Metody komputerowe analizy wrażliwości układów drgających

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody komputerowe analizy wrażliwości układów drgających"

Transkrypt

1 Katera Wytrzymałości Materiałów i Meto Kompterowych Mechaniki Wyział Mechaniczny echnologiczny Politechnika Śląska w Gliwicach Metoy kompterowe analizy wrażliwości kłaów rgających Promotor: r hab. inż. Piotr Feeliński, Proesor Politechniki Śląskiej Wykonał: Jacek Ptaszny Grpa: MB4 Kiernek: Mechanika i Bowa Maszyn Specjalność: Mechanika Kompterowa

2 Cel pracy Zapoznanie się z analizą ynamiczną MES i MEB Opracowanie program analizy ynamicznej kratownic moelowanych MES Zapoznanie się z metoami analizy wrażliwości kłaów rgających Opracowanie programów realizjących analizę wrażliwości: częstości, postaci własnych i przemieszczeń kratownic obciążonych ynamicznie, przy wykorzystani samozielnie opracowanego program (MES) przemieszczeń tarcz obciążonych ynamicznie, za pomocą program wykorzystjącego powójną zasaę wzajemności (MEB) Przeprowazenie obliczeń opracowanymi programami

3 Równanie rch MES Równanie rch element skończonego m q + cq + kq = z r Macierze bezwłaności, tłmienia, sztywności i sił zewnętrznych m = z ρn NVe c = κn NVe, k = B DBVe, r = N Ve + N Se + i= 1 V e, P V e V e V e S e n i Wielkości wewnątrz element = Nq, = Nq, = Nq, ε = Bq, σ = DBq Równanie rch całego kła M Q + CQ + KQ = z R Całkowanie równania rch metoą: Newmarka, Wilsona, Hobolta, it. 3

4 Częstości i postacie rgań Częstości i postacie rgań własnych ( K M) = 0, = ω Częstości i postacie rgań kłaów z tłmieniem ( M + C + K) = 0, = δ + iω Wyznaczanie wartości własnych: Metoy iteracyjne Metoa Jacobiego Metoa Givensa Metoy QR... 4

5 Równanie rch MEB Powójna zasaa wzajemności Równanie rch ośroka sprężystego w postaci równania całkowego c ki i Γ * ki p Γ + Równanie macierzowe i Γ p * ki iγ = ρ ckiψ j li Γ η Γ + * ki j li Γ p j ψ liγ α * ki j l H Gp ρ ( Hψ Gη) α = 0 Wyrażenie nieznanych nkcji α przemieszczeniami węzłowymi, wprowazenie macierzy bezwłaności = Fα, α = E, M = ρ( Hψ Gη)E Równanie rch MEB H + M = Gp Całkowanie równania rch metoą: Newmarka, Wilsona, Hobolta, it. 5

6 Analiza wrażliwości Analiza wrażliwości w mechanice konstrkcji: Baanie wpływ pewnych parametrów konstrkcji na zmianę pól przemieszczeń, okształceń i naprężeń, ich lokalnych wartości ekstremalnych lb nkcjonałów skalarnych Analiza wpływ szkozenia konstrkcji na zmianę jej zachowania oraz ientyikacja tego szkozenia na postawie pomiarów pól okształceń lb naprężeń w zaanych pnktach Zastosowanie: Optymalizacja konstrkcji poszkiwanie ekstremm nkcji cel przy spełnieni ograniczeń Ientyikacja określenie parametrów materiałowych lb geometrycznych kła na postawie pomiarów przemieszczeń lb okształceń (zaganienie owrotne) 6

7 7 Analiza wrażliwości częstości i postaci rgań Pochona wartości własnej M M K = Pochona wartości własnej i wektora własnego = M M K M M M K 1 0 C M K C M = Pochona wartości własnej la kła z owolnym tłmieniem Mφ φ φ C φ = z małym tłmieniem

8 Analiza wrażliwości opowiezi ynamicznej Metoa bezpośrenia q q q M R + CR + K R = r R M R CR r = q q K R q Metoa kła sprzężonego - pochona nkcjonał t = J(, x) (, x, t) t 0 Ukła sprzężony, zaganienie brzegowo-końcowe Pochona Mλ Cλ + Kλ = λ( t ) λ ( t ) = 0 = J = t 0 x + λ r t 8

9 Przykła 1. Analiza wrażliwości częstości własnej kratownicy Obliczano pochone pierwszej częstotliwości rgań kratownicy wzglęem: a) pola przekroj wszystkich prętów A, b) pola przekroj pręta., c) wymiar L, Należało obrać każy z parametrów (metoą liniowej ekstrapolacji) tak, żeby częstotliwość ta wynosiła co najmniej 460 Hz. Dane: L =1m, A = m, E = 10 5 MPa, ρ = 7800 kg/m 3. 9

10 Przykła 1. Wyniki Pierwsza częstotliwość: 0 =455.5 Hz Liniowa ekstrapolacja: = + x x = 0 Pochona / Parametr po moyikacji x + x A A L 0 s -1 m e+5 s -1 m s -1 m e-4 m m Częstotliwość po moyikacji Hz Hz Częstość rgań kratownicy której wszystkie pręty mają jenakowe pole przekroj nie zależy o tego pola. 10

11 Przykła. Analiza wrażliwości postaci rgań kratownicy Obliczano pochoną wektora własnego opowiaającego 1. postaci rgań kratownicy wzglęem pola przekroj pręta 1. Należało obrać parametr tak, żeby węzeł 4. porszał się tylko w kiernk poziomym. Dane: L =1m, A = m, E = 10 5 MPa, ρ = 7800 kg/m 3. 11

12 Przykła. Wyniki Nr /A 1 [m -1 ] A 1 po moyikacji [m ] po moyikacji [m] e e

13 Przykła 3. Analiza wrażliwości przemieszczeń (metoa bezpośrenia) Obliczono pochoną pionowego przemieszczenia węzła 6. kratownicy wywołanego siłą skokową, wzglęem wysokości H. Dane: A = m E = Pa ρ =7800 kg/m 3 krok całkowania: s czas całkowania: 0.0 s łmienie: C=0.001 K 13

14 Przykła 3. Wyniki Sprawzenie Moyikacja: H=0.15 m. Błą wzglęny la największego przemieszczenia: 5.3% 14

15 Przykła 4. Analiza wrażliwości przemieszczeń (metoa kła sprzężonego) Obliczono pochone nkcjonałów = t 1 ( y ) J1 = t, J 0 t [( ) ( ) ( ) ] y + y + y 0 t wzglęem promienia r otwor popory. 0.1 m 0.04 m 1 r 0 19 p(t) Dane: E= Pa ν=0.3 ρ=7860 kg/m 3 PSO czas całkowania: t = s krok całkowania: t= s r=0.01 m 17 elementów, 34 węzły kła symetryczny (geometria, poparcie, obciążenie) 0.07 m 0.0 m m 0.0 m 0.1 m 15

16 Przykła 4. Wyniki Przemieszczenie y węzła 1. Wektor sprzężony J t t [ ] y y y ( ) t J = ( ) + ( ) ( ) = y + 1, 0 J 1 /r [m s] J /r [m s] Metoa kła sprzężonego e e-4 Metoa różnicowa 8.133e e-4 Błą wzglęny 8.7% 1.5% 0 t 16

17 Wnioski Wszystkie wyniki analizy wrażliwości otyczące kratownic są barzo zbliżone o okłanych. Przestawione wyniki analizy wrażliwości tarcz są mniej okłane niż wyniki analizy wrażliwości kratownic sposób obliczania pochonych macierzy. Obliczanie pochonych macierzy metoą różnicową (tarcze) wymaga opowieniego obor przyrost parametr. Błęy pochonych nkcjonałów przemieszczeń tarcz obliczanych metoą kła sprzężonego wykazywały zależność o zmienności tych przemieszczeń (błęy całkowania). W przypak analizy wrażliwości tarcz pochone nkcjonałów zależnych o przemieszczeń większej liczby węzłów wykazywały mniejsze błęy w porównani z pochonymi nkcjonałów zależnych o przemieszczeń pojeynczych węzłów. 17

18 Literatra 1. Brebbia C. A., Narini D.: Dynamics analysis in soli mechanics by an alternative bonary elements procere. Soil Dynamics an Earthqake Engineering, Vol., 1983, pp Brczyński.: Metoa elementów brzegowych w mechanice. Wyawnictwa Nakowo- echniczne, Warszawa Cook R. D., Malks D. S., Plesha M. E.: Concepts an applications o inite element analysis. John Wiley & Sons, New York Domingez J.: Bonary elements in ynamics. Comptational Mechanics Pblications, Sothampton Boston Güral Z., Hatka R..: Elements o strctral optimization. Klwer Acaemic Pblishers, Dorrecht Boston Lonon. 6. Hag E. J.: Design sensitivity analysis o ynamic systems. Compter Aie Optimal Design: Strctral an Mechanical Systems, NAO ASI Series, Vol. F7, Springer Verlag Berlin Heilelberg, 1987, pp Kleiber M. (re.): Mechanika techniczna. om XI. Kompterowe metoy mechaniki ciał stałych. Wyawnictwo Nakowe PWN, Warszawa

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

ROZWIĄZANIE PROBLEMU NIELINIOWEGO

ROZWIĄZANIE PROBLEMU NIELINIOWEGO Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

Sprawdzenie stanów granicznych użytkowalności.

Sprawdzenie stanów granicznych użytkowalności. MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna)

PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna) PRZYKŁADOWE ZADANIA ZADANIE (ocena dostateczna) Obliczyć reakcje, siły wewnętrzne oraz przemieszczenia dla kratownicy korzystając z Metody Elementów Skończonych. Zweryfikować poprawność obliczeń w mathcadzie

Bardziej szczegółowo

Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych

Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych Mgr inż. Tomasz Ferenc Politechnika Gdańska, Wydział Inżynierii Lądowej i Środowiska Projektowanie wszelkiego rodzaju konstrukcji

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej.

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej. 1. Pochone funkcji Mathca umożliwia obliczenie pochonej funkcji w zaanym punkcie oraz wyznaczenie pochonej funkcji w sposób symboliczny. 1.1 Wyznaczanie wartości pochonej w punkcie Aby wyznaczyć pochoną

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

DYNAMIKA RAM WERSJA KOMPUTEROWA

DYNAMIKA RAM WERSJA KOMPUTEROWA DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000

Bardziej szczegółowo

Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych

Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Politechnika Śląska, Gliwice Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych Wprowadzenie do metody

Bardziej szczegółowo

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego. Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym

Bardziej szczegółowo

1. Obciążenie statyczne

1. Obciążenie statyczne . Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury metodą elementów w skończonych Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Plan prezentacji Założenia

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

PLASTYCZNOŚĆ W UJĘCIU KOMPUTEROWYM

PLASTYCZNOŚĆ W UJĘCIU KOMPUTEROWYM Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2013/2014 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Sprężystość

Bardziej szczegółowo

WRAŻLIWOŚĆ POWŁOKI CYLINDRYCZNEJ NA ZMIANĘ GRUBOŚCI

WRAŻLIWOŚĆ POWŁOKI CYLINDRYCZNEJ NA ZMIANĘ GRUBOŚCI Budownictwo 16 Halina Kubiak, Maksym Grzywiński WRAŻLIWOŚĆ POWŁOKI CYLINDRYCZNEJ NA ZMIANĘ GRUBOŚCI Wstęp Zadaniem analizy wrażliwości konstrukcji jest opisanie zależności pomiędzy odpowiedzią determinowaną

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

8. PODSTAWY ANALIZY NIELINIOWEJ

8. PODSTAWY ANALIZY NIELINIOWEJ 8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:

Bardziej szczegółowo

9. PODSTAWY TEORII PLASTYCZNOŚCI

9. PODSTAWY TEORII PLASTYCZNOŚCI 9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co

Bardziej szczegółowo

Mechanika Analityczna

Mechanika Analityczna Mechanika Analityczna Wykład 2 - Zasada prac przygotowanych i ogólne równanie dynamiki Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej 29 lutego 2016 Plan wykładu

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

MES w zagadnieniach sprężysto-plastycznych

MES w zagadnieniach sprężysto-plastycznych MES w zagadnieniach sprężysto-plastycznych Jerzy Pamin e-mail: JPamin@L5.pk.edu.pl Podziękowania: P. Mika, A. Winnicki, A. Wosatko ADINA R&D, Inc.http://www.adina.com ANSYS, Inc. http://www.ansys.com TNO

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

METODY KOMPUTEROWE W MECHANICE

METODY KOMPUTEROWE W MECHANICE METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania

Bardziej szczegółowo

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9

Bardziej szczegółowo

Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia II stopnia. Wytrzymałość konstrukcji lotniczych Rodzaj przedmiotu:

Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia II stopnia. Wytrzymałość konstrukcji lotniczych Rodzaj przedmiotu: Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia II stopnia Przedmiot: Wytrzymałość konstrukcji lotniczych Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MBM S 1 6-0_1 Rok: 1 Semestr: Forma studiów:

Bardziej szczegółowo

Rozwiązanie stateczności ramy MES

Rozwiązanie stateczności ramy MES Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek

Bardziej szczegółowo

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

Linie wpływu w belce statycznie niewyznaczalnej

Linie wpływu w belce statycznie niewyznaczalnej Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też

Bardziej szczegółowo

MES w zagadnieniach ośrodka ciągłego 2D i 3D

MES w zagadnieniach ośrodka ciągłego 2D i 3D MES w zagadnieniach ośrodka ciągłego 2D i 3D Wykład 2 dla kierunku Budownictwo, specjalności DUA+TOB/BIM+BIŚ+BOI Jerzy Pamin i Piotr Pluciński Instytut Technologii Informatycznych w Inżynierii Lądowej

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo

SYSTEM DO POMIARU STRUMIENIA OBJĘTOŚCI WODY ZA POMOCĄ ZWĘŻKI

SYSTEM DO POMIARU STRUMIENIA OBJĘTOŚCI WODY ZA POMOCĄ ZWĘŻKI Postawy Metrologii i Technik Eksperymentu Laboratorium SYSTEM DO POMIARU STRUMIENIA OBJĘTOŚI WODY ZA POMOĄ ZWĘŻKI Instrukcja o ćwiczenia nr 6 Zakła Miernictwa i Ochrony Atmosfery Wrocław, listopa 2010

Bardziej szczegółowo

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1 Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna

Bardziej szczegółowo

POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN

POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POITECHNIA SZCZECIŃSA ATEDRA MECHANII I PODSTAW ONSTRUCJI MASZYN Ćwiczenie nr 6 Instrkcja do ćwiczeń laboratoryjnych Nmeryczne metody analizy konstrkcji Analiza dokładności obliczeń metodą elementów skończonych

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.

Bardziej szczegółowo

ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1.

ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1. Statyka kratownicy drewnianej o różnych przekrojach prętów, obciążonej siłai, wilgocią i ciężare własny ORIGIN - ustawienie sposobu nueracji wierszy i kolun acierzy E GPa - oduł Younga drewna αw. ρ - współczynnik

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. EN :2004

Pręt nr 1 - Element żelbetowy wg. EN :2004 Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800

Bardziej szczegółowo

MES w zagadnieniach nieliniowych

MES w zagadnieniach nieliniowych MES w zagadnieniach nieliniowych Jerzy Pamin e-mail: JPamin@L5.pk.edu.pl Podziękowania: A. Wosatko, A. Winnicki ADINA R&D, Inc.http://www.adina.com ANSYS, Inc. http://www.ansys.com TNO DIANA http://www.tnodiana.com

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

PODSTAWOWE POJĘCIA MES

PODSTAWOWE POJĘCIA MES Metoda Elementów Skończonych Studium magisterskie PODSTAWOWE POJĘCIA WYKŁAD 1 Wersja elektroniczna, http://www.okno.pg.gda.pl. Literatura KLEIBER M.: Wprowadzenie do metody elementów skończonych. PAN IPPT,

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

FLAC Fast Lagrangian Analysis of Continua

FLAC Fast Lagrangian Analysis of Continua FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę róŝnic skończonych. Metoda RóŜnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej kaŝda pochodna w

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

Projektowanie Systemów Elektromechanicznych. Wykład 3 Przekładnie

Projektowanie Systemów Elektromechanicznych. Wykład 3 Przekładnie Projektowanie Systemów Elektromechanicznych Wykła 3 Przekłanie Zębate: Proste; Złożone; Ślimakowe; Planetarne. Cięgnowe: Pasowe; Łańcuchowe; Linowe. Przekłanie Przekłanie Hyrauliczne: Hyrostatyczne; Hyrokinetyczne

Bardziej szczegółowo

Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym

Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym Tomasz Żebro Wersja 1.0, 2012-05-19 1. Definicja zadania Celem zadania jest rozwiązanie zadania dla bloku fundamentowego na

