Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)
|
|
- Janina Kubiak
- 8 lat temu
- Przeglądów:
Transkrypt
1 METODA ELEMENTÓW W SKOŃCZONYCH 1
2 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach materiałowych zjawisk opisanych liniowymi równaniami różniczkowymi. 2
3 Rozwiązanie problemu za pomocą metody elementów skończonych można podzielić na następujące etapy: 1. Analizowany obszar dzieli się myślowo na pewną skończoną liczbę geometrycznie prostych elementów, tzw. elementów skończonych. 2. Zakłada się, że te połączone są ze sobą w skończonej liczbie punktów znajdujących się na obwodach. 3. Obiera się pewne funkcje jednoznacznie określające rozkład analizowanej wielkości fizycznej wewnątrz elementów skończonych. Równania różniczkowe przekształca się, poprzez zastosowanie tzw. funkcji wagowych, do równań metody elementów skończonych. 4. Na ich podstawie oblicza się wartości współczynników stojących przy niewiadomych oraz odpowiadające im wartości prawych stron. 5. Do utworzonego układu równań wprowadza się warunki brzegowe. 6. Rozwiązuje się układ równań otrzymując wartości poszukiwanych wielkości fizycznych w węzłach. 3
4 4
5 Geometria węzeł K węzeł Element skończony Podział na elementy 5
6 ELEMENT SKOŃCZONY Element skończony podobszar oryginalnej geometrii konstrukcji o prostym kształcie Kształt elementu określany jest poprzez podanie położenia charakterystycznych punktów - węzłów Właściwości mechaniczne elementu, zależność pomiędzy przemieszczeniami i obciążeniami, opisuje macierz sztywności 6
7 Sztywność -siła konieczna do uzyskania jednostkowego przemieszczenia. Odwrotność podatności. C = ΔP Δl 7
8 MODEL MATEMATYCZNY c x c sztywność sprężyny x wydłużenie sprężyny P siła w sprężynie c c x= P 8
9 węzeł element ck x 1 MODEL MATEMATYCZNY P 1 c c ( x x ) 2 ( x x ) = = P P 2 1 węzeł x 2 P 2 c c c x c x 1 2 = P P 1 2 macierz sztywności elementu C X = P wektor przemieszczeń węzłowych wektor obciążeń węzłowych 9
10 Co użytkownik MES musi określić: zdefiniować model geometrii konstrukcji wybraćrodzaj elementu utworzyćsiatkę elementów skończonych określić własności materiału określić własności elementów sprawdzić jakość siatki elementów wprowadzić obciążenia i warunki brzegowe wyspecyfikować rodzaj żądanej analizy określić wymagania co do ilości i rodzaju wyników zinterpretować uzyskane wyniki 10
11 Rodzaje elementów Elementy standardowe Pierwszego rzędu Liniowy Trójkątny/Czworokątny Sześcian Czworościan ( tri/quad) ( hex ) ( tet ) Drugiego rzędu Liniowy Trójkątny/Czworokątny Sześcian 10-węzłowy czworościan 11
12 Typowe modele belkowe Kratownica Rama Podciąg 12
13 Przykłady modeli belkowych 13
14 Typowe modele powłokowe Cienka powłoka, cienkościenny zbiornik ciśnieniowy Cienka płyta lub powłoka Elementy lotnicze Części pojazdu 14
15 Przykład modelu powłokowego 15
16 Przykłady modeli powłokowych 16
17 Typowe modele bryłowe Grubościenny zbiornik ciśnieniowy Gruba płyta i wspornik Element żeliwny i łącznik 17
18 Przykłady modeli bryłowych 18
19 Elementy specjalne Masa skupiona Sprężyna Tłumik Element kontaktowy - GAP (kontakt węzeł w węzeł) Element sztywny / interpolacyjny 19
20 Model belkowy 20
21 Model powłokowy 21
22 Model bryłowy 22
23 Tworzenie siatek podziału Przed podziałem Po podziale 23
24 Doskonalenie siatek 24
25 Podsumowanie doboru wymiaru elementów Większa liczba mniejszych elementów daje większą dokładność (w zakresie rozsądnych liczb) Większa liczba elementów wymaga dłuższego czasu obliczeń Należy wybierać kierując się doświadczeniem Siatka podziału na elementy musi być wystarczająco dobra lecz wystrzegajmy się zbyt dobrych. 25
26 Wykorzystanie symetrycznej połowy 26
27 Wykorzystanie symetrii osiowej Ten model CAD może mieć taki model MES 27
28 Model nowej międzynarodowej Stacji kosmicznej System CAD, Unigrafic 28
29 Model belkowy Przykłady możliwych modeli belkowych: 29
30 Model powłokowy Przykład modelu powłokowego: modułu pomieszczenia załogi Analiza 30
31 Model bryłowy Przykład modelu bryłowego: Analiza uchwytu 31
Metoda elementów skończonych
Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.
Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych
Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia
Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia Przedmiot: Wytrzymałość Materiałów II Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 1 S 0 4 44-0 _0 Rok: II Semestr:
Wprowadzenie do Metody Elementu Skończonego
Wprowadzenie do Metody Elementu Skończonego Krzysztof Balonek, Sławomir Gozdur Wydział Fizyki i Informatyki Stosowanej, AGH, Kraków, Poland email: kbalonek@g10.pl, slagozd@gmail.com Praca dostępna w internecie:
Projektowanie elementów z tworzyw sztucznych
Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu
Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,
Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach Krzysztof Żurek Gdańsk, 2015-06-10 Plan Prezentacji 1. Manipulatory. 2. Wprowadzenie do Metody Elementów Skończonych (MES).
Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia
MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F
Analiza stanu przemieszczenia oraz wymiarowanie grupy pali
Poradnik Inżyniera Nr 18 Aktualizacja: 09/2016 Analiza stanu przemieszczenia oraz wymiarowanie grupy pali Program: Plik powiązany: Grupa pali Demo_manual_18.gsp Celem niniejszego przewodnika jest przedstawienie
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki
F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi
MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania
Osiadanie kołowego fundamentu zbiornika
Przewodnik Inżyniera Nr 22 Aktualizacja: 01/2017 Osiadanie kołowego fundamentu zbiornika Program: MES Plik powiązany: Demo_manual_22.gmk Celem przedmiotowego przewodnika jest przedstawienie analizy osiadania
8. Metody rozwiązywania układu równań
8. Metody rozwiązywania układu równań [K][u e ]=[F e ] Błędy w systemie MES Etapy modelowania metodami komputerowymi UKŁAD RZECZYWISTY MODEL FIZYCZNY MODEL DYSKRETNY Weryfikacja modelu fiz. Weryfikacja
Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop
Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9
Stateczność ramy - wersja komputerowa
Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Komputerowe wspomaganie projektowania- CAT-01
Komputerowe wspomaganie projektowania- CAT-01 Celem szkolenia jest praktyczne zapoznanie uczestników z podstawami metodyki projektowania 3D w programie CATIA V5 Interfejs użytkownika Modelowanie parametryczne
Analiza płyt i powłok MES
Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D - 4 Temat: Zastosowanie teoretycznej analizy modalnej w dynamice maszyn Opracowanie: mgr inż. Sebastian Bojanowski Zatwierdził:
PRZYKŁADY ROZWIĄZAŃ MES. Piotr Nikiel
PRZYKŁADY ROZWIĄZAŃ MES Piotr Nikiel Metoda elementów skooczonych Metoda elementów skooczonych jest metodą rozwiązywania zadao brzegowych. MES jest wykorzystywana obecnie praktycznie we wszystkich dziedzinach
7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:
7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych
Analiza stateczności zbocza
Przewodnik Inżyniera Nr 25 Aktualizacja: 06/2017 Analiza stateczności zbocza Program: MES Plik powiązany: Demo_manual_25.gmk Celem niniejszego przewodnika jest analiza stateczności zbocza (wyznaczenie
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów
METODY KOMPUTEROWE W MECHANICE
METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania
pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ
Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona
Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa
Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia
Metoda Elementów Skończonych - Laboratorium
Metoda Elementów Skończonych - Laboratorium Laboratorium 5 Podstawy ABAQUS/CAE Analiza koncentracji naprężenia na przykładzie rozciąganej płaskiej płyty z otworem. Główne cele ćwiczenia: 1. wykorzystanie
Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr 7 Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonego kątownika
3 Podstawy teorii drgań układów o skupionych masach
3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny
Projektowanie systemów EM. Metoda elementów skończonych
Projektowanie systemów EM Metoda elementów skończonych Wstęp Podstawy obliczeń MES Etapy definicji modelu numerycznego Rodzaje problemów moduły obliczeniowe Wybrane wyniki obliczeń 2 dr inż. Michał Michna
Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia
Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia Przedmiot: Wytrzymałość Materiałów II Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 1 N 0 4 44-0 _0 Rok: II Semestr:
Stateczność ramy. Wersja komputerowa
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel
ROTOPOL Spring Meeting
ROTOPOL Spring Meeting Obliczenia wytrzymałościowe dużych zbiorników. Optymalizacja konstrukcji zbiorników. Studium przypadku. Strength analysis of big tanks. Optimization of design of tanks. Case study.
Modelowanie układów prętowych
Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie
PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna)
PRZYKŁADOWE ZADANIA ZADANIE (ocena dostateczna) Obliczyć reakcje, siły wewnętrzne oraz przemieszczenia dla kratownicy korzystając z Metody Elementów Skończonych. Zweryfikować poprawność obliczeń w mathcadzie
PRACA DYPLOMOWA INŻYNIERSKA
PRACA DYPLOMOWA INŻYNIERSKA Katedra Wytrzymałości Materiałów i Metod Mechaniki. Zastosowanie metody elementów skończonych do oceny stanu wytężenia obudowy silnika pompy próżniowej Student: Tomasz Sczesny
Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne
Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez
17. 17. Modele materiałów
7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D
Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych
Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych Mgr inż. Tomasz Ferenc Politechnika Gdańska, Wydział Inżynierii Lądowej i Środowiska Projektowanie wszelkiego rodzaju konstrukcji
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI
Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Metoda elementu skończonego budowa modeli
Metoda elementu skończonego budowa modeli Interpretacja modelu mechanicznego za pomocą elementów skupionych Załóżmy, że jedynie węzeł ulega przemieszczeniu [u,v] T Siła oddziaływania pomiędzy węzłami i
Rozwiązanie stateczności ramy MES
Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek
Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74
Elementy 1D Element cięgnowy Element LINK1 jest elementem 2D, dwuwęzłowym, posiadającym jedynie dwa stopnie swobody - translację w kierunku x oraz y. Można zadeklarować pole jego przekroju oraz odkształcenie
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej oceny głównej. (Znaki + i -
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 N 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj
Analiza wytrzymałościowa kołpaka turbogeneratora TWW-200-2A
Analiza wytrzymałościowa kołpaka turbogeneratora TWW-200-2A Tomasz GOMOLUCH Dział Rozwoju Produktu i Marketingu, EthosEnergy Poland S.A. Streszczenie. W pracy przedstawiono rozkład przemieszczeń i naprężeń
Przedmiotowy system oceniania
Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi
Sieci obliczeniowe poprawny dobór i modelowanie
Sieci obliczeniowe poprawny dobór i modelowanie 1. Wstęp. Jednym z pierwszych, a zarazem najważniejszym krokiem podczas tworzenia symulacji CFD jest poprawne określenie rozdzielczości, wymiarów oraz ilości
GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI
GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej
Kryteria ocen z matematyki w klasie I gimnazjum
1. Zbieranie, porządkowanie i prezentowanie danych 1. Liczby naturalne 1. Cechy podzielności 1. Działania na liczbach naturalnych 1. Algorytmy działań pisemnych odczytywać informacje przedstawione w tabelach
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 015/016 Kierunek studiów: Mechanika i Budowa Maszyn Forma
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie
1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t )
pis treści ymulacja procesów cieplnych Algorytm ME 3 Implementacja rozwiązania 4 Całkowanie numeryczne w ME 3 ymulacja procesów cieplnych Procesy cieplne opisuje równanie różniczkowe w postaci: ( k x (t)
Analiza fundamentu na mikropalach
Przewodnik Inżyniera Nr 36 Aktualizacja: 09/2017 Analiza fundamentu na mikropalach Program: Plik powiązany: Grupa pali Demo_manual_en_36.gsp Celem niniejszego przewodnika jest przedstawienie wykorzystania
Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS
MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowany został materiał, obciążenie i umocowanie (krok 0).
Semestr Pierwszy Liczby i działania
MATEMATYKA KL. I 1 Semestr Pierwszy Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej podać odwrotność liczby porównać
METODA SIŁ KRATOWNICA
Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..
Łagodne wprowadzenie do Metody Elementów Skończonych
Łagodne wprowadzenie do Metody Elementów Skończonych dr inż. Grzegorz DZIERŻANOWSKI dr hab. inż. Wojciech GILEWSKI Katedra Mechaniki Budowli i Zastosowań Informatyki 10 XII 2009 - część I 17 XII 2009 -
Modelowanie w MES. Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0).
MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0). Krok
Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop Spis treści
Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop. 2016 Spis treści Przedmowa XI 1. Podział przekładni ślimakowych 1 I. MODELOWANIE I OBLICZANIE ROZKŁADU OBCIĄŻENIA W ZAZĘBIENIACH ŚLIMAKOWYCH
10 powodów przemawiających za wyborem oprogramowania Moldex3D
10 powodów przemawiających za wyborem oprogramowania Moldex3D 1. CORETECH jest jednym z największych niezależnych światowych dostawców rozwiązań CAE Około 30 lat doświadczeń na rynku symulacji wtrysku.
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Mechanika techniczna i wytrzymałość materiałów Rok akademicki: 2012/2013 Kod: STC-1-105-s Punkty ECTS: 3 Wydział: Energetyki i Paliw Kierunek: Technologia Chemiczna Specjalność: Poziom studiów:
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany
ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY
ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy
Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie I gimnazjum str. 1 Wymagania edukacyjne niezbędne
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ 1) ocenę celującą otrzymuje uczeń, który spełnił wymagania na ocenę bardzo dobrą oraz: - umie zapisać i odczytać w
ZASTOSOWANIE METODY ELEMENTÓW SKOŃCZONYCH W ANALIZIE NUMERYCZNEJ ŁOŻYSK TOCZNYCH WIEŃCOWYCH
Marek Krynke 1 ZASTOSOWANIE METODY ELEMENTÓW SKOŃCZONYCH W ANALIZIE NUMERYCZNEJ ŁOŻYSK TOCZNYCH WIEŃCOWYCH Streszczenie: W artykule przedstawiono metodykę budowy modeli MES łożysk wieńcowych. Zaproponowano
Metoda Różnic Skończonych (MRS)
Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne
PLAN SZKOLEŃ FEMAP. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range,
PLAN SZKOLEŃ FEMAP Firma GM System Integracja Systemów Inżynierskich Sp. z o.o. została założona w 2001 roku. Zajmujemy się dostarczaniem systemów CAD/CAM/CAE/PDM. Jesteśmy jednym z największych polskich
FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres podstawowy., Oficyna Edukacyjna
LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 14 BADANIE ZBIORNIKA CIŚNIENIOWEGO Wprowadzenie Cel ćwiczenia
LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 14 BADANIE ZBIORNIKA CIŚNIENIOWEGO 14.1. Wprowadzenie Istotnym działem badań materiałów i konstrukcji są badania nieniszczące. Podstawową zaletą nadań nieniszczących
PLAN SZKOLEŃ Femap. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range,
PLAN SZKOLEŃ Femap PLAN SZKOLEŃ Femap Firma GM System Integracja Systemów Inżynierskich Sp. z o.o. została założona w 2001 roku. Zajmujemy się dostarczaniem systemów CAD/CAM/CAE/PDM. Jesteśmy jednym z
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Osiągnięcia przedmiotowe
1. Zbieranie, porządkowanie i prezentowanie danych przedstawione w tabelach przedstawione na przedstawiać dane w tabelach przedstawiać dane na przedstawione w tabelach przedstawione na porównywać informacje
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
Instytut Podstaw Budowy Maszyn. specjalność KONSTRUKCJE CIENKOŚCIENNE
Instytut Podstaw Budowy Maszyn specjalność KONSTRUKCJE CIENKOŚCIENNE opiekun specjalności: dr inż. Jarosław Mańkowski jaroslaw.mankowski@simr.pw.edu.pl 1 Typowe konstrukcje cienkościenne 2 Konstrukcje
gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:
1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]
Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice
Tematyka wykładu 2 Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych ręty obciążone osiowo Kratownice Mechanika budowli - kratownice Kratownicą lub układem kratowym nazywamy układ prostoliniowych
I. Liczby i działania
I. Liczby i działania porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na dziesiętne i odwrotnie, zaokrąglać liczby do danego rzędu, szacować wyniki działań,
Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych
Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie
Metody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów: