Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania SYSTEMY DYNAMICZNE
|
|
- Maciej Piotrowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Gańska Wyział Elektrotechniki i Automatyki Katera Inżynierii Systemów Sterowania SYSTEMY DYNAMICZNE Stabilność systemów ynamicznych Materiały pomocnicze o ćwiczeń Termin T7 Opracowanie: Kazimierz Duzinkiewicz, r hab. inż. Michał Grochowski, r inż. Robert Piotrowski, r inż. Krzysztof Mazur, mgr inż.
2 Wprowazenie Stabilność est enym z głównych poęć charakteryzuących systemy ynamiczne. Zapewnienie e est priorytetem la ukłaów automatyczne regulaci. W przypaku ciągłych liniowych staconarnych systemów SISO, a więc posiaaących opis transmitancyny G c s, baaniu stabilności służą następuące metoy (postawowe): kryterium Hurwitz a, kryterium Routh a kryterium Nyquist a. Pierwsze wa z wymienionych kryteriów są metoami algebraicznymi, poczas gy trzecie est metoą wykreślną wyprowazoną na gruncie analizy częstotliwościowe liniowych systemów ynamicznych. W przypaku yskretnych liniowych staconarnych systemów SISO, analogicznie, posiaaących opis transmitancyny 1 G z (wzglęnie s G z ), kryteria obowiązuące la systemów ciągłych mogą być, nieznacznie zmoyfikowane, również przyatne w baaniu stabilności. Prócz algebraicznych meto baania stabilności związanych z teorią ciągłych liniowych ukłaów sterowania, istnieą również metoy bezpośrenio operuące na yskretne postaci analizowanych systemów. Postawowe z nich to: kryterium Jury ego, kryterium Shur a-cohn a. Naokłanieszym narzęziem baania stabilności rozważanych systemów yskretnych est analiza położenia pierwiastków równania charakterystycznego. W połączeniu z numerycznymi metoami znaywania ich współrzęnych est enocześnie nabarzie efektywnym poeściem o tego zaganienia. Problemem o większym stopniu złożoności est baanie stabilności systemów nie w pełni yskretnych, tzn. skłaaących się zarówno z yskretnych ak i ciągłych posystemów. W takim wypaku postawowym czynnikiem est zapewnienie opowieniego okresu próbkowania s ynamicznych Gc ( s ). T posystemu G z wzglęem właściwości 2
3 Metoy algebraiczne a) o genezie ciągłe Dwie pierwsze metoy algebraiczne, t. kryterium Hurwitz a oraz kryterium Routh a, zastosowane o systemów ciągłych służą sprawzeniu, czy wszystkie pierwiastki równania charakterystycznego Mc ( s ) baanego systemu G c = c c M s znauą się w lewe półpłaszczyźnie zespolone zmienne s. Fakt ten est to gwarantem stabilności asymptotyczne (ciągłych liniowych staconarnych systemów SISO) powouąc zanikanie w czasie opowiezi impulsowe systemu, a zatem i zanikanie w czasie stanów prześciowych spowoowanych skokową zmianą wymuszenia. Obszar na płaszczyźnie zespolone zmienne z o analogicznych właściwościach wzglęem stabilności baanego systemu yskretnego G ( z) = ( z) M z znaue się wewnątrz okręgu enostkowego z < 1. Stą potwierzenie, iż pierwiastki równania charakterystycznego M z znauą się wewnątrz tego okręgu, est enoznaczne ze wykazaniem stabilności asymptotyczne (yskretnego liniowego staconarnego systemu SISO), a więc zanikania w czasie opowiezi impulsowe systemu, a zatem i zanikania w czasie stanów prześciowych spowoowanych skokową zmianą wymuszenia. Aby wykorzystać, czy to kryterium Hurwitz a czy też kryterium Routh a, o baania stabilności rozważanych systemów yskretnych należy zastosować przekształcenie wnętrza okręgu enostkowego z < 1 na płaszczyźnie zespolone zmienne z na lewą półpłaszczyznę zespoloną zmienne s. Dokonue tego postawienie: e st s z = (1) gzie T s est okresem próbkowania systemu yskretnego. Niestety postawienie (1), choć w iealny sposób przekształca współrzęne biegunów yskretnych na 3
4 ciągłe, prowazi o niealgebraiczne zależności wzglęem zmienne s. Te wykluczaące postawienie (1) way nie posiaa przekształcenie biliniowe: s + 1 z = (2) s 1 które pomimo że nie est iealne wzglęem transformaci współrzęnych biegunów, prowazi o algebraiczne postaci transmitanci systemu ciągłego G G c ( z) = c M = c ( z) M z. opowiaaące transmitanci yskretne baanego systemu Zastosowanie przekształcenia biliniowego (2) o rozważanych systemów yskretnych, pozwala na przeprowazenie baania stabilności metoami algebraicznymi na opowiaaących im systemach ciągłych, z tym iż wynik baania pozostae prawziwy la pierwotnie analizowanych systemów yskretnych. b) o genezie yskretne Alternatywnie o wstępnie moyfikowanych kryteriów Hurwitz a oraz Routh a możliwe est zastosowanie, bezpośrenio o równania charakterystycznego M z, kryterium Jury ego. Niestety w większości przypaków pozwala ono eynie na wnioskowanie o niestabilności rozważanego systemu yskretnego, ponieważ analitycznie stosowalne warunki (3) (6) są warunkami koniecznymi, lecz nie wystarczaącymi. Wyątkiem est tu system yskretny rugiego rzęu ( n = 2 ) la którego owe warunki (3) (6) ostarczane przez kryterium Jury ego są wystarczaącymi. Analitycznie kryterium Jury ego przestawia się następuąco: a < a (3) 0 n > M 1 0 (4) M 1 > 0 la n parzystego (5) 4
5 M 1 < 0 la n nieparzystego (6) gzie a i, la i = 0, K, n są rzeczywistymi współczynnikami równania charakterystycznego M z oraz n est rzęem ynamiki systemu yskretnego. W przeciwieństwie o powyższe metoy kryterium Shur a-cohn a ostarcza warunki konieczne i wystarczaące o stwierzenia, czy pierwiastki równania charakterystycznego M te opisywane są zależnościami (7) (9): z znauą się wewnątrz okręgu enostkowego. Warunki a 0 < a (7) n oraz wielomian n 1 stopnia m z : m z = z a M z + a M z z = b + b z + K + b z (8) 1 1 n n 1 n n 1 posiaa pierwiastki wewnątrz okręgu enostkowego, gzie: b = a a a a la k = 0, 1, K, n 1 (9) n 1 k n n k 0 k Warunki (7) (9) stosue się rekurencynie, aż o osiągnięcia wielomianu stopnia n = 1 i oceny położenia poeynczego pierwiastka lub o wcześnieszego stwierzenia braku stabilności asymptotyczne, w przypaku, gy nie est spełniony warunek (7). Metoy częstotliwościowe Główną zaletą kryterium Nyquist a est fakt, iż pozwala ono określić stabilność ukłau zamkniętego Gccl ( s ) na postawie baania ukłau otwartego co G s. Ponieważ est to metoa wykorzystuąca analizę częstotliwościową systemów, to ukła otwarty reprezentowany est przez transmitancę wimową. W przypaku rozważanych systemów ciągłych G operatorowe G cof ω, tzn. przez postawienie: co s otrzymue się ą na postawie transmitanci 5
6 s = ω (10) Z kolei w przypaku yskretnego systemu transmitanca wimowa GoF ( e ω ) otrzymywana est poprzez zastosowanie postawienia: z = e ω (11) Przestawione powyże zastosowanie postawień (10) oraz (11) est równorzęne w tym sensie, iż zarówno w pierwszym ak i rugim przypaku wykorzystywane w transmitancach operatorowych transformaty: opowienio aplace a oraz Z, przymuą w transmitancach wimowych postać transformat Fourier a: ciągłe oraz yskretne. Tym samym graficzna analiza charakterystyk amplituowo-fazowych, czy też częstotliwościowych charakterystyk logarytmicznych, na potrzeby baania stabilności rozważanych systemów yskretnych, est analogiczna ak w przypaku systemów ciągłych. Analiza położenia pierwiastków równania charakterystycznego Algebraiczne metoy baania