ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH
|
|
- Halina Chrzanowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVIII NR 1 (168) 007 Janusz Kolenda Akademia Marynarki Wojennej ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH STRESZCZENIE W pracy przedstawiono zależności określające gęstość energii rozpraszanej w zadanym czasie w sprężystolepkim pręcie przy jego harmonicznym rozciąganiu-ściskaniu i skręcaniu, z uwzględnieniem udziału odkształceń objętościowych i postaciowych. Wyliczono również całkowitą ilość energii rozproszonej w określonym czasie, z zaznaczeniem dominującej roli warstw zewnętrznych pręta przy jego skręcaniu. Słowa kluczowe: ciało sprężystolepkie, obciążenia harmoniczne, energia dysypacji. WSTĘP Przy deformacji materiałów konstrukcyjnych zachodzi rozpraszanie energii wywołane tarciem wewnętrznym. Zjawisko to jest złożone, a jego ścisły opis matematyczny nie jest znany. Dla zbadania wpływu rozpraszania energii na zachowanie się układu mechanicznego najczęściej przyjmuje się, że tarcie wewnętrzne ma cechy oporu lepkiego [1, 5]. Przy odkształceniu rozciąganego elementu liniowego ciała sprężystolepkiego występuje naprężenie sprężyste: σ Eε s, (1) gdzie: E moduł sprężystości podłużnej; ε wydłużenie właściwe elementu. 7
2 Janusz Kolenda Oprócz niego występuje naprężenie, które jest proporcjonalne do prędkości odkształcenia: ε σ t η, () t gdzie η współczynnik oporu lepkiego. Naprężenie w dowolnym przekroju jest równe sumie tych naprężeń: ε σ Eε + η. (3) t Wzór ten określa równanie stanu ciała sprężystolepkiego zgodnie z modelem Kelvina-Voigta. Przy deformacjach skrętnych przyjmuje się analogicznie, że naprężenie styczne w dowolnym przekroju wynosi [1, 5]: γ τ Gγ + λ, () t gdzie: G moduł sprężystości postaciowej; γ odkształcenie poprzeczne właściwe elementu; λ współczynnik oporu lepkiego przy ścinaniu. Zachodzi przy tym relacja []: η λ E 1 G ( + ν ) gdzie ν współczynnik Poissona., (5) Powyższe zależności pozwalają określić gęstość energii dysypacji (czyli ilość rozproszonej energii przypadającą na jednostkę objętości deformowanego ciała) w zadanym odstępie czasu t, ( t) [3]. Pomijając wpływ mikropoślizgów na granicach ziaren materiału, mikropęknięć, magnetostrykcji i innych niesprężystych zjawisk, przyjmuje się, że energia rozpraszana w materiale zamienia się na energię 8 Zeszyty Naukowe AMW
3 Energia dysypacji w sprężystolepkim pręcie przy harmonicznych obciążeniach cieplną. Prowadzi to do wzrostu temperatury deformowanej jednostki objętości materiału, a także do przewodzenia energii cieplnej do sąsiednich jednostek objętości o niższej temperaturze i wypromieniowywania jej na zewnątrz. Dla deformowanych w dłuższym czasie ciał sprężystolepkich ich przyrost temperatury może być godny uwagi, dlatego poniżej określono gęstość energii dysypacji w rozciąganym i ściskanym oraz skręcanym pręcie pryzmatycznym o przekroju kołowym przy obciążeniach harmonicznych. Przy tego typu deformacjach elementów objętości ciała materialnego występują siły bezwładności, które dla uproszczenia rozważań pominięto. W konsekwencji poniżej rozpatrywane są zależności, które nie zależą od gęstości materiału. Pozwalają one jednak oszacować przyrost temperatury w analizowanym pręcie (z błędem zwiększającym margines bezpieczeństwa) zgodnie ze wzorem: gdzie w przybliżeniu gdzie: ξ ( t) ρ c T ( t) ξ ( t), (6) ( t) ρ c T ξ, (7) energia cieplna wygenerowana w jednostce objętości w czasie t; gęstość materiału; ciepło właściwe materiału; przyrost temperatury jednostki objętości materiału w czasie t. GĘSTOŚĆ ENERGII DYSYPACJI PRZY HARMONICZNYM ROZCIĄGANIU-ŚCISKANIU I SKRĘCANIU W przypadku zgodnych w fazie harmonicznych obciążeń osiowych i obrotowych sprężystolepkiego pręta powstają w jego przekroju poprzecznym naprężenia: σ σ sin ω t, τ τ sinω t, (8) a a P a r 0 gdzie: σ a amplituda naprężenia normalnego; π P a amplituda siły osiowej; 1 (168) 007 9
