będzie wynikiem mnożenia D = B T A T jak na rysunku 2. Jak widać na rysunku 2 elementy c ij i d ji są sumą iloczynów elementów pochodzących z tych samych wierszy i kolumn (lub kolumn i wierszy), co powoduje że są sobie równe. Zatem możemy zapisać: C T = D (19)

7 7 MACIERZE SPECJALNE 6 zatem: (AB) T = B T A T (20) Powyższe równanie może zostać uogólnione tak aby można było transponować wynik mnożenie więcej niż dwu macierzy. Poniżej przedstawiono przykład dla czterech macierzy używając reguły łączności: (ABCD) T = D T (ABC) T = D T C T (AB) T = D T C T B T A T (21) Na przykład dla macierzy: A = B = C = AB obliczymy C T. Rozwiązanie 1 Rozwiązanie 2 C = AB = C T = B T A T = = C T 1 3 = Macierze specjalne = Macierz kwadratowa Jeżeli macierz A ma wymiar m n i m = n to nazywamy ją macierzą

8 7 MACIERZE SPECJALNE 7 kwadratową. Jeżeli macierz kwadratowa jest symetryczna to spełnione są zależności: a ij = a ji dla i j (22) A = A T (23) Przykład macierzy symetrycznej A o wymiarze 3 3: A = (24) Jeżeli macierz kwadratowa jest antysymetryczna (skośnie symetryczna) to spełnione są zależności: a ij = a ji dla i j (25) Przykład macierzy antysymetrycznej A o wymiarze 3 3: A = (26) Macierz zerowa Jeżeli wszystkie element macierzy A wynoszą zero, wtedy A nazywamy macierzą zerową Macierz diagonalna(tylko dla macierzy kwadratowych) Jeżeli dla macierzy A spełniona jest zależność: a ij = 0 dla i j a ij 0 dla i = j (27) wtedy A nazywamy macierzą diagonalną Przykład macierzy digonalnej A o wymiarze 5 5: a a A = 0 0 a (28) a a 55 Jeżeli A jest macierzą diagonalną oraz: Ax = c (29)

9 7 MACIERZE SPECJALNE 8 to nieznany wektor x wynosi: x i = c i a ii dla i = 1, 2, 3... (30) Macierz jednostkowa Jeżeli wszystkie elementy macierzy diagonalnej leżące na jej przekątnej są równe to macierz taką nazywamy macierzą jednostkową Przykład macierzy jednostkowej I o wymiarze 5 5: I = (31) Jeżeli macierz A oraz macierz I mają ten sam wymiar to spełniona jest zależność: IA = AI = A (32) Macierz skalarna Jeżeli wszystkie elementy macierzy diagonalnej leżące na jej przekątnej są równe określonemu skalarowi (liczbie) to macierz taką nazywamy macierzą skalarną Przykład macierzy skalarnej A o wymiarze 5 5: A 5 5 = = 4I (33) Macierz trójkątna(tylko dla macierzy kwadratowych) Jeżeli wszystkie elementy macierzy leżące nad jej główną przekątną są równe zero a ij = 0 dla i < j (34) to macierz taką nazywamy macierzą dolnotrójkątną Przykład macierzy dolnotrójkątnej A o wymiarze 5 5: A = (35)

10 8 PODZIAŁ MACIERZY NA PODMACIERZE 9 Jeżeli wszystkie elementy macierzy leżące pod jej głowną przekątną są równe zero a ij = 0 dla i > j (36) to macierz taką nazywamy macierzą górnotrójkątną Przykład macierzy górnotrójkątnej A o wymiarze 5 5: A 5 5 = (37) Jeżeli A jest macierzą dolnotrójkątną to łatwo jest znaleźć rozwiązanie równania macierzowego Ax = c (38) które wynosi: x 1 = c 1 a 11 x i = 1 i 1 (c i a ij x j ) dla i = 2, 2, 3..., n (39) a ii j=1 W podobny sposób można rozwiązać równaie macierzowe z macierzą A górnotrójkątną (rozwiązując tym razem ykład od ostatniego równania). 8 Podział macierzy na podmacierze Macierz może zostać podzielona na mniejsze macierze nazywane podmacierzami. Przykład: a 11 a 12 a 13 a 22 a 22 a 23 a 31 a 32 a 33 = A11 A 12 A 22 A 22 (40) gdzie podmacierze mają postać: a11 a A 11 = 12 a 22 a 22 A 21 = a 31 a 32 A 12 = a13 a 23 A 22 = a 33

11 9 MACIERZ ORTOGONALNA 10 9 Macierz ortogonalna Jeżeli macierz transponowana A T jest równa macierzy odwrotnej A 1 to A nazywamy macierzą ortogonalną Z własności macierzy ortogonalnej wynika: gdzie I to macierz jednostkowa. A T = A 1 (41) AA T = AA 1 = I (42) 10 Wyznacznik macierzy Wyznacznik macierzy możemy obliczyć dla macierzy kwadratowej A m m i jest nim liczba, którą oznaczamy na 3 sposoby: deta = A = a 11 a a 1m a 21 a a 2m a m1 a m2... a mm (43) 10.1 Obliczanie wyznacznika dla macierzy o wymiarze 2 2 deta = a 11 a 12 a 22 a 22 = a 11a 22 a 12 a 21 (44) 10.2 Obliczanie wyznacznika z zastosowaniem schematu Sarrusa dla macierzy o wymiarze 3 3 Jak łatwo zuważyć na rysunku 3 iloczyny potrzebne do obliczenia wyznacznika możemy usyskać z zastowowaniem tzw. schematu Sarrusa deta = a 11 a 12 a 13 a 22 a 22 a 23 a 32 a 32 a 33 =a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 a 11 a 23 a 32 a 12 a 21 a 33 (45)

12 10 WYZNACZNIK MACIERZY 11 Rysunek 3: Wybór elementów iloczynów w schemacie Sarrusa 10.3 Obliczanie wyznacznika z zastosowaniem twierdzenia Laplace a Definicje uzupełniające Podwyznacznikiem danego wyznacznika nazywamy nazywamy każdy wyznacznik, który otrzymujemy usuwając z macierzy danego wyznacznika pewną liczbę wierszy i taką samą liczbę kolumn, zachowując kolejność pozostałych elementów. Minorem wyznacznika przynależnym do elementu a ik macierzy mazywamy podwyznacznik danego wyznacznika, który otrzymamy usuwając z macierzy danego wyznacznika wiersz oraz kolumnę, na przecięciu których znajduje się ten element. Dopełnieniem algebraicznym A ik elementu a ik wyznacznika nazywamy iloczym minora tego wyznacznika przynależnego do elementu a ik oraz czynnika ( 1) i+k Twierdzenia Laplace a Wyznacznik jest równy sumie iloczynów każdego elementu dowolnego wiersza lub kolumny i odpowiadającego temu elementowi dopełnienia algebraicznego. m deta = a ik A ik (46) lub k=1 m deta = a ki A ki (47) k=1

13 10 WYZNACZNIK MACIERZY 12 Rozwinięcie wyznacznika macierzy o wymiarze 3 3 według twierdzenia Laplace a względem elementów pierwszego wiersza przyjmije postać deta = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = a 11 A 11 + a 12 A 12 + a 13 A 13 = a 11 ( a ) 22 a 23 a 32 a 33 + a 12( ) a 21 a 23 a 31 a 33 + a 13( ) a 21 a 22 a 31 a 32 = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 a 11 a 23 a 32 a 12 a 21 a 33 (48) 10.4 Właściwości wyznaczników 1. Wyznacznik macierzy kwadratowej jest równy wyznacznikowi macierzy względem niej transponowanej: deta = deta T (49) 2. Wyznacznik z iloczynu macierzy równy jest iloczynowi wyznaczników: (AB) = A B (50) 3. Przestawienie dwóch wierszy (lub kolumn) w macierzy wyznacznika jest równoważne pomnożeniu wyznacznika prze Wyznacznik o dwu jednakowych wierszach (lub kolumnach) jest równy zeru. 5. Mnożąc wiersz wyznacznika (lub kolumnę) przez liczbę mnożymy przez tą liczbę cały wyznaczniki. 6. Wyznacznik o dwu proporcjonalnych wierszach (lub kolumnach) jest równy zeru. 7. Wyznacznik mający wiersz (lub kolumnę) zerowy jest równy zeru. 8. Jeżeli w wyznaczniku jeden z wierszy (lub jedna z kolumn) jest kombinacją liniową pozostałych wierszy (lub kolumn), to wyznacznik jest równy zeru.

