WSPÓŁ CZYNNIK BEZPIECZEŃ STWA ZMĘ CZENIOWEGO WAŁ ÓW PRZY LOSOWYM ZGINANIU I SKRĘ CANIU
|
|
- Beata Szymczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 SYTY NAUKOW AKADMII MARYNARKI WOJNNJ ROK LII NR (8 0 Janusz Kolenda Akademia Maynaki Wojennej WSPÓŁ CYNNIK BPICŃ STWA MĘ CNIOWGO WAŁ ÓW PRY LOSOWYM GINANIU I SKRĘ CANIU STRSCNI Atykuł dotyczy bezieczeństwa zmęczeniowego wałów oddanych ównoczesnemu działaniu momentów gnących i skęcających o losowym chaakteze i stacjonanych w szeszym sensie. akłada się, że wynikające stąd naężenia nomalne i tnące są nieskoelowane oaz że mają znane watości śednie i gęstości widmowe mocy. Pozwala to oba te naężenia ozatywać oddzielnie i wykozystywać znany wzó na wsółczynnik bezieczeństwa zmęczeniowego wałów na odstawie obliczeń cząstkowych wsółczynników bezieczeństwa zmęczeniowego zy zginaniu i skęcaniu. W tym celu wyznaczono ekwiwalentne naężenia nomalne i tnące jako ocesy Gaussa oaz watości oczekiwane cząstkowych wsółczynników bezieczeństwa. Pzeowadzono obliczenia zykładowe. Słowa kluczowe: wały, obciążenia losowe, wytzymałość zmęczeniowa. WSTĘP Na skutek obciążeń zewnętznych w ozecznych zekojach wałów owstają naężenia: nomalne od momentów gnących; tnące od momentów skęcających; tnące od sił ozecznych; nomalne od sił wzdłużnych (ściskających bądź ozciągających. 67
2 Janusz Kolenda azwyczaj naężenia tnące od sił ozecznych nie są uwzględniane w obliczeniach wytzymałościowych wałów z owodu ich małej watości w oównaniu do naężeń wywołanych zginaniem i skęcaniem. Również obciążenia wzdłużne wałów oddanych znacznym momentom skęcającym i gnącym są zwykle omijane w tego tyu obliczeniach [5]. To samo dotyczy obliczeń zmęczeniowych, zy czym w najbadziej zgubnym algoytmie zeczywiste wsółczynniki bezieczeństwa zmęczeniowego na zginanie δ i na skęcanie δ liczy się dla każdego odzaju naężeń osobno, a nastęnie okeśla łączny zeczywisty wsółczynnik bezieczeństwa zmęczeniowego δ ze wzou [,, 5]: δ δ δ. ( δ + δ Wzó ( jest ważny dla ogólnego zyadku łaskiego stanu naężenia ze składowymi i, a zatem ównież dla cykli niesymetycznych. Nie zachodzi zy tym konieczność sełnienia założenia o zgodności faz i częstości naężeń składowych []. uwzględnieniem takich czynników wływających na wytzymałość zmęczeniową, jak działanie kabu, wielkość zedmiotu i ważliwość mateiału na asymetię cyklu, wystęujące w ( wsółczynniki wyznaczane są za omocą wzoów: δ go so, δ, ( β β a + ψ m a + ψ m a, a nominalne amlitudy naężeń składowych; m, m watości śednie naężeń składowych; β, wsółczynniki działania kabu i wielkości zedmiotu, któych watości okeślone są w liteatuze secjalistycznej [, 5]; ψ wsółczynniki ważliwości mateiału na asymetię cyklu definiowane jako go gj so sj ψ, ψ, (3 gj sj, ganice zmęczenia zy cyklach wahadłowych; go so gj, sj ganice zmęczenia zy cyklach odzeowo tętniących. 68 eszyty Naukowe AMW