4 Janusz Kolenda r 0 0 zewnętrzny promień pręta; M a r τ a amplituda naprężenia stycznego w odległości r od osi pręta; πr M a ω amplituda momentu obrotowego; częstość kołowa obciążeń. Wywołują one odkształcenia właściwe [3]: 1 ε σ a sin t E + η ω ( ω α ) ; (9) γ 1 τ a sin t E + η ω ( ω α ), (10) gdzie ηω α ar ctg. (11) E Odpowiadająca odkształceniom (9) i (10) energia dysypowana w jednostce objętości w czasie t wynosi [3]:, (1) σ + τ gdzie: ω t sinα a ; (13) E η ω σ σ + τ E + ν ) sinα ω t τ a. (1) η ω Oznacza to, że rozkład gęstości energii dysypacji w przypadku sił osiowych jest równomierny, a przy skręcaniu zmienia się z kwadratem odległości od osi pręta. 30 Zeszyty Naukowe AMW
5 Energia dysypacji w sprężystolepkim pręcie przy harmonicznych obciążeniach WPŁYW ODKSZTAŁCEŃ OBJĘTOŚCIOWYCH I POSTACIOWYCH PRĘTA NA GĘSTOŚĆ ENERGII DYSYPACJI Energia sprężystych odkształceń właściwych ε i γ pręta przy naprężeniach σ i τ może być odniesiona do jednostki objętości i rozdzielona na energię odkształceń objętościowych []: ψ 1 v σ, v 6E σv ψ τ i energię odkształceń postaciowych: 0 (15) ψ σd 1+ ν 1+ ν σ, ψ τd τ, (16) 3E E gdzie indeksami σ i τ oznaczono człony odpowiadające naprężeniom σ i τ oraz indeksami v i d człony dotyczące odkształceń objętościowych i postaciowych. Podobnie gęstość energii dysypacji można rozdzielić na gęstość energii rozpraszanej w wyniku odkształceń objętościowych [3]: σv ( ν ) 1 ω t sinα σ a, τv t 6 E + η ω ( ) 0 (17) i na gęstość energii rozpraszanej w wyniku odkształceń postaciowych: σd ν ) ν ) ω t sinα ω t sinα σ a, τd τ a. (18) 3 E + η ω E + η ω Stąd jest oczywistym, że gęstość energii dysypacji w sprężystolepkim pręcie jest wprost proporcjonalna do jego energii odkształcenia sprężystego na jednostkę objętości. W szczególności: ψ ψ σd σv σd σv ( + ν ) 1 1 ν, (19) tzn. przy obciążeniach osiowych odkształcenia postaciowe prowadzą do rozproszenia znacznie większej porcji energii niż odkształcenia objętościowe. Można też stwier- 1 (168)
6 Janusz Kolenda dzić, że odkształcenia postaciowe skręcanego pręta są źródłem energii dysypacji rosnącej z kwadratem odległości od osi pręta. Skłania to do określenia podziału całkowitej ilości energii rozproszonej w określonym czasie w pręcie o długości l i objętości V na energię rozproszoną w części wewnętrznej o objętości V r l i na 1 π energię rozproszoną w części zewnętrznej o objętości V V V1 π r0 l V1 dla różnych wartości r. r 0 PODZIAŁ ENERGII DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘCIE Całkowita energia dysypacji w sprężystolepkim pręcie poddanym harmonicznemu rozciąganiu-ściskaniu w czasie t ma wartość: ( t) V σ σ, (0) a całkowita energia rozproszona w objętościach V 1 iv ma się tak do siebie jak te objętości. Innymi słowy, przy obciążeniach osiowych wzrost temperatury sprężystolepkiego pręta jest jednakowy w każdym elemencie jego objętości (pomijając wpływ wymiany ciepła z otoczeniem). Z kolei w przypadku skręcania sprężystolepkiego pręta całkowita energia rozpraszana w czasie t w objętościach V 1 iv wyraża się wzorami: dv 1 1, V 1 τ τ dv, (1) V czyli 1 π r l ( ) v) ω t sinα M al r t τ r d β dr dl ; () 8 π E + η ω r0 000 π r l ( ) ( t) v) 0 ω tsinα Mal r0 r t τ rd β drdl. (3) 8 π E + η ω r0 0 r 0 Dla zilustrowania podziału całkowitej energii dysypacji na 1 i zbadano iloraz: 3 Zeszyty Naukowe AMW