14 10 WYZNACZNIK MACIERZY Wyznacznik nie zmieni wartości jeżeli do do jego wiersza (lub kolumny) dodamy kombinację liniową pozostałych wierszy (lub kolumn). 10. W wyznaczniku równym zeru wiersze (kolumny) są liniowo zależne.

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32 Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

IV. UK ADY RÓWNAÑ LINIOWYCH

IV. UK ADY RÓWNAÑ LINIOWYCH IV. UK ADY RÓWNAÑ LINIOWYCH 4.1. Wprowadzenie Uk³ad równañ liniowych gdzie A oznacza dan¹ macierz o wymiarze n n, a b dany n-elementowy wektor, mo e byæ rozwi¹zany w skoñczonej liczbie kroków za pomoc¹

Bardziej szczegółowo

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 3.

Ekoenergetyka Matematyka 1. Wykład 3. Ekoenergetyka Matematyka Wykład 3 MACIERZE Macierzą wymiaru n m, gdzie nm, nazywamy prostokątną tablicę złożoną z n wierszy i m kolumn: a a2 a j am a2 a22 a2 j a2m [ a ] nm A ai ai 2 a aim - i-ty wiersz

Bardziej szczegółowo

(wymiar macierzy trójk¹tnej jest równy liczbie elementów na g³ównej przek¹tnej). Z twierdzen 1 > 0. Zatem dla zale noœci

(wymiar macierzy trójk¹tnej jest równy liczbie elementów na g³ównej przek¹tnej). Z twierdzen 1 > 0. Zatem dla zale noœci 56 Za³ó my, e twierdzenie jest prawdziwe dla macierzy dodatnio okreœlonej stopnia n 1. Macierz A dodatnio okreœlon¹ stopnia n mo na zapisaæ w postaci n 1 gdzie A n 1 oznacza macierz dodatnio okreœlon¹

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

Wyznaczniki, macierz odwrotna, równania macierzowe

Wyznaczniki, macierz odwrotna, równania macierzowe Wyznaczniki, macierz odwrotna, równania macierzowe Adam Kiersztyn Katolicki Uniwersytet Lubelski Jana Paw a II Lublin 013 Adam Kiersztyn (KUL) Wyznaczniki, macierz odwrotna, równania macierzowe marzec

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

Matematyka dla liceum/funkcja liniowa

Matematyka dla liceum/funkcja liniowa Matematyka dla liceum/funkcja liniowa 1 Matematyka dla liceum/funkcja liniowa Funkcja liniowa Wstęp Co zawiera dział Czytelnik pozna następujące informacje: co to jest i jakie ma własności funkcja liniowa

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C

Bardziej szczegółowo

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25 Wykład 4 Informatyka Stosowana Magdalena Alama-Bućko 25 marca 2019 Magdalena Alama-Bućko Wykład 4 25 marca 2019 1 / 25 Macierze Magdalena Alama-Bućko Wykład 4 25 marca 2019 2 / 25 Macierza wymiaru m n

Bardziej szczegółowo

Kratownice Wieża Eiffel a

Kratownice Wieża Eiffel a Kratownice Wieża Eiffel a Kratownica jest to konstrukcja nośna, składająca się z prętów połączonch ze sobą w węzłach. Kratownica może bć: 1) płaska, gd wszstkie pręt leżą w jednej płaszczźnie, 2) przestrzenna,

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

, A T = A + B = [a ij + b ij ].