3 Wsółczynnik bezieczeństwa zmęczeniowego wałów zy losowym zginaniu i skęcaniu W zyadku gdy naężenia składowe ~ i ~ mają chaakte ocesów losowych z amlitudami o ozkładach nomalnych, awdoodobieństwo zniszczenia zmęczeniowego można odczytać z wykesów, kozystając z algoytmu obliczeń oisanego w []. W niniejszej acy zedstawiono możliwość wykozystania wzoów ( (3 do oszacowania watości oczekiwanej wsółczynnika bezieczeństwa zmęczeniowego zy łącznym wystęowaniu losowego zginania i skęcania. ałożono zy tym, że naężenia składowe ~ i ~ są nieskoelowanymi ocesami stacjonanymi (w szeszym sensie o znanych watościach śednich i gęstościach widmowych mocy, któe zamodelowano ównoważnymi w sensie wytzymałości zmęczeniowej naężeniami ekwiwalentnymi ~ i ~. e e KWIWALNTN NAPRĘŻNIA SKŁADOW ~ t Rozatywane naężenia nomalne ( i tnące ( t ~ ~ i naężenia śednie; m m ( t ( t i ocesy stochastyczne. ( t m + ( t ( t + ( t m ~ można zaisać jako:, ( oczekiwanych naężeń śednich { } { } m Pzy założeniu stacjonaności tych ocesów oaz znajomości watości i oszukiwać będziemy ekwiwalentnych naężeń składowych w ostaci dogodnej do obliczeń zmęczeniowych [3]: gdzie e e ~ ~ e e to ocesy Gaussa sełniające waunki: ( m ( t { } + ( t m ( t { } + ( t m e e, (5 ( t asin( ω t + α a e( jω t + a e( jω t ( t bsin( ω t + α b e( jω t + b e( jω t (6
4 K K e e ( τ K ( τ ( τ K ( τ W zależnościach (6 i (7 oznaczono: Janusz Kolenda. (7 a, b amlitudy ekwiwalentnych naężeń składowych (zmienne losowe; α, α kąty fazowe ekwiwalentnych naężeń składowych (zmienne losowe; ω, ω częstości ekwiwalentnych naężeń składowych; j a a e j b b e j jedność uojona; ( jα, a ( jα, b b a ( wielkość zesolona szężona; K e( τ, K e( τ funkcje autokoelacji ocesów e( t e( t K ( τ, K ( τ funkcje autokoelacji ocesów ( t i ( t ; τ zy czym odstę czasu, {} watość oczekiwana. { a} { a } { a a } { a a} { b } { b } { b b } { b b } 0 Waunki (7 owadzą do elacji: ; (8 i ; 0 ; (9 {[ a e( jωt + a e( jωt ][ a e( jωt + a e( jωt ]} { ( t ( t } {[ b e( jωt + b e( jωt ][ b e( jωt + b e( jωt ]} { ( t ( t } czyli z uwzględnieniem (8 i (9:, (0 70 eszyty Naukowe AMW
5 Wsółczynnik bezieczeństwa zmęczeniowego wałów zy losowym zginaniu i skęcaniu Oznaczono tu: { a }, { b } { a } e( jω τ + e( jω τ [ ] K ( τ { b }[ e( jω τ + e( jω τ ] K ( τ. ( watości śedniokwadatowe amlitud ekwiwalentnych naężeń składowych; τ t t. ω W wyniku tansfomacji Fouiea ównań ( otzymuje się: { a } δ ( ω ω + δ ( ω + ω [ ] S ( ω { b }[ δ ( ω ω + δ ( ω + ω ] S ( ω S (, S ( ω gęstości widmowe mocy ocesów ( t ( t δ funkcja delta Diaca., ( i ; Na odstawie ównań ( można sfomułować nastęujące waunki ównoważności naężeń ( t i ( t t t [3, ]: e oaz ( i ( e atem { a } δ ( ω ω + δ ( ω + ω [ ] dω S ( ω { b } [ δ ( ω ω + δ ( ω + ω ] dω S ( ω dω dω. (3 { a } S ( ω { b } S ( ω dω dω. ( (8 0 7
6 Janusz Kolenda ważywszy, że amlitudy a i b ocesów (6 jako wąskoasmowych ocesów Gaussa mają ozkład Rayleigha, ich momenty statystyczne wynoszą [6]: k { a } k / k Γ + s k k k k k { b } / Γ + s Γ funkcja gamma; s, odchylenia standadowe amlitud a i b. s, k,,..., (5 Stąd {} a ( 0,5π / s, { b} ( 0,5π / s ; (6 { a } s, { b } s. (7 Poównując awe stony wyażeń ( i (7, otzymuje się: / s S ( ω dω, s S ( ω dω. (8 / WARTOŚCI OCKIWAN WSPÓŁCYNNIKÓW BPICŃSTWA Na odstawie wzoów ( watości oczekiwane cząstkowych wsółczynników bezieczeństwa zmęczeniowego wałów oddanych działaniu ekwiwalentnych naężeń składowych (5 wynoszą: { δ } { δ } β β go {} a + ψ { } so {} b + ψ { } m m, (9 7 eszyty Naukowe AMW