Bardziej szczegółowo

ANALIZA NUMERYCZNA ROZKŁADU TEMPERATURY W ZEWNĘTRZNEJ PRZEGRODZIE PIONOWEJ

ANALIZA NUMERYCZNA ROZKŁADU TEMPERATURY W ZEWNĘTRZNEJ PRZEGRODZIE PIONOWEJ Buownictwo o zoptymalizowanym potencjale energetycznym 1(13) 2014, s. 22-27 Anna DERLATKA, Piotr LACKI Politechnika Częstochowska ANALIZA NUMERYCZNA ROZKŁADU TEMPERATURY W ZEWNĘTRZNEJ PRZEGRODZIE PIONOWEJ

Bardziej szczegółowo

Metoda elementów brzegowych

Metoda elementów brzegowych Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów

Bardziej szczegółowo

1. Podstawowe pojęcia w wymianie ciepła

1. Podstawowe pojęcia w wymianie ciepła PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

MES w zagadnieniach ośrodka ciągłego 2D i 3D

MES w zagadnieniach ośrodka ciągłego 2D i 3D MES w zagadnieniach ośrodka ciągłego 2D i 3D Wykład 2 dla kierunku Budownictwo, specjalności DUA+TOB Jerzy Pamin i Piotr Pluciński Instytut Technologii Informatycznych w Inżynierii Lądowej Politechnika

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia

Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia Przedmiot: Wytrzymałość Materiałów II Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 1 S 0 4 44-0 _0 Rok: II Semestr:

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania SYSTEMY DYNAMICZNE

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania SYSTEMY DYNAMICZNE Politechnika Gańska Wyział Elektrotechniki i Automatyki Katera Inżynierii Systemów Sterowania SYSTEMY DYNAMICZNE Stabilność systemów ynamicznych Materiały pomocnicze o ćwiczeń Termin T7 Opracowanie: Kazimierz

Bardziej szczegółowo

Substancja, masa, energia

Substancja, masa, energia Sbst energ 0ZT Sbstancja, masa, energia Miarą ilości sbstancji jest liczba atomów i cząsteczek, z których skłaa się sbstancja. W procesie fizycznym ilość sbstancji jest niezależna o jej energii. Masa sbstancji

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

Analiza płyt i powłok MES

Analiza płyt i powłok MES Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

P. Litewka Efektywny element skończony o dużej krzywiźnie

P. Litewka Efektywny element skończony o dużej krzywiźnie Wykaz oznaczeń stosowanych w pracy a długość elementu łukowego, c kosinus kąta rozwarcia elementu, c 0 kosinus połowy kąta rozwarcia elementu, d współczynnik ścinania, e współczynnik membranowy, g ij,

Bardziej szczegółowo

specjalnościowy obowiązkowy polski pierwszy letni Mechanika ogólna, wytrzymałość materiałów, metoda elementów skończonych Egzamin

specjalnościowy obowiązkowy polski pierwszy letni Mechanika ogólna, wytrzymałość materiałów, metoda elementów skończonych Egzamin KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Modelowanie układów dynamicznych Nazwa w języku angielskim Modelling of dynamic systems Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę różnic skończonych. Metoda Różnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej każda pochodna w

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Obliczanie układów statycznie niewyznaczalnych. metodą sił

Obliczanie układów statycznie niewyznaczalnych. metodą sił Politechnika Poznańska Instytut Konstrukcji Budowlanych Zakład echaniki Budowli Obliczanie układów statycznie niewyznaczalnych metodą sił. Rama Dla układu pokazanego poniŝej naleŝy: - Oblicz i wykonać

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm

Bardziej szczegółowo

α k = σ max /σ nom (1)

α k = σ max /σ nom (1) Badanie koncentracji naprężeń - doświadczalne wyznaczanie współczynnika kształtu oprac. dr inż. Ludomir J. Jankowski 1. Wstęp Występowaniu skokowych zmian kształtu obciążonego elementu, obecności otworów,

Bardziej szczegółowo

Praca siły wewnętrznej - normalnej

Praca siły wewnętrznej - normalnej Praca siły wewnętrznej - normanej Uzyskujemy ostatecznie: L L 1 1 1 N N s N EA N EA Gzie ostatni wzór pokazuje pracę sił normanych w całym pręcie (przypomnienie z poprzeniego wykłau) Ważna ygresja Współczynnik

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów.

2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów. 2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopień statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno

Bardziej szczegółowo

Doświadczalne sprawdzenie twierdzeń Bettiego i Maxwella LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW

Doświadczalne sprawdzenie twierdzeń Bettiego i Maxwella LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska www.imio.polsl.pl fb.com/imiopolsl twitter.com/imiopolsl LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Doświadczalne

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKUTYWACJI aboratorium z mechaniki płynów ĆWICZENIE NR 5 POMIAR WSPÓŁCZYNNIKA STRAT PRZEPŁYWU NA DŁUGOŚCI. ZASTOSOWANIE PRAWA HAGENA POISEU A 1. Cel

Bardziej szczegółowo

Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp.

Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp. MES 2 Wprowadzenie do MES Everything important is simple! Podstawowe zasady MES Dzielimy konstrukcję na proste fragmenty (analogia klocki Lego, cegły), które nazywamy elementami skończonymi (ES). ES są

Bardziej szczegółowo

Wydział Inżynierii Lądowej i Środowiska Katedra Mechaniki Budowli Kierownik Katedry prof. dr hab. inż. Paweł Kłosowski

Wydział Inżynierii Lądowej i Środowiska Katedra Mechaniki Budowli Kierownik Katedry prof. dr hab. inż. Paweł Kłosowski Wydział Inżynierii Lądowej i Środowiska Kierownik Katedry prof. dr hab. inż. Paweł Kłosowski Laboratorium Mechaniki Konstrukcji i Materiałów Kierownik Laboratorium dr hab. inż. Piotr Iwicki, prof. nadzw.

Bardziej szczegółowo

Karta (sylabus) przedmiotu

Karta (sylabus) przedmiotu Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia

Bardziej szczegółowo

OBLICZENIA STATYCZNE konstrukcji wiaty handlowej

OBLICZENIA STATYCZNE konstrukcji wiaty handlowej OBLICZENIA STATYCZNE konstrukcji wiaty handlowej 1.0 DŹWIGAR DACHOWY Schemat statyczny: kratownica trójkątna symetryczna dwuprzęsłowa Rozpiętości obliczeniowe: L 1 = L 2 = 3,00 m Rozstaw dźwigarów: a =

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. PN-B-03264

Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton

Bardziej szczegółowo

Analiza drgań belki utwierdzonej na podstawie pomiarów z zastosowaniem tensometrii elektrooporowej. KOMPUTEROWE WSPOMAGANIE EKSPERYMENTU

Analiza drgań belki utwierdzonej na podstawie pomiarów z zastosowaniem tensometrii elektrooporowej. KOMPUTEROWE WSPOMAGANIE EKSPERYMENTU KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA OPOLSKA KOMPUTEROWE WSPOMAGANIE EKSPERYMENTU Instrukcja do ćwiczeń laboratoryjnych Analiza drgań belki utwierdzonej na podstawie pomiarów z zastosowaniem

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

Nasyp przyrost osiadania w czasie (konsolidacja)

Nasyp przyrost osiadania w czasie (konsolidacja) Nasyp przyrost osiadania w czasie (konsolidacja) Poradnik Inżyniera Nr 37 Aktualizacja: 10/2017 Program: Plik powiązany: MES Konsolidacja Demo_manual_37.gmk Wprowadzenie Niniejszy przykład ilustruje zastosowanie

Bardziej szczegółowo

Analiza I i II rzędu. gdzie α cr mnożnik obciążenia krytycznego według procedury

Analiza I i II rzędu. gdzie α cr mnożnik obciążenia krytycznego według procedury Analiza I i II rzędu W analizie I rzędu stosuje się zasadę zesztywnienia, tzn. rozpatruje się nieodkształconą, pierwotną geometrię konstrukcji, niezależnie od stanu obciążenia. Gdy w obliczeniac statycznyc

Bardziej szczegółowo

Karta (sylabus) przedmiotu MECHANIKA I BUDOWA MASZYN

Karta (sylabus) przedmiotu MECHANIKA I BUDOWA MASZYN WM Karta (sylabus) przedmiotu MECHANIKA I BUDOWA MASZYN Studia I stopnia o profilu: A P Przedmiot: Nośność i wytrzymałość lekkich Kod przedmiotu Status przedmiotu: obieralny MBM S 0 7 60-_0 Język wykładowy:

Bardziej szczegółowo