, A T = A + B = [a ij + b ij ]. 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m

Bardziej szczegółowo

XIII KONKURS MATEMATYCZNY

XIII KONKURS MATEMATYCZNY XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

ZASADY WYPEŁNIANIA ANKIETY 2. ZATRUDNIENIE NA CZĘŚĆ ETATU LUB PRZEZ CZĘŚĆ OKRESU OCENY

ZASADY WYPEŁNIANIA ANKIETY 2. ZATRUDNIENIE NA CZĘŚĆ ETATU LUB PRZEZ CZĘŚĆ OKRESU OCENY ZASADY WYPEŁNIANIA ANKIETY 1. ZMIANA GRUPY PRACOWNIKÓW LUB AWANS W przypadku zatrudnienia w danej grupie pracowników (naukowo-dydaktyczni, dydaktyczni, naukowi) przez okres poniżej 1 roku nie dokonuje

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5. Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

2.Prawo zachowania masy

2.Prawo zachowania masy 2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco

Bardziej szczegółowo

Wykonanie podziału geodezyjnego działek na terenie powiatu gryfińskiego z podziałem na 2 zadania.

Wykonanie podziału geodezyjnego działek na terenie powiatu gryfińskiego z podziałem na 2 zadania. A / I N S T R U K C J A D L A W Y K O N A W C Ó W 1. Zamawiający Województwo Zachodniopomorskie - Zachodniopomorski Zarząd Dróg Wojewódzkich w Koszalinie, ul. Szczecińska 31, 75-122 Koszalin, tel. 94 342

Bardziej szczegółowo

art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny (Dz. U. Nr 16, poz. 93 ze zm.),

art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny (Dz. U. Nr 16, poz. 93 ze zm.), Istota umów wzajemnych Podstawa prawna: Księga trzecia. Zobowiązania. Dział III Wykonanie i skutki niewykonania zobowiązań z umów wzajemnych. art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

7. REZONANS W OBWODACH ELEKTRYCZNYCH

7. REZONANS W OBWODACH ELEKTRYCZNYCH OBWODY SYGNAŁY 7. EZONANS W OBWODAH EEKTYZNYH 7.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód

Bardziej szczegółowo

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość

Bardziej szczegółowo

Krótkie wprowadzenie do macierzy i wyznaczników

Krótkie wprowadzenie do macierzy i wyznaczników Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11

Bardziej szczegółowo

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011 1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 6, strona 1. Format JPEG

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 6, strona 1. Format JPEG mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 6, strona 1. Format JPEG Cechy formatu JPEG Schemat blokowy kompresora Transformacja koloru Obniżenie rozdzielczości chrominancji Podział na bloki

Bardziej szczegółowo

WYKŁAD 8. Postacie obrazów na różnych etapach procesu przetwarzania

WYKŁAD 8. Postacie obrazów na różnych etapach procesu przetwarzania WYKŁAD 8 Reprezentacja obrazu Elementy edycji (tworzenia) obrazu Postacie obrazów na różnych etapach procesu przetwarzania Klasy obrazów Klasa 1: Obrazy o pełnej skali stopni jasności, typowe parametry:

Bardziej szczegółowo

Projekt MES. Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe

Projekt MES. Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe Projekt MES Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe 1. Ugięcie wieszaka pod wpływem przyłożonego obciążenia 1.1. Wstęp Analizie poddane zostało ugięcie wieszaka na ubrania

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

Warunki Oferty PrOmOcyjnej usługi z ulgą

Warunki Oferty PrOmOcyjnej usługi z ulgą Warunki Oferty PrOmOcyjnej usługi z ulgą 1. 1. Opis Oferty 1.1. Oferta Usługi z ulgą (dalej Oferta ), dostępna będzie w okresie od 16.12.2015 r. do odwołania, jednak nie dłużej niż do dnia 31.03.2016 r.

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Regulamin Programu Motywacyjnego II. na lata 2013-2015. współpracowników. spółek Grupy Kapitałowej Internet Media Services SA

Regulamin Programu Motywacyjnego II. na lata 2013-2015. współpracowników. spółek Grupy Kapitałowej Internet Media Services SA Załącznik do Uchwały nr 5 Nadzwyczajnego Walnego Zgromadzenia Internet Media Services SA z dnia 9 stycznia 2013 roku Regulamin Programu Motywacyjnego II na lata 2013-2015 dla członków Zarządu, menedżerów,

Bardziej szczegółowo

dr inż. Cezary Wiśniewski Płock, 2006

dr inż. Cezary Wiśniewski Płock, 2006 dr inż. Cezary Wiśniewski Płock, 26 Gra z naturą polega na tym, że przeciwnikiem jest osoba, zjawisko naturalne, obiekt itp. nie zainteresowany wynikiem gry. Strategia, którą podejmie przeciwnik ma charakter

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie: WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Próbna Nowa Matura z WSiP Październik 0 Egzamin maturalny z matematyki dla klasy Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera

Bardziej szczegółowo

Wykład 7 Macierze i wyznaczniki

Wykład 7 Macierze i wyznaczniki Wykład 7 Macierze i wyznaczniki Andrzej Sładek sladek@ux2mathusedupl Instytut Matematyki, Uniwersytet Śląski w Katowicach Andrzej Sładek (Instytut Matematyki, Uniwersytet Śląski Wykład w Katowicach) 7

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

Zapytanie ofertowe dotyczące wyboru wykonawcy (biegłego rewidenta) usługi polegającej na przeprowadzeniu kompleksowego badania sprawozdań finansowych

Zapytanie ofertowe dotyczące wyboru wykonawcy (biegłego rewidenta) usługi polegającej na przeprowadzeniu kompleksowego badania sprawozdań finansowych Zapytanie ofertowe dotyczące wyboru wykonawcy (biegłego rewidenta) usługi polegającej na przeprowadzeniu kompleksowego badania sprawozdań finansowych Data publikacji 2016-04-29 Rodzaj zamówienia Tryb zamówienia

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

Mnożenie macierzy. Systemy z pamięcią współdzieloną Systemy z pamięcią rozproszoną Efektywność

Mnożenie macierzy. Systemy z pamięcią współdzieloną Systemy z pamięcią rozproszoną Efektywność Mnożenie macierzy Systemy z pamięcią współdzieloną Systemy z pamięcią rozproszoną Efektywność Literatura: Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; 1 Mnożenie macierzy dostęp do

Bardziej szczegółowo

ANALIZA OBWODÓW RZĘDU ZEROWEGO PROSTE I SIECIOWE METODY ANALIZY OBWODÓW

ANALIZA OBWODÓW RZĘDU ZEROWEGO PROSTE I SIECIOWE METODY ANALIZY OBWODÓW ANALIZA OBWODÓW RZĘDU ZEROWEGO PROSTE I SIECIOWE METODY ANALIZY OBWODÓW Rezystancja zastępcza dwójnika bezźródłowego (m.b. i=0 i u=0) Równoważność dotyczy zewnętrznego zachowania się układów, lecz nie

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 1: GRY W POSTACI EKSTENSYWNEJ I NORMALNEJ

TEORIA GIER W EKONOMII WYKŁAD 1: GRY W POSTACI EKSTENSYWNEJ I NORMALNEJ TEORIA GIER W EKONOMII WYKŁAD : GRY W POSTACI EKSTENSYWNEJ I NORMALNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Schemat gry. Początek gry. 2. Ciąg kolejnych posunięć

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Standardowe tolerancje wymiarowe WWW.ALBATROS-ALUMINIUM.COM

Standardowe tolerancje wymiarowe WWW.ALBATROS-ALUMINIUM.COM Standardowe tolerancje wymiarowe WWW.ALBATROSALUMINIUM.COM Tolerancje standardowe gwarantowane przez Albatros Aluminium obowiązują dla wymiarów co do których nie dokonano innych uzgodnień podczas potwierdzania

Bardziej szczegółowo

Przygotowały: Magdalena Golińska Ewa Karaś

Przygotowały: Magdalena Golińska Ewa Karaś Przygotowały: Magdalena Golińska Ewa Karaś Druk: Drukarnia VIVA Copyright by Infornext.pl ISBN: 978-83-61722-03-8 Wydane przez Infornext Sp. z o.o. ul. Okopowa 58/72 01 042 Warszawa www.wieszjak.pl Od

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

D1. Algebra macierzy. D1.1. Definicje

D1. Algebra macierzy. D1.1. Definicje D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY

WOJEWÓDZKI KONKURS FIZYCZNY Kod ucznia Liczba punktów: Zad. 1- Zad. 2- Zad. 3- Zad.4- Zad.5- R A Z E M : pkt. WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STOPIEŃ WOJEWÓDZKI 13. 03. 2014 R. 1. Zestaw

Bardziej szczegółowo

Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk

Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Marzena Kococik Olga Kuśmierczyk Szkoła Podstawowa im. Marii Konopnickiej w Krzemieniewicach Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Konkursy wyzwalają aktywność

Bardziej szczegółowo

1) TUnŻ WARTA S.A. i TUiR WARTA S.A. należą do tej samej grupy kapitałowej,

1) TUnŻ WARTA S.A. i TUiR WARTA S.A. należą do tej samej grupy kapitałowej, Zasady finansowania działalności kulturalno-oświatowej ze środków zakładowego funduszu świadczeń socjalnych w TUnŻ WARTA S.A. w okresie od 1 września 2015 roku do 31 grudnia 2015 roku 1. Świadczenia finansowane

Bardziej szczegółowo

Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3

Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3 3 Wyznaczniki 31 Wyznaczniki stopni 2 i 3 Wyznacznik macierzy 2 2 Dana jest macierz [ ] a b A Mat c d 2 2 (R) Wyznacznikiem macierzy A nazywamy liczbę mamy a A c b ad bc d Wyznacznik macierzy A oznaczamy

Bardziej szczegółowo

Umowa na przeprowadzenie badań ilościowych

Umowa na przeprowadzenie badań ilościowych Załącznik nr 4: Wzór umowy na przeprowadzenie badań ilościowych Umowa na przeprowadzenie badań ilościowych zawarta w dniu... roku, pomiędzy: Europejski Dom Spotkań Fundacja Nowy Staw, z siedzibą w Lublinie

Bardziej szczegółowo

KONSPEKT LEKCJI MATEMATYKI. Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum. TEMAT: Działania łączne na liczbach wymiernych

KONSPEKT LEKCJI MATEMATYKI. Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum. TEMAT: Działania łączne na liczbach wymiernych KONSPEKT LEKCJI MATEMATYKI Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum TEMAT: Działania łączne na liczbach wymiernych Cele lekcji: Cel ogólny: - utrwalenie wiadomościiumiejętności z działu

Bardziej szczegółowo

- 70% wg starych zasad i 30% wg nowych zasad dla osób, które. - 55% wg starych zasad i 45% wg nowych zasad dla osób, które

- 70% wg starych zasad i 30% wg nowych zasad dla osób, które. - 55% wg starych zasad i 45% wg nowych zasad dla osób, które Oddział Powiatowy ZNP w Gostyninie Uprawnienia emerytalne nauczycieli po 1 stycznia 2013r. W związku napływającymi pytaniami od nauczycieli do Oddziału Powiatowego ZNP w Gostyninie w sprawie uprawnień

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 29/2 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

biuro@cloudtechnologies.pl www.cloudtechnologies.pl Projekty uchwał dla Zwyczajnego Walnego Zgromadzenia

biuro@cloudtechnologies.pl www.cloudtechnologies.pl Projekty uchwał dla Zwyczajnego Walnego Zgromadzenia Warszawa, 11 kwietnia 2016 roku Projekty uchwał dla Zwyczajnego Walnego Zgromadzenia w sprawie przyjęcia porządku obrad Zwyczajne Walne Zgromadzenie przyjmuje następujący porządek obrad: 1. Otwarcie Zgromadzenia,

Bardziej szczegółowo

DE-WZP.261.11.2015.JJ.3 Warszawa, 2015-06-15

DE-WZP.261.11.2015.JJ.3 Warszawa, 2015-06-15 DE-WZP.261.11.2015.JJ.3 Warszawa, 2015-06-15 Wykonawcy ubiegający się o udzielenie zamówienia Dotyczy: postępowania prowadzonego w trybie przetargu nieograniczonego na Usługę druku książek, nr postępowania

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

Stypendia USOS Stan na semestr zimowy 2013/14

Stypendia USOS Stan na semestr zimowy 2013/14 Stypendia USOS Stan na semestr zimowy 2013/14 Wnioski Wnioski dostępne w USOS Deklaracja programu Wniosek zbierający informacje o dochodach rodziny studenta Wniosek o przyznanie stypendium socjalnego Wniosek

Bardziej szczegółowo

Zasady rekrutacji, kryteria i warunki przyjęć do Przedszkola Samorządowego nr 25 w Kielcach

Zasady rekrutacji, kryteria i warunki przyjęć do Przedszkola Samorządowego nr 25 w Kielcach Zasady rekrutacji, kryteria i warunki przyjęć do Przedszkola Samorządowego nr 25 w Kielcach Załącznik nr 1 do Zarządzenia nr 3/2016 Dyrektora Przedszkola Samorządowego nr 25 w Kielcach z dnia 07.03. 2016

Bardziej szczegółowo

Uchwały podjęte przez Nadzwyczajne Walne Zgromadzenie Zakładów Lentex S.A. z dnia 11 lutego 2014 roku

Uchwały podjęte przez Nadzwyczajne Walne Zgromadzenie Zakładów Lentex S.A. z dnia 11 lutego 2014 roku Uchwały podjęte przez Nadzwyczajne Walne Zgromadzenie Zakładów Lentex S.A. z dnia 11 lutego 2014 roku Uchwała Nr 1 z dnia 11 lutego 2014 roku w sprawie wyboru przewodniczącego Nadzwyczajnego Walnego Zgromadzenia.

Bardziej szczegółowo

Macierze. Dziaªania na macierzach. 1. Niech b d dane macierze , D = , C = , B = 4 12 A = , F = , G = , H = E = a) Obliczy A + B, 2A 3B,

Macierze. Dziaªania na macierzach. 1. Niech b d dane macierze , D = , C = , B = 4 12 A = , F = , G = , H = E = a) Obliczy A + B, 2A 3B, Macierze Dziaªania na macierzach Niech b d dane macierze A = E = [ 2 3 0 3 2 3 2 0 [ 0 8, B = 4 2, F = [ 2 3, C = 3 2 2 3 0 0 0 4 0 6 3 0, G =, D = 0 2 0 2 0 3 0 3 0 2 0 0 2 2 0 0 5 0 2,, H = 0 0 4 0 0

Bardziej szczegółowo

Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych

Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych Podstawowe pojęcia: Badanie statystyczne - zespół czynności zmierzających do uzyskania za pomocą metod statystycznych informacji charakteryzujących interesującą nas zbiorowość (populację generalną) Populacja

Bardziej szczegółowo

GEO-SYSTEM Sp. z o.o. GEO-RCiWN Rejestr Cen i Wartości Nieruchomości Podręcznik dla uŝytkowników modułu wyszukiwania danych Warszawa 2007

GEO-SYSTEM Sp. z o.o. GEO-RCiWN Rejestr Cen i Wartości Nieruchomości Podręcznik dla uŝytkowników modułu wyszukiwania danych Warszawa 2007 GEO-SYSTEM Sp. z o.o. 02-732 Warszawa, ul. Podbipięty 34 m. 7, tel./fax 847-35-80, 853-31-15 http:\\www.geo-system.com.pl e-mail:geo-system@geo-system.com.pl GEO-RCiWN Rejestr Cen i Wartości Nieruchomości

Bardziej szczegółowo

Dr inż. Andrzej Tatarek. Siłownie cieplne

Dr inż. Andrzej Tatarek. Siłownie cieplne Dr inż. Andrzej Tatarek Siłownie cieplne 1 Wykład 3 Sposoby podwyższania sprawności elektrowni 2 Zwiększenie sprawności Metody zwiększenia sprawności elektrowni: 1. podnoszenie temperatury i ciśnienia

Bardziej szczegółowo

Wymagania na poszczególne oceny klasa 4

Wymagania na poszczególne oceny klasa 4 Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć

Bardziej szczegółowo

Rolnik - Przedsiębiorca

Rolnik - Przedsiębiorca Rolnik - Przedsiębiorca Pojawiły się nowe zasady podlegania ubezpieczeniom społecznym i wymiaru składek w Kasie Rolniczego Ubezpieczenia Społecznego (KRUS) dotyczące rolników prowadzących dodatkową działalność

Bardziej szczegółowo