7 Wsółczynnik bezieczeństwa zmęczeniowego wałów zy losowym zginaniu i skęcaniu czyli z uwzględnieniem (6 i (8: { δ } { δ } β 0,5π β 0,5π S S ( ω dω + ψ { } ( ω dω + ψ { } ( go so / / m m. (0 Wyażenia ( i (0 umożliwiają wyznaczenie watości oczekiwanej łącznego wsółczynnika bezieczeństwa zmęczeniowego wałów w zyadku ównoczesnego działania momentów gnących i momentów skęcających o losowym chaakteze ze wzou: Pzykł ad {} δ { δ } { δ } [ { δ }] + [ { δ }]. ( Wał oddany jest ównoczesnemu działaniu stacjonanych momentów gnących i skęcających. W analizowanym zekoju wywołują one naężenia ~ ( t m + ( t ~, t + t gdzie m m ( ( i to watości śednie o chaakteze losowym oaz m ( t ( A cosω t + B sinω t k ( t ( Al cosωlt + Bl sinωlt l k k k k. ( W wyażeniach ( A k, Bk, Al i Bl są zmiennymi losowymi o zeowych watościach śednich, statystycznie niezależnymi od siebie. Wyznaczyć watość oczekiwaną łącznego wsółczynnika bezieczeństwa zmęczeniowego zy i oaz watości śed- założeniu, że znane są watości oczekiwane { m} { m} niokwadatowe { A }, { B }, { A } i { B }. k k l l
8 Janusz Kolenda Rozwią zanie Fomuły ulea cosω t sinω t ozwalają zaisać wyażenia ( w ostaci: Oznaczając [ e( jω t + e( jωt ] [ e( jω t e( jωt ] ( t [ C e( jω t + D e( jω t ] otzymuje się z (3 k ( t [ Cl e( jωlt + Dl e( jωlt ] C C k l l k A A k k l k + B j k + B j l,, k D k D k ωl C l k C ω ω, ω, G G G G k k l l ( t G e( jω t k l ( t Gl e( jωlt C D k C k D l l k k dla k,,..., l dla k,,..., dla l,,..., dla l,,..., k l, (3. (, (5 7 eszyty Naukowe AMW
9 Wsółczynnik bezieczeństwa zmęczeniowego wałów zy losowym zginaniu i skęcaniu Funkcje autokoelacji naężeń (5 wyażają się nastęująco: K K ( t, t G e( jω t G e( jω t k m { G G } e j( ω t ω t [ ] ( t, t Gl e( jωlt Gn e( jωnt l n k k k m l n k { G G } e[ j( ω t ω t ] l m n m m n Na odstawie założeń i elacji ( zachodzą związki: k l m. (6 { G G } k { G G } l m n H k dla k m, 0 dla k m H l dla l n, 0 dla l n H H k l ( { A } + { B } k ( { A } + { B } l k l. (7 Stąd K K ( τ H e( jω τ k ( τ H l e( jωlτ l k k. (8 Poddając funkcje (8 tansfomacji Fouiea, otzymuje się gęstości widmowe mocy naężeń składowych: S S ( ω H δ ( ω ω k ( ω H lδ ( ω ωl l k k. (9 (8 0 75
10 Janusz Kolenda atem ( ω S dω H k ( ω S dω H l k k l l H H k l, (30 czyli z uwzględnieniem oznaczeń H k i H w (7 l S ( ω dω ( { Ak} + { Bk} k S ( ω dω ( { Al} + { Bl} l. (3 Oznacza to, że ozwiązanie ostawionego zadania sowadza się do odstawienia do wzou ( nastęujących watości oczekiwanych cząstkowych wsółczynników bezieczeństwa zmęczeniowego wału: { δ } { δ } B π 0,5 B 0,5π ( { Ak} + { Bk} + ψ { m} k ( { Al} + { Bl} + ψ { m} l go so / /. (3 WNIOSKI Pojektowanie wałów naędowych i ośednich w układach maszynowych jest zadaniem odowiedzialnym, mającym istotny wływ na twałość i niezawodność układu. Stąd wynika duże znaczenie obliczeń mających na celu ocenę watości wsółczynnika bezieczeństwa zmęczeniowego wałów. Podobnie jak ocena wsółczynnika bezieczeństwa zmęczeniowego w najbadziej obciążonych elementach czy węzłach układu owinna ona wchodzić w zakes obliczeń sawdzających układ. W odniesieniu do elementów acujących w złożonym stanie naężenia 76 eszyty Naukowe AMW
11 Wsółczynnik bezieczeństwa zmęczeniowego wałów zy losowym zginaniu i skęcaniu o zdeteminowanych składowych nomalnych i tnących służy temu wzó (. Niniejszy atykuł jest óbą ozszezenia zakesu zastosowań tego wzou na stacjonane obciążenia losowe. Jak ukazano w zykładzie, może on w szczególności służyć do oceny bezieczeństwa zmęczeniowego wałów w stosunkowo obszenej klasie układów maszynowych, gdzie obciążenia wykazują losowe fluktuacje i naężenia są okesowe w sensie śedniokwadatowym. BIBLIOGRAFIA [] Dąbowski., Maksymiuk