stabilności yskretnego liniowego staconarnego systemu SISO pozwalaą stwierzić, czy ma się o czynienia z systemem stabilnym asymptotycznie, czy też nie (system na granicy stabilności lub niestabilny). Metoy częstotliwościowe oatkowo umożliwiaą wyróżnienie systemu yskretnego na granicy stabilności oraz analizę zapasu stabilności, ale tylko i wyłącznie w stosunku o ukłau zamkniętego na postawie baań ukłau otwartego. Dokłane baanie stabilności rozważanych ukłaów yskretnych możliwe est, gy znane są położenia pierwiastków równania charakterystycznego. Związane z nimi warunki stabilności zawarte są w tabeli 1. 6
7 Tabela 1. Położenie pierwiastków równania charakterystycznego systemów yskretnych Roza Warunek stabilności stabilność asymptotyczna wszystkie pierwiastki wewnątrz okręgu enostkowego: i z < 1 la i 1, K, n (12) granica stabilności niestabilność pewne poeyncze pierwiastki na okręgu enostkowym oraz reszta poeynczych pierwiastków i wszystkie wielokrotne wewnątrz okręgu enostkowego: oraz i z = 1 poeyncze pierwiastki: 1, K, n (13) z < 1 pozostale pierwiastki: i 1, K, n i (14) przynamnie een pierwiastek enokrotny poza okręgiem enostkowym lub przynamnie een pierwiastek wielokrotny na okręgu enostkowym: z > 1 poeyncze pierwiastki: 1, K, n (15) lub k z = 1 wielokrotne pierwiastki: k 1, K, n k (16) Bibliografia Byrski, W. (2007). Obserwaca i sterowanie w systemach ynamicznych. Uczelniane Wyawnictwa Naukowo Dyaktyczne Akaemii Górniczo Hutnicze w Krakowie. Praca zbiorowa po re.. Szklarskiego (1976). Postawy teorii ukłau regulaci automatyczne. Tom I. Ukłay liniowe. Akaemia Górniczo Hutnicza im. S. Staszica. Kaczorek, T., Dzieliński, A., Dąbrowski, W., Łopatka, R. (2005). Postawy teorii sterowania. Wyawnictwo Naukowo-Techniczne. Mazurek, J., Vogt H., Żyanowicz W. (2002). Postawy automatyki. Oficyna Wyawnicza Politechniki Warszawskie. 7
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin
Bardziej szczegółowoBadanie stabilności liniowych układów sterowania
Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny
Bardziej szczegółowoStabilność. Krzysztof Patan
Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Bardziej szczegółowoI. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: SYSTEMY DYNAMICZNE 2. Kod przedmiotu: Esd 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Techniki Komputerowe
Bardziej szczegółowoUkład regulacji automatycznej (URA) kryteria stabilności
Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Bardziej szczegółowoRok akademicki: 2030/2031 Kod: RAR n Punkty ECTS: 7. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Podstawy automatyki Rok akademicki: 2030/2031 Kod: RAR-1-303-n Punkty ECTS: 7 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Specjalność: - Poziom studiów: Studia
Bardziej szczegółowoAutomatyka i robotyka
Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli
Bardziej szczegółowoInformacje ogólne. Podstawy Automatyki I. Instytut Automatyki i Robotyki
Informacje ogólne 1 Podstawy Automatyki I Instytut Automatyki i Robotyki Autorzy programu: prof. dr hab. inż. Jan Maciej Kościelny, dr inż. Wieńczysław Jacek Kościelny Semestr V Liczba godzin zajęć według
Bardziej szczegółowoINSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr
Na prawach rękopisu o użytku służbowego INSTYTUT ENEROEEKTRYKI POITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr ABORATORIUM UKŁADÓW IMPUSOWYCH la kierunku AiR Wyziału Mechanicznego INSTRUKCJA ABORATORYJNA
Bardziej szczegółowoOpis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.
Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t
Bardziej szczegółowoPODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Bardziej szczegółowoCzęść 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
Bardziej szczegółowoSposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Bardziej szczegółowoRelacje Kramersa Kroniga
Relacje Kramersa Kroniga Relacje Kramersa-Kroniga wiążą ze sobą część rzeczywistą i urojoną każej funkcji, która jest analityczna w górnej półpłaszczyźnie zmiennej zespolonej. Pozwalają na otrzymanie części
Bardziej szczegółowo( 1+ s 1)( 1+ s 2)( 1+ s 3)
Kryteria stabilności przykład K T (s)= (s+1)(s+2)(s+3) = K /6 1 1+T (s) = (s+1)(s+2)(s+3) K +6+11s+6s 2 +s 3 ( 1+ s 1)( 1+ s 2)( 1+ s 3) Weźmy K =60: 1 1+T (s) =(s+1)(s+2)(s+3) 66+11s+6s 2 +s =(s+1)(s+2)(s+3)
Bardziej szczegółowoTeoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Bardziej szczegółowoBADANIA SYMULACYJNE AGROROBOTA W ASPEKCIE DOKŁADNOŚCI POZYCJONOWANIA
InŜynieria Rolnicza 6/005 Katera Postaw Techniki Akaemia Rolnicza w Lublinie BADANIA SYMULACYJNE AGROROBOTA W ASPEKCIE DOKŁADNOŚCI POZYCJONOWANIA Streszczenie W pracy przestawiono sposób moelowania oraz
Bardziej szczegółowoLaboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Bardziej szczegółowoStabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
Bardziej szczegółowoInformacje ogólne. Podstawy Automatyki. Instytut Automatyki i Robotyki
Informacje ogólne 1 Podstawy Automatyki Instytut Automatyki i Robotyki Autorzy programu: prof. dr hab. inż. Jan Maciej Kościelny, dr inż. Wieńczysław Jacek Kościelny Semestr IV Liczba godzin zajęć według
Bardziej szczegółowoĆwiczenie nr 6 Charakterystyki częstotliwościowe
Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na
Bardziej szczegółowoAnalityczne metody kinematyki mechanizmów
J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier
Bardziej szczegółowoĆw. S-III.3 ELEMENTY ANALIZY I SYNTEZY UAR Badanie stabilności liniowego UAR
Dr inż Michał Chłędowski PODSTAWY AUTOMATYKI I ROBOTYKI LABORATORIUM Ćw S-III3 ELEMENTY ANALIZY I SYNTEZY UAR Badanie stabilności liniowego UAR Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z pojęciem
Bardziej szczegółowoWYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0
WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego
Bardziej szczegółowoDyskretyzacja równań różniczkowych Matlab
Akaemia Morska w Gyni Katera Automatyki Okrętowej Teoria sterowania Mirosław Tomera Można zaprojektować ukła sterowania ciągłego i zaimplementować go w ukłaach sterowania cyfrowego stosując metoy aproksymacji
Bardziej szczegółowoWYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
ELEMENTY TEORII GRAFÓW Literatura: N.Deo Teoria grafów i e zastosowania... PWN (1980) Ross, Wright Matematyka yskretna PWN (199) R.Wilson Wprowazenie o teorii grafów PWN (1999) J.Kulikowski Zarys teorii
Bardziej szczegółowoAutomatyka i robotyka ETP2005L. Laboratorium semestr zimowy
Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki
Bardziej szczegółowoWielomiany Hermite a i ich własności
3.10.2004 Do. mat. B. Wielomiany Hermite a i ich własności 4 Doatek B Wielomiany Hermite a i ich własności B.1 Definicje Jako postawową efinicję wielomianów Hermite a przyjmiemy wzór Roriguesa n H n (x)
Bardziej szczegółowoAiR_TR2_5/9 Teoria Regulacji II Control Theory II. Automatyka i Robotyka I stopień ogólno akademicki studia stacjonarne
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU AiR_TR2_5/9 Teoria Regulacji II Control Theory II Kod modułu Nazwa modułu Nazwa modułu w języku angielskim
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: MODELOWANIE I SYMULACJA UKŁADÓW STEROWANIA Kierunek: Mechatronika Rodzaj przedmiotu: Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1.