7 Energia dysypacji w sprężystolepkim pręcie przy harmonicznych obciążeniach δ 1, () który zgodnie z () i (3) wynosi: 0 r δ. (5) r r Wyniki obliczeń przedstawiono w tabeli 1. Tabela 1. Wartości δ w funkcji r / r0 r 0,1 0,3 0,5 0,6 0,7 1 0,8 0,9 r 0 V1 0,010 0,099 0,333 0,563 0, ,778,63 V δ 0,001 0,008 0,067 0,11 0,316 0,333 1,1 1,908 Widoczna jest dominująca rola zewnętrznej części skręcanego pręta w rozpraszaniu energii. WNIOSKI 1. Odkształcenia postaciowe sprężystolepkiego pręta są źródłem większej ilości ciepła niż odkształcenia objętościowe.. Gęstość energii cieplnej generowanej przy rozciąganiu-ściskaniu sprężystolepkiego pręta ma rozkład równomierny w całej jego objętości. 3. Gęstość energii cieplnej generowanej przy skręcaniu sprężystolepkiego pręta rośnie z kwadratem odległości od osi pręta.. Udział warstw zewnętrznych skręcanego pręta sprężystolepkiego w generowaniu ciepła jest dominujący. 5. Energia rozpraszana w izotropowym materiale sprężystolepkim przy odkształceniach zarówno objętościowych, jak i postaciowych zależy od jednego współczynnika tłumienia, który może być wyznaczony w jednoosiowej próbie rozciągania, skręcania lub zginania. 1 (168)
8 Janusz Kolenda 6. Iloraz całkowitej energii rozproszonej w wyniku harmonicznych obciążeń osiowych i energii rozproszonej w tym samym czasie na skutek synchronicznych z osiowymi obciążeń obrotowych sprężystolepkiego pręta wynosi: σ τ σ V σ a + ( ) ( ) t + ν τ 0 1 1, (6) gdzie τ 0 τ max naprężenie styczne w zewnętrznej warstwie skręcanego pręta. BIBLIOGRAFIA [1] Giergiel J., Tłumienie drgań mechanicznych, PWN, Warszawa [] Jakubowicz A., Orłoś Z., Wytrzymałość materiałów, WNT, Warszawa [3] Kolenda J., Dissipation energy in viscoelastic solids under multiaxial loads, Polish Maritime Research (w druku). [] Nyashin Y., Lokhov V., Kolenda J., On the stress-strain relations in viscoelastic solids, Marine Technology Transactions, 007, Vol. 18, (w druku). [5] Panovko J. G., Vnutrennieje trenije pri koliebanijach uprugich sistiem, Fizmatgiz, Moskva ABSTRACT The paper presents formulae for density of energy dissipated in a viscoelastic rod subjected to harmonic tension-compression and torsion with the shares of volume changes and distortions taken into account. The total dissipation energy during a given period of time is also calculated with the dominant role of outer layers of the twisting rod indicated. Recenzent dr hab. inż. Marek Sperski, prof. AMW 3 Zeszyty Naukowe AMW
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
STATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis
Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
Wytrzymałość Materiałów
Wytrzymałość Materiałów Skręcanie prętów o przekrojach kołowych Siły przekrojowe, deformacja, naprężenia, warunki bezpieczeństwa i sztywności, sprężyny śrubowe. Wydział Inżynierii Mechanicznej i Robotyki
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA
Ćwiczenie WYZNACZANIE MOUŁU SZTYWNOŚCI METOĄ YNAMICZNĄ GAUSSA.1. Wiadomości ogóne Pod wpływem sił zewnętrznych ciała stałe uegają odkształceniom tzn. zmieniają swoje wymiary oraz kształt. Jeżei po usunięciu
GEOFIZYKA STOSOWANA wykład 2. Podstawy sejsmiki
GEOFIZYKA STOSOWANA wykład Podstawy sejsmiki Naprężenie całkowite działające na nieskończenie mały element ośrodka ciągłego o objętości dv i powierzchni ds można opisać jeśli znamy rozkład naprężeń działających
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ Właściwości materiałów O możliwości zastosowania danego materiału decydują jego właściwości użytkowe; Zachowanie się danego materiału w środowisku pracy to zaplanowana
4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
UOGÓLNIONE PRAWO HOOKE A
UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Wyznaczanie modułu sztywności metodą Gaussa
Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic
ROZDZIAŁ VII KRATOW ICE STROPOWE VII.. Analiza obciążeń kratownic stropowych Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic Bezpośrednie obciążenie kratownic K5, K6, K7 stanowi
WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
11. WŁASNOŚCI SPRĘŻYSTE CIAŁ
11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.
CIENKOŚCIENNE KONSTRUKCJE METALOWE
CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 6: Wymiarowanie elementów cienkościennych o przekroju w ujęciu teorii Własowa INFORMACJE OGÓLNE Ścianki rozważanych elementów, w zależności od smukłości pod naprężeniami
2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Integralność konstrukcji w eksploatacji
1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji
Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży
Ścinanie i skręcanie dr hab. inż. Tadeusz Chyży 1 Ścinanie proste Ścinanie czyste Ścinanie techniczne 2 Ścinanie Czyste ścinanie ma miejsce wtedy, gdy na czterech ścianach prostopadłościennej kostki występują
WSTĘP DO TEORII PLASTYCZNOŚCI
13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Obliczeniowa nośność przekroju zbudowanego wyłącznie z efektywnych części pasów. Wartość przybliżona = 0,644. Rys. 25. Obwiednia momentów zginających
Obliczeniowa nośność przekroju zbudowanego wyłącznie z efektywnych części pasów. Wartość przybliżona f y M f,rd b f t f (h γ w + t f ) M0 Interakcyjne warunki nośności η 1 M Ed,385 km 00 mm 16 mm 355 1,0
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Sprawdzenie nosności słupa w schematach A1 i A2 - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego.
Sprawdzenie nosności słupa w schematach A i A - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego. Sprawdzeniu podlega podwiązarowa część słupa - pręt nr. Siły wewnętrzne w słupie Kombinacje
Fizyczne właściwości materiałów rolniczych
Fizyczne właściwości materiałów rolniczych Właściwości mechaniczne TRiL 1 rok Stefan Cenkowski (UoM Canada) Marek Markowski Katedra Inżynierii Systemów WNT UWM Podstawowe koncepcje reologii Reologia nauka
PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,
Laboratorium wytrzymałości materiałów
Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 19 - Ścinanie techniczne połączenia klejonego Przygotował: Andrzej Teter (do użytku wewnętrznego) Ścinanie techniczne połączenia
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
Wytrzymałość Materiałów
Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Rys Przykładowe krzywe naprężenia w funkcji odkształcenia dla a) metali b) polimerów.
6. Właściwości mechaniczne II Na bieżących zajęciach będziemy kontynuować tematykę właściwości mechanicznych, którą zaczęliśmy tygodnie temu. Ponownie będzie nam potrzebny wcześniej wprowadzony słowniczek:
KONSTRUKCJE DREWNIANE I MUROWE
POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy 1. Położenie osi obojętnej przekroju rozciąganego mimośrodowo zależy od: a) punktu przyłożenia
700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Mechanika techniczna i wytrzymałość materiałów Rok akademicki: 2012/2013 Kod: STC-1-105-s Punkty ECTS: 3 Wydział: Energetyki i Paliw Kierunek: Technologia Chemiczna Specjalność: Poziom studiów:
ROZCIĄGANIE I ŚCISKANIE OSIOWE. Pojęcia podstawowe. Zasada de Saint Venanta
ROZCIĄGNIE I ŚCISKNIE OSIOWE Pojęcia podstawowe. Zasada de Saint Venanta Pręt obciążony siłami podłużnymi (działającymi wzdłuż osi pręta) nazywamy prętem rozciąganym, gdyż siła podłużna jest dodatnia (N
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
4.7 Pomiar prędkości dźwięku w metalach metodą echa ultradźwiękowego(f9)
198 Fale 4.7 Pomiar prędkości dźwięku w metalach metodą echa ultradźwiękowego(f9) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w wybranych metalach na podstawie pomiarów metodą echa ultradźwiękowego.
Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń
Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń opracowanie: mgr inż. Jolanta Bondarczuk-Siwicka, mgr inż. Andrzej
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
INSTRUKCJA DO CWICZENIA NR 5
INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Powtórzenie drgań harmonicznych, mechanicznych i w obwodach elektrycznych RLC, obwody prądu zmiennego, samoindukcja (ćw. 1, 7, 8)
Powtórzenie drgań harmonicznych, mechanicznych i w obwodach elektrycznych RLC, obwody prądu zmiennego, samoindukcja (ćw., 7, 8) Podstawowa literatura: D. Halliday,R. Resnick, J. Walker, Podstawy fizyki,
Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
Zadanie 1 Zadanie 2 tylko Zadanie 3
Zadanie 1 Obliczyć naprężenia oraz przemieszczenie pionowe pręta o polu przekroju A=8 cm 2. Siła działająca na pręt przenosi obciążenia w postaci siły skupionej o wartości P=200 kn. Długość pręta wynosi
Naprężenia styczne i kąty obrotu
Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia
Opracowanie: Emilia Inczewska 1
Dla żelbetowej belki wykonanej z betonu klasy C20/25 ( αcc=1,0), o schemacie statycznym i obciążeniu jak na rysunku poniżej: należy wykonać: 1. Wykres momentów- z pominięciem ciężaru własnego belki- dla
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,
Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Z-LOGN Wytrzymałość materiałów Strength of materials
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOGN1-0133 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE
Surface settlement due to tunnelling. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki
urface settlement due to tunnelling Projektowanie i wykonawstwo budowli podziemnych pod zagospodarowana powierzchnią terenu wymaga oszacowania wielkości deformacji wewnątrz górotworu, a szczególnie powierzchni
Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów
Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW
ĆWICZENIA LABORATORYJNE Z MATERIAŁOZNAWSTWA Statyczna próba rozciągania stali Wyznaczanie charakterystyki naprężeniowo odkształceniowej. Określanie: granicy sprężystości, plastyczności, wytrzymałości na
Z-LOG-0133 Wytrzymałość materiałów Strength of materials
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-0133 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE
Właściwości reologiczne
Ćwiczenie nr 4 Właściwości reologiczne 4.1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z pojęciem reologii oraz właściwości reologicznych a także testami reologicznymi. 4.2. Wstęp teoretyczny:
Wytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
Rodzaje obciążeń, odkształceń i naprężeń
Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Teoria sprężystości F Z - F Z
Teoria sprężystości Ciało sprężyste bryła, która pod wpływem działających sił zewnętrznych ulega deformacji zmienia swój kształt i/lub objętość i wraca do pierwotnej postaci po ustaniu działania tych sił.
DRGANIA ELEMENTÓW KONSTRUKCJI
DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania
POZ BRUK Sp. z o.o. S.K.A Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY
62-090 Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY SPIS TREŚCI Wprowadzenie... 1 Podstawa do obliczeń... 1 Założenia obliczeniowe... 1 Algorytm obliczeń... 2 1.Nośność żebra stropu na
SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.
ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem
Pręt nr 1 - Element żelbetowy wg. EN :2004
Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w
Wytrzymałość materiałów Strength of materials
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/201 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE MODUŁU W
VII. Drgania układów nieliniowych
VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku
J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy
Pręt nr 1 - Element żelbetowy wg. PN-B-03264
Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton
Wytrzymałość materiałów
Wytrzymałość materiałów Wykład 3 Analiza stanu naprężenia i odkształcenia w przekroju pręta Poznań 1 3.1. Podstawowe założenia Charakterystyka materiału Zakładamy na początek, że mamy do czynienia z ośrodkiem
FIZYKA METALI - LABORATORIUM 6 Wyznaczanie modułu sztywności metodą wahadła torsyjnego
FIZYKA METALI - LABORATORIUM 6 Wyznaczanie modułu sztywności metodą wahadła torsyjnego 1. CEL ĆWICZENIA Celem laboratorium jest zdobycie umiejętności i wiedzy w zakresie wyznaczania modułu sztywności G
1. Obciążenie statyczne
. Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha
Analityczne Modele Tarcia. Tadeusz Stolarski Katedra Podstaw Konstrukcji I Eksploatacji Maszyn
Analityczne Modele Tarcia Tadeusz Stolarski Katedra odstaw Konstrukcji I Eksploatacji Maszyn owierzchnia rzeczywista Struktura powierzchni Warstwa zanieczyszczeo - 30 A Warstwa tlenków - 100 A Topografia
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Liczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
Analiza drgań belki utwierdzonej na podstawie pomiarów z zastosowaniem tensometrii elektrooporowej. KOMPUTEROWE WSPOMAGANIE EKSPERYMENTU
KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA OPOLSKA KOMPUTEROWE WSPOMAGANIE EKSPERYMENTU Instrukcja do ćwiczeń laboratoryjnych Analiza drgań belki utwierdzonej na podstawie pomiarów z zastosowaniem
Sprawdzenie stanów granicznych użytkowalności.
MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
KATEDRA MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Instrukcja przeznaczona jest dla studentów następujących kierunków: 1. Energetyka - sem. 3
Materiały do wykładu na temat Obliczanie sił przekrojowych, naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia.
Materiały do wykładu na temat Obliczanie sił przekrojowych naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia. Sprawdzanie warunków wytrzymałości takich prętów. Wydruk elektroniczny
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Wytrzymałość materiałów Rok akademicki: 2013/2014 Kod: GGiG-1-414-n Punkty ECTS: 5 Wydział: Górnictwa i Geoinżynierii Kierunek: Górnictwo i Geologia Specjalność: Poziom studiów: Studia I
Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji
Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Naprężeniem (p) nazywa się iloraz nieskończenie małej wypadkowej siły spójności
1. Połączenia spawane
1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia
[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW Materiały pomocnicze do wykładu (Inżynieria Środowiska) PWSZ w Elblągu dr hab. inż. Cezary Orlikowski Instytut Politechniczny MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW MECHANIKA