M., Wały i osie, PWN, Waszawa 98. [] Kocańda S., Szala J., Podstawy obliczeń zmęczeniowych, PWN, Waszawa 997. [3] Kolenda J., On fatigue safety of metallic elements unde static and dynamic loads, Politechnika Gdańska, Gdańsk 00. [] Kolenda J., O wyznaczaniu wastwic bezieczeństwa zmęczeniowego elementów konstukcyjnych zy jednoosiowych obciążeniach stochastycznych, eszyty Naukowe AMW, 00, n. [5] Kyzioł L., Podstawy konstukcji maszyn, cz. II, AMW, Gdynia 008. [6] Pacut A., Pawdoodobieństwo. Teoia. Pobabilistyczne modelowanie w technice, PWN, Waszawa 985. COFFICINT OF FATIGU SAFTY OF SHAFTS UNDR RANDOM BNDING AND TORSION ABSTRACT The ae deals with fatigue safety of shafts subjected to simultaneous bending and tosional loads of andom chaacte, stationay in the wide sense. It is assumed that the esulting nomal and shea stesses ae not coelated with each othe, and that thei mean values and owe sectal densities ae known. Consequently, both these stesses can be consideed seaately and the known fomula fo the coefficient of fatigue safety of shafts based on the calculations (8 0 77
12 Janusz Kolenda of atial coefficients of fatigue safety unde bending and tosion can be alied. Fo this uose equivalent nomal and shea stesses as Gaussian ocesses and eected values of the atial coefficients of fatigue safety ae detemined. emlay calculations ae caied out. Keywods: shafts, andom loads, fatigue stength. Recenzent d hab. inż. Janusz Kozak 78 eszyty Naukowe AMW
ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania
ĆWICZENIE 5 Badanie zekaźnikowych układów steowania 5. Cel ćwiczenia Celem ćwiczenia jest badanie zekaźnikowych układów steowania obiektem całkującoinecyjnym. Ćwiczenie dotyczy zekaźników dwu- i tójołożeniowych
O ŁĄCZENIU TRZECH RYNKÓW
tudia Ekonomiczne eszyty Naukowe Uniwesytetu Ekonomicznego w Katowicach IN - N zkoła Główna Handlowa w Waszawie Kolegium Analiz Ekonomicznych Kateda Matematyki i Ekonomii Matematycznej jutkin@sghwawl O
= ± Ne N - liczba całkowita.
POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
MECHANIKA BUDOWLI 12
Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia
Tradycyjne mierniki ryzyka
Tadycyjne mieniki yzyka Pzykład 1. Ryzyko w pzypadku potfela inwestycyjnego Dwie inwestycje mają następujące stopy zwotu, zależne od sytuacji gospodaczej: Sytuacja Pawdopodobieństwo R R Recesja 0, 9,0%
MODELOWANIE OBSZARÓW WIELOSPÓJNYCH W PURC DLA DWUWYMIAROWEGO RÓWNANIA RÓŻNICZKOWEGO NAVIERA
MODELOWANIE INŻYNIERSKIE ISNN 896-77X 3, s. 507-5, Gliwice 006 MODELOWANIE OBSZARÓW WIELOSPÓJNYCH W PURC DLA DWUWYMIAROWEGO RÓWNANIA RÓŻNICZKOWEGO NAVIERA EUGENIUSZ ZIENIUK AGNIESZKA BOŁTUĆ Zakład Metod
Modelowanie przepływu cieczy przez ośrodki porowate Wykład III
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości
ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVIII NR 1 (168) 007 Janusz Kolenda Akademia Marynarki Wojennej ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH STRESZCZENIE
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy
Binarne Diagramy Decyzyjne
Sawne tablice logiczne Plan Binane diagamy decyzyjne Oganiczanie i kwantyfikacja Logika obliczeniowa Instytut Infomatyki Plan Sawne tablice logiczne Binane diagamy decyzyjne Plan wykładu 1 2 3 4 Plan wykładu
Wykład 1. Elementy rachunku prawdopodobieństwa. Przestrzeń probabilistyczna.
Podstawowe pojęcia. Wykład Elementy achunku pawdopodobieństwa. Pzestzeń pobabilistyczna. Doświadczenie losowe-doświadczenie (zjawisko, któego wyniku nie możemy pzewidzieć. Pojęcie piewotne achunku pawdopodobieństwa
Podstawowe konstrukcje tranzystorów bipolarnych
Tanzystoy Podstawowe konstukcje tanzystoów bipolanych Zjawiska fizyczne występujące w tanzystoach bipolanych, a w związku z tym właściwości elektyczne tych tanzystoów, zaleŝą od ich konstukcji i technologii
AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE.
uma Pzedsiębiocy /6 Lipiec 205. AKAEMIA INWESTORA INYWIUALNEGO CZĘŚĆ II. AKCJE. WYCENA AKCJI Wycena akcji jest elementem analizy fundamentalnej akcji. Następuje po analizie egionu, gospodaki i banży, w
Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego
Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość
Wyznaczanie współczynnika wnikania ciepła dla konwekcji swobodnej
Kateda Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie wsółczynnika wnikania cieła dla konwekcji swobodnej - - Pojęcia odstawowe Konwekcja- zjawisko wymiany cieła między owiezchnią
ZWIĄZEK FUNKCJI OMEGA Z DOMINACJĄ STOCHASTYCZNĄ
Studia konomiczne. Zeszyty Naukowe Uniwesytetu konomicznego w Katowicach ISSN 283-86 N 237 25 Infomatyka i konometia 2 wa Michalska Uniwesytet konomiczny w Katowicach Wydział Infomatyki i Komunikacji Kateda
Zadania otwarte. 2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10.
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listoad 05 Zadania zamknięte Za każdą oawną odowiedź zdający otzymuje unkt. Nume Poawna odowiedź Wskazówki do ozwiązania.
PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM
PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej
WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA
WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (
Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie
Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy
m q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej
PITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petochemii Instytut Inżynieii Mechanicznej w Płocku Zakład Apaatuy Pzemysłowej ABRATRIUM TERMDYNAMIKI Instukcja stanowiskowa Temat: Analiza spalin
Wartości wybranych przedsiębiorstw górniczych przy zastosowaniu EVA *
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO n 786 Finanse, Rynki Finansowe, Ubezpieczenia n 64/1 (2013) s. 269 278 Watości wybanych pzedsiębiostw góniczych pzy zastosowaniu EVA * Adam Sojda ** Steszczenie:
Projekt wału pośredniego reduktora
Projekt wału pośredniego reduktora Schemat kinematyczny Silnik elektryczny Maszyna robocza P Grudziński v10d MT1 1 z 4 n 3 wyjście z 1 wejście C y n 1 C 1 O z 3 n M koło czynne O 1 z z 1 koło bierne P
Obciążenia zmienne. Zdeterminowane. Sinusoidalne. Okresowe. Rys Rodzaje obciążeń elementów konstrukcyjnych
PODSTAWOWE DEFINICJE I OKREŚLENIA DOTYCZĄCE OBCIĄŻEŃ Rodzaje obciążeń W warunkach eksploatacji elementy konstrukcyjne maszyn i urządzeń medycznych poddane mogą być obciążeniom statycznym lub zmiennym.
Matematyka ubezpieczeń majątkowych r.
Zadanie. W kolejnych okesach czasu t =,,3,... ubezpieczony, chaakteyzujący się paametem yzyka Λ, geneuje szkód. Dla danego Λ = λ zmienne N t N, N, N 3,... są waunkowo niezależne i mają (bzegowe) ozkłady
Metoda odbić zwierciadlanych
Metoa obić zwiecialanych Pzyuśćmy, że łaunek unktowy (Rys ) umieszczony jest w oległości o nieskończonej owiezchni zewozącej, umiejscowionej na łaszczyźnie X0Y Piewsze ytanie, jakie o azu się nasuwa jest
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
KOMPLEKSOWE BADANIE WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH LABORATORYJNĄ METODĄ POMIARU OPORÓW TARCIA
Gónictwo i Geoinżynieia Rok 33 Zeszyt 1 29 Janusz Kaczmaek KOMPLEKSOWE BADANIE WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH LABORATORYJNĄ METODĄ POMIARU OPORÓW TARCIA 1 Wstę Koncecję laboatoyjnego sosobu badania
ROZKŁAD NORMALNY. 2. Opis układu pomiarowego
ROZKŁAD ORMALY 1. Opis teoetyczny do ćwiczenia zamieszczony jest na stonie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE (Wstęp do teoii pomiaów). 2. Opis układu pomiaowego Ćwiczenie
DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π
DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości
Kognitywistyka II r. Teoria rzetelności wyników testu. Teorie inteligencji i sposoby jej pomiaru (4) Rzetelność czyli dokładność pomiaru
Kognitywistyka II Teoie inteligencji i sposoby jej pomiau (4) Teoia zetelności wyników testu Rzetelność czyli dokładność pomiau W języku potocznym temin zetelność oznacza niezawodność (dokładność). W psychometii
KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO
XIX Międzynaodowa Szkoła Komputeowego Wspomagania Pojektowania, Wytwazania i Eksploatacji D hab. inż. Józef DREWNIAK, pof. ATH Paulina GARLICKA Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.2015.7.226
MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH
Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie
Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego
Uwagi: LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie nr 16 MECHANIKA PĘKANIA. ZNORMALIZOWANY POMIAR ODPORNOŚCI MATERIAŁÓW NA PĘKANIE.