Bardziej szczegółowoPrzekształcenia całkowe. Wykład 1
Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie
Bardziej szczegółowoAkademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Sterowanie ciągłe Teoria sterowania układów jednowymiarowych 1 Informacja o prowadzących zajęcia Studia stacjonarne rok II Automatyka i Robotyka
Bardziej szczegółowo1. Podstawowe pojęcia w wymianie ciepła
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Bardziej szczegółowoLINIOWE UKŁADY DYSKRETNE
LINIOWE UKŁADY DYSKRETNE Współczesne układy regulacji automatycznej wyposażone są w regulatory cyfrowe, co narzuca konieczność stosowania w ich analizie i syntezie odpowiednich równań dynamiki, opisujących
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania Odpowiedzi czasowe ciągłych i dyskretnych systemów dynamicznych Zadania do ćwiczeń laboratoryjnych
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Technologie informatyczne
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Interpolacja metoda funkcji sklejanych Materiały pomocnicze do ćwiczeń laboratoryjnych
Bardziej szczegółowoELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013
SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Automatyka zastosowania, metody i narzędzia, perspektywy Synteza systemów sterowania z wykorzystaniem regulatorów
Bardziej szczegółowoPole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Bardziej szczegółowoAiR_TR2_5/9 Teoria Regulacji II Control Theory II. Automatyka i Robotyka I stopień ogólno akademicki studia niestacjonarne
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU AiR_TR2_5/9 Teoria Regulacji II Control Theory II Kod modułu Nazwa modułu Nazwa modułu w języku angielskim
Bardziej szczegółowoPrzetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................
Bardziej szczegółowoPole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Bardziej szczegółowoLABORATORIUM PODSTAW AUTOMATYKI
LABORATORIUM PODSTAW AUTOMATYKI Ćwiczenie LP Projektowanie regulacji metoą linii pierwiastkowych Zaanie: Zaprojektować sposób stabilizowania owróconego wahała (rys.1) la małych ochyleń o położenia pionowego.
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami
Bardziej szczegółowoIII. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Bardziej szczegółowoPole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Bardziej szczegółowoPrzekształcenie całkowe Fouriera
Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy
Bardziej szczegółowoRok akademicki: 2014/2015 Kod: RME s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Podstawy automatyki Rok akademicki: 2014/2015 Kod: RME-1-305-s Punkty ECTS: 6 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechatronika Specjalność: - Poziom studiów: Studia I stopnia
Bardziej szczegółowo1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI
Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji
Bardziej szczegółowoE2_PA Podstawy automatyki Bases of automatic. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. P KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoPrzeksztacenie Laplace a. Krzysztof Patan
Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:
Bardziej szczegółowoKatedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.
Bardziej szczegółowoAutomatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji
Automatyzacja Ćwiczenie 9 Transformata Laplace a sygnałów w układach automatycznej regulacji Rodzaje elementów w układach automatyki Blok: prostokąt ze strzałkami reprezentującymi jego sygnał wejściowy
Bardziej szczegółowoPodstawy automatyki Bases of automatic
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Podstawy automatyki
Bardziej szczegółowoSystemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Bardziej szczegółowoELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 lutego 2011 Stany nieustalone, stabilność
Bardziej szczegółowoInżynieria Systemów Dynamicznych (4)
Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ
Bardziej szczegółowoRok akademicki: 2016/2017 Kod: EEL s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Teoria sterowania i technika regulacji Rok akademicki: 2016/2017 Kod: EEL-1-406-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Studia niestacjonarne Estymacja parametrów modeli, metoda najmniejszych kwadratów.
Bardziej szczegółowoMETODY WYZNACZANIA CHARAKTERYSTYK PRZEPŁYWOWYCH DŁAWIKÓW HYDRAULICZNYCH
METODY WYZNACZANIA CHARAKTERYSTYK PRZEPŁYWOWYCH DŁAWIKÓW HYDRAULICZNYCH Małgorzata SIKORA 1 1. WPROWADZENIE Łożyska oraz prowanice hyrostatyczne jako ukłay hyrauliczne zasilane olejem o stałym ciśnieniu
Bardziej szczegółowoPrzekształcanie równań stanu do postaci kanonicznej diagonalnej
Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego
Bardziej szczegółowoPodstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Bardziej szczegółowoAkademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Sterowanie ciągłe Teoria sterowania układów jednowymiarowych 1 Informacja o prowadzących zajęcia Studia stacjonarne rok II Automatyka i Robotyka
Bardziej szczegółowoTechniki regulacji automatycznej
Techniki regulacji automatycznej Metoda linii pierwiastkowych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 25 Plan wykładu Podstawy metody linii pierwiastkowych
Bardziej szczegółowo4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego
4. UKŁADY II RZĘDU. STABILNOŚĆ Podstawowe wzory Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat (4.1) Transmitancja układu zamkniętego częstotliwość naturalna współczynnik tłumienia Odpowiedź
Bardziej szczegółowoPolitechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207
Bardziej szczegółowoProcedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Bardziej szczegółowoAKTYWNE TŁUMIENIE I UNIKANIE WZBUDZENIA OBWODU WEJŚCIOWEGO NAPĘDÓW TRAKCYJNYCH
Zeszyty Problemowe Maszyny Elektryczne Nr 2/2013 (99) 167 Daniel Lewanowski, Piotr Lipnicki Korporacyjne Centrum Baawcze ABB, Kraków AKTYWNE TŁUMIENIE I UNIKANIE WZBUDZENIA OBWODU WEJŚCIOWEGO NAPĘDÓW TRAKCYJNYCH
Bardziej szczegółowoĆwiczenie 9. Zasady przygotowania schematów zastępczych do analizy układu generator sieć sztywna obliczenia indywidualne
Ćwiczenie 9 Zasay przygotowania schematów zastępczych o analizy ukłau generator sieć sztywna obliczenia inywiualne Cel ćwiczenia Przeprowazenie obliczeń parametrów ukłau generator - sieć sztywna weryfikacja
Bardziej szczegółowoPorównanie właściwości wybranych wektorowych regulatorów prądu w stanach dynamicznych w przekształtniku AC/DC
Piotr FALKOWSKI, Marian Roch DUBOWSKI Politechnika Białostocka, Wyział Elektryczny, Katera Energoelektroniki i Napęów Elektrycznych Porównanie właściwości wybranych wektorowych regulatorów prąu w stanach
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Przygotowanie zadania sterowania do analizy i syntezy zestawienie schematu blokowego
Bardziej szczegółowoPodstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
Bardziej szczegółowoPodstawy automatyki Bases of automatics. Elektrotechnika I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoKSZTAŁTOWANIE WŁAŚCIWOŚCI WIBROIZOLACYJNYCH UKŁADU ZAWIESZENIA SIEDZISKA
LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Igor MACIEJEWSKI 1 Ukła zawieszenia sieziska, Ochrona prze rganiami, Właściwości wibroizolacyjne
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Modelowanie matematyczne elementów systemu sterowania (obwody elektryczne, mechaniczne
Bardziej szczegółowoSterowanie napędów maszyn i robotów
Wykład 7b - Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Instytut Automatyki i Robotyki Warszawa, 2014 Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Zadanie przestawiania Postać modalna
Bardziej szczegółowoPlan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
Bardziej szczegółowoTemat: Równowaga dynamiczna koryt rzecznych
INŻYNIERIA RZECZNA Konspekt wykłau Temat: Równowaga ynamiczna koryt rzecznych Koryto rzeczne jest w równowaze ynamicznej (jest stabilne ynamicznie) jeżeli w ługim okresie czasu (kilkunastu, kilkuziesięciu
Bardziej szczegółowoPAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.
PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.
Bardziej szczegółowoTechnika regulacji automatycznej
Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego
Bardziej szczegółowoMechanika kwantowa ćwiczenia, 2007/2008, Zestaw II
1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność
Bardziej szczegółowoVII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Bardziej szczegółowoTransmitancje i charakterystyki częstotliwościowe. Krzysztof Patan
Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia
Bardziej szczegółowoZagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Bardziej szczegółowoPodstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
Bardziej szczegółowoLaboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności, dobór układów i parametrów regulacji, identyfikacja obiektów Kierunek studiów: Transport, Stacjonarne
Bardziej szczegółowoSYSTEM DO POMIARU STRUMIENIA OBJĘTOŚCI WODY ZA POMOCĄ ZWĘŻKI
Postawy Metrologii i Technik Eksperymentu Laboratorium SYSTEM DO POMIARU STRUMIENIA OBJĘTOŚI WODY ZA POMOĄ ZWĘŻKI Instrukcja o ćwiczenia nr 6 Zakła Miernictwa i Ochrony Atmosfery Wrocław, listopa 2010
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium Automatyka Automatics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba
Bardziej szczegółowoTeoria sterowania Control theory. Automatyka i Robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2016/2017
Bardziej szczegółowoTeoria sterowania Control theory. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sterowania Control theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Bardziej szczegółowoprzy warunkach początkowych: 0 = 0, 0 = 0
MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,
Bardziej szczegółowoPolitechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208
Bardziej szczegółowoPolitechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208
Bardziej szczegółowoTransformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
Bardziej szczegółowoProjektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
Bardziej szczegółowo