POLITECHNIKA KRAKOWSKA WYDZIAŁ MECHANZNY INSTYTUT MECHANIKI STOSOWANEJ Zakład Mechaniki Doświadczalnej i Biomechaniki Imię i nazwisko: N gupy: Zespół: Ocena: Uwagi: Rok ak.: Data ćwicz.: Podpis: LABORATORIUM
PROJEKT nr 2. Ściągacz dwuramienny do kół zębatych i łożysk tocznych.
PROJEKT n Ściąacz dwuamienny do kół zębatych i łożysk tocznych. Spoządził: Andzej Wölk PROJEKT n Zapojektować ściąacz dwuamienny do kół zębatych i łożysk tocznych. Maksymalna siła wzdłużna potzebna pzy
L(x, 0, y, 0) = x 2 + y 2 (3)
0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej
METEMATYCZNY MODEL OCENY
I N S T Y T U T A N A L I Z R E I O N A L N Y C H w K i e l c a c h METEMATYCZNY MODEL OCENY EFEKTYNOŚCI NAUCZNIA NA SZCZEBLU IMNAZJALNYM I ODSTAOYM METODĄ STANDARYZACJI YNIKÓ OÓLNYCH Auto: D Bogdan Stępień
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Wykład 17. 13 Półprzewodniki
Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa
KINEMATYCZNE WŁASNOW PRZEKŁADNI
KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej
STANDARDY EMISJI ZANIECZYSZCZEŃ DO POWIETRZA Z PROCESÓW ENERGETYCZNEGO SPALANIA PALIW ANALIZA ZMIAN
STANISŁAW KIRSEK, JOANNA STUDENCKA STANDARDY EMISJI ZANIECZYSZCZEŃ DO POWIETRZA Z PROCESÓW ENERGETYCZNEGO SPALANIA PALIW ANALIZA ZMIAN THE STANDARDS OF AIR POLLUTION EMISSION FROM THE FUELS COMBUSTION
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektotechniki i utomatyki Kateda Inżynieii Systemów Steowania KOMPUTEROWE SYSTEMY STEROWNI (sem. 6) Steowanie otymalizacyjne. Mateiały omocnicze Temin T8 Oacowanie: Tomasz
II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda
. akad. 004/005 II.3 Rozszczepienie subtelne. Popawka elatywistyczna Sommefelda Jan Kólikowski Fizyka IVBC . akad. 004/005 II.3. Mechanizmy fizyczne odpowiedzialne za ozszczepienie subtelne Istnieją dwie
Fizykochemiczne podstawy inżynierii procesowej
Fizykochemiczne odstawy inżynieii ocesowej Wykład VI Różne metody wyznaczania ciśnienia nasycenia Wykesy temodynamiczne Równania stanu dla substancji zeczywistych Różne metody okeślania ężności ay nasyconej
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź
SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego
Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,
Rodzajowy rachunek kosztów Wycena zuŝycia materiałów
Rodzajowy achunek kosztów (wycena zuŝycia mateiałów) Wycena zuŝycia mateiałów ZuŜycie mateiałów moŝe być miezone, wyceniane, dokumentowane i ewidencjonowane w óŝny sposób. Stosowane metody wywieają jednak
należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło
07 0 Opacował: mg inż. Macin Wieczoek www.mawie.net.pl. Elementy ezystancyjne. należą do gupy odbioników enegii elektycznej idealne elementy ezystancyjne pzekształcają enegię pądu elektycznego w ciepło.
1. Metoda tabel semantycznych
1. Metoda tabel semantycznych Udowodnić pawdziwość fomuły metodą tabel semantycznych: (A B) ( B A) ZALECAMY podkeślanie analizowanych fomuł, W celu zbadania pawdziwości fomuły należy zanegować fomułę i
Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne
Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką
podsumowanie (E) E l Eds 0 V jds
e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε
Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.
Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,
Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
STOCHASTYCZNY MODEL BEZPIECZEŃSTWA OBIEKTU W PROCESIE EKSPLOATACJI
1-2011 PROBLEMY EKSPLOATACJI 89 Franciszek GRABSKI Akademia Marynarki Wojennej, Gdynia STOCHASTYCZNY MODEL BEZPIECZEŃSTWA OBIEKTU W PROCESIE EKSPLOATACJI Słowa kluczowe Bezpieczeństwo, procesy semimarkowskie,
TECHNIKI INFORMATYCZNE W ODLEWNICTWIE
ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych
Michał Benad Pietzak * Ocena siły oddziaływania pocesów objaśniających dla modeli pzestzennych Wstęp Ekonomiczne analizy pzestzenne są ważnym kieunkiem ozwoju ekonometii pzestzennej Wynika to z faktu,
Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers
Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia
1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
RACHUNEK ZDAŃ - ZADANIA. Zadanie 1. Wyznacz wartość logiczną formuły A dla podanych wartościowań zmiennych zdaniowych występujących w tej formule q q
RCHUNEK ZDŃ - ZDNI RCHUNEK ZDŃ, SEMNTYK Zadanie 1. Wyznacz watość logiczną fomuły dla odanych watościowań zmiennych zdaniowych wytęujących w tej fomule 1., 0, 1 2., 1, 0, 1, 0 3. Zadanie 2 Wyznacz tablicę
{ 1, 2,, n } Ponadto wówczas mówimy, że formuła: oraz równoważna jej formuła:
RCHUNEK ZDŃ 6 Do ozstzygania, któe fomuły achunku zdań są tautologiami, czyli pawami logiki, stosować możemy tzy odzaje metod: 1) metodę matycową (zeo-jedynkową), 2) metodę założeniową, 3) metodę aksjomatyczną.
Integralność konstrukcji w eksploatacji
1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji
Rama płaska metoda elementów skończonych.
Pzyład. Rama płasa metoda elementów sończonych. M p l A, EJ P p l A, EJ l A, EJ l l,5 l. Dysetyzacja Podział na elementy i węzły x st. sw. M 5 P Z X, M, V, H 7, M, H Y, V Element amy płasiej węzły, x stopni
REZONATORY DIELEKTRYCZNE
REZONATORY DIELEKTRYCZNE Rezonato dielektyczny twozy małostatny, niemetalizowany dielektyk o dużej pzenikalności elektycznej ( > 0) i dobej stabilności tempeatuowej, zwykle w kształcie cylindycznych dysków
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste
9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea
Wyznaczanie współczynnika wzorcowania przepływomierzy próbkujących z czujnikiem prostokątnym umieszczonym na cięciwie rurociągu
Wyznaczanie współczynnika wzocowania pzepływomiezy póbkujących z czujnikiem postokątnym umieszczonym na cięciwie uociągu Witold Kiese W pacy pzedstawiono budowę wybanych czujników stosowanych w pzepływomiezach
Spis treści. Przedmowa 11
Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.
Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli
AKADEMIA GÓRNICZO HUTNICZA im. Stanisława Staszica WYDZIAŁ GÓRNICTWA I GEOINŻYNIERII KATEDRA GEOMECHANIKI, BUDOWNICTWA I GEOTECHNIKI Rozpawa doktoska Badania nad kształtowaniem się watości współczynnika
Dobór zmiennych do modelu ekonometrycznego
Dobó zmiennych do modelu ekonometycznego Metody dobou zmiennych do modelu ekonometycznego opate na teście F Model zedukowany ya 0 +a x+a x+.+a x Model pełny ya 0 +a x+a x+.+a x +a + x + + +a k x k Częściowy
5.1 Połączenia gwintowe
5.0 Połączenia Połączenia służą o pzenoszenia obciążeń mięzy elementami konstukcyjnymi uniemożliwiając ich wzajemne pzemieszczenia. POŁĄCZENIA NIEROZŁĄCZNE ROZŁĄCZNE PLASTYCZNE - nitowe - zawijane - zaginane
PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
Pierwsze prawo Kirchhoffa
Pierwsze rawo Kirchhoffa Pierwsze rawo Kirchhoffa dotyczy węzłów obwodu elektrycznego. Z oczywistej właściwości węzła, jako unktu obwodu elektrycznego, który: a) nie może być zbiornikiem ładunku elektrycznego
Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
Elementarne przepływy potencjalne (ciąg dalszy)
J. Szanty Wykład n 4 Pzepływy potencjalne Aby wytwozyć w pzepływie potencjalnym siły hydodynamiczne na opływanych ciałach konieczne jest zyskanie pzepływ asymetycznego.jest to możliwe pzy wykozystani kolejnego
Model klasyczny gospodarki otwartej
Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
POMIAR PĘTLI HISTEREZY MAGNETYCZNEJ
POMAR PĘTL STEREZ MAGNETZNEJ 1. Opis teoetyczny do ćwiczenia zamieszczony jest na stonie www.wtc.wat.edu.pl w dziale DDAKTKA FZKA ĆZENA LABORATORJNE.. Opis układu pomiaowego Mateiały feomagnetyczne (feyt,
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
WPROWADZENIE. Czym jest fizyka?
WPROWADZENIE Czym jest fizyka? Fizyka odgywa dziś olę tego co dawniej nazywano filozofią pzyody i z czego zodziły się współczesne nauki pzyodnicze. Można powiedzieć, że fizyka stanowi system podstawowych
ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.
Ą Ą Ą Ń Ę Ę ń ń ń Ń Ń Ń ń Ą Ą ń ń ćż Ą Ę ń ń ń Ó ń Ż Ą ń ŚĆ Ń Ś Ń Ś Ą Ś ć ń ć ź ń Ń ń ć ź Ń Ś Ó Ż ń ź ź ń ĄŚ Ą Ś Ń ń ń ń Ę Ę ń Ż Ż Ż ń ć ń Ń ć ń Ń ŚĆ Ć ń Ń Ń ŚÓ Ą ć ć Ą Ń ź Ę ć ć ć ź ć ć ź ć ź ć ź Ę ć
Ą Ó ć Ó Ś ć Ó Ń ć ć ź ć ŚÓ ć ź ć Ź Ź Ó ć ć Ź Ź ć Ą ź Ż Ó ź ć ć Ż Ó Ó ć Ó ć Ą Ś Ó ć Ź Ż ć ć ć Ż Ź ć Ź Ś ź Ź Ś Ó ź ć ć ć ć ć Ó ć Ć Ó ć ć ć ć ć ć Ż Źć ć ć Ó ć Ó ć ć Ó ć ć Ć ć Ż Ó ć Ć Ż Ź ć Ę Ę Ż Ź Ż ć ć ć
Ś ć Ą Ż Ż Ź Ą Ś ż Ź Ż Ó Ł Ś Ą Ó ć ź Ą Ś Ż Ż Ść Ś Ó ć ć ć Ó Ż ć Ó Ż Ż Ś Ż Ó Ś Ż Ż ć ć Ó Ść Ś Ż Ó ć ć Ź Ż ć Ż Ś Ó Ż żć Ś Ś Ź ć Ż ć Ż Ż ż ć Ź Ż Ż Ż ć ć ć ć Ż Ó Ż Ó Ź Ł Ż Ż Ó Ż Ę Ż ć Ż Ó Ś Ó Ą Ż Ś ć Ż Ś Ś
LIST EMISYJNY nr 3 /2014 Ministra Finansów
LIST EMISYJNY n /0 Minista Finansów z dnia stycznia 0. w spawie emisji kótkookesowych oszczędnościowych obligacji skabowych o opocentowaniu stałym ofeowanych w sieci spzedaży detalicznej Na podstawie at.
Przetwarzanie sygnałów dyskretnych
Przetwarzanie sygnałów dyskretnych System dyskretny p[ n ] r[ n] Przykłady: [ ] = [ ] + [ ] r n a p n a p n [ ] r n = 2 [ + ] + p[ n ] p n 2 r[ n] = a p[ n] + b n [ ] = [ ] r n a p n n [ ] = [ + ] r n
FIZYKA BUDOWLI. wilgoć w przegrodach budowlanych. przyczyny zawilgocenia przegród budowlanych
FIZYKA BUDOWLI zagadnienia cieplno-wilgotnościowe pzegód budowlanych 1 wilgoć w pzegodach budowlanych pzyczyny zawilgocenia pzegód budowlanych wilgoć technologiczna związana z pocesem wytwazania i podukcji
POMIARY MAKRONAPRĘŻEŃ METODĄ DYFRAKCJI PROMIENIOWANIA RENTGENOWSKIEGO
POMIARY MAKRONAPRĘŻEŃ METODĄ DYFRAKCJI PROMIENIOWANIA RENTGENOWSKIEGO Dominik SENCZYK Politechnika Poznańska E-mail: dominik.senczyk@put.poznan.pl Sebastian MORYKSIEWICZ. Cegielski Poznań S. A. E-mail:
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
KOOF Szczecin: Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.
LVII OLIMPIADA FIZYCZNA (007/008). Stopień III, zadanie doświadczalne D Źódło: Auto: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andzej Wysmołek Komitet Główny Olimpiady
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
(U.17) Zastosowania stacjonarnego rachunku zaburzeń
3.0.004 38. U.7 Zastosowania stacjonanego achunku zabuzeń 66 Rozdział 38 U.7 Zastosowania stacjonanego achunku zabuzeń 38. Stuktua subtelna w atomie wodoopodobnym 38.. Hamiltonian i jego dyskusja Popzednio
Spis treści Przedmowa
Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria