Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp.
|
|
- Teresa Zakrzewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 MES 2 Wprowadzenie do MES Everything important is simple! Podstawowe zasady MES Dzielimy konstrukcję na proste fragmenty (analogia klocki Lego, cegły), które nazywamy elementami skończonymi (ES). ES są połączone w węzłach Rozwiązujemy zagadnienie dla każdego ES, czyli ustalamy (zwykle w sposób bardzo przybliżony) relacje pomiędzy siłami a przemieszczeniami w węzłach Rozwiązujemy całe zagadnienie poprzez na przykład zadowalanie warunków równowagi oraz warunków brzegowych w węzłach. W wyniku tego wyznaczamy przemieszczenia w węzłach Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp. Część I Naprężenia ważne dla inżynierów Naprężenia w konstrukcji Dla konstrukcji w równowadze obciążenia zewnętrzne reakcji w zamocowaniu Każda konstrukcja służy przewodnikiem obciążenia od jednej części do drugiej Dla równowagi pozostałej części konstrukcji w przekroju musi działać obciążenie ze strony części odrzuconej Naprężenie (jak i siła) jest wektorem. W każdym przekroju można go rozłożyć na składowe: normalną i styczną. Mamy jedną składową styczną w przypadku płaskiego modelu konstrukcji oraz dwie składowych w przypadku modelu przestrzennego. Składowe normalne i styczne są w jakimś sensie analogiem współrzędnych punktu. Co zmieniła optymalizacja topologiczna Kolejność rozwoju produktu kiedyś... Pomysł Rysunek techniczny (CAD) Obliczenia (CAE) Produkcja (CAM)...i teraz Obliczenia (CAE) Pomysł Model D (CAD) Obliczenia (CAE) Produkcja (Druk D, CAM) Kolejność prac przy optymalizacji istniejącej konstrukcji - obudowa sprężarki VW
2 Materiały Altair W tym miejscu były bardzo ciekawe przykłady z dziedziny optymalizacji topologicznej. Naprężenia z tytułami Nazewnictwo Składnia używana do naprężeń to σ AB, gdzie A oś prostopadła do przekroju σ yy B kierunek naprężenia σ yx Uwagi σ xx σ xy σ xx σ xy. w D w każdym punkcie mamy naprężenia normalne σ xx,σ yy,σ zz oraz 6 stycznych σ xy,σ xz,...,σ zy y x σ yx σ yy 2. Z warunków równowagi (moment obrotowy 0) wynika, żeσ xy σ yx. W D analogicznie σ xz σ zx, σ yz σ zy.. Często dla naprężeń stycznych zamiast σ używa się τ, czyli σ xy τ xy Naprężenia z tytułami ważne dla inżyniera I.Rokach,
3 y x σ Naprężenia główne, 2D σ (albo σ ) maksymalne naprężenie normalne (czyli rozciągające lub ściskające) w danym punkcie. W kierunku prostopadłym do niego działaσ 2 (σ 22 ) minimalne naprężenie normalne. W obydwóch tych przekrojach brak naprężeń stycznych. y x σ 2 Naprężenia główne, D Analogiczne naprężenia σ > σ 2 > σ działają na prostopadłych płaszczyznach w danym punkcie. Naprężenia główne i ich kierunki są ważnym wynikiem obliczeń dla każdego inżyniera i dlatego są wyznaczane przez każdy program MES. W SWS dla nich używa się następujących oznaczeń: σ naprężenie pierwsze główne, σ 2 naprężenie długie główne, σ naprężenie trzecie główne. Kierunki tych naprężeń można zobaczyć wyświetlając wyniki w postaci wektorowego pola naprężeń. W przypadku jednoosiowego rozciągania kryterium plastyczności jest prosty σ σ Y, gdzie σ Y granica plastyczności. Dla przypadku wieloosiowego obciążenia istnieje wiele kryteriów, najbardziej popularny z których to kryterium von Misesa (9) σ eff σ Y, gdzie σ eff 2 (σ σ 2 ) 2 +(σ σ ) 2 +(σ 2 σ ) 2 Naprężenia zredukowane lub efektywne są najważniejszym wynikiem analizy dla konstrukcji metalowych. W SWS, jak i w innych programach, jest to domyślny wynik analizy statycznej. Mówiąc precyzyjnie, nie jest to naprężenie, bo nie jest ani wektorem, ani tensorem. Jest to raczej miara (jak indeks giełdowy) intensywności naprężeń w danym punkcie. Relację pomiędzy MES a wytrzymałością M M Σσ P M Σσ P M Px 2 M Px x P Σp P Celem analizy MES jest wyznaczenie rozkładu naprężeń w dowolnym przekroju konstrukcji. Zwykle ten rozkład jest dokładniejszy od przewidywań wytrzymałości materiałów. Wspólnymi dla wyników MES i wytrzymałości są siły wypadkowe i momenty w przekrojach. Uwaga! Jeżeli z najprostszej analizy wytrzymałościowej (np. σ P/A) wynika, że średni poziom naprężeń w przekroju przekracza dopuszczalną wartość, to nie ma sensu robić analizę MES w nadziei, że jej wyrok będzie inny. x I.Rokach,
4 Część II Podstawowe operacje na wektorach i macierzach Podstawowe operacje na wektorach Po co nam te wektory i macierze? Wiele zagadnień inżynierskich (w tym MES) sprowadza się do rozwiązywania układów równań liniowych x +x 2 +x 0 22x +222x 2 +2x 20 x +x 2 +x 0 Rozwiązując taki układ realnie wykonujemy operacje tylko na liczbach x +x 2 +x x +222x 2 +2x 20 x +x 2 +x 0 0x +0x 2 +0x 00 22x +222x 2 +2x 20 x +x 2 +x 0 (2)+() 0x +0x 2 +0x 00 22x +222x 2 +2x 20 (22+)x +(222+)x 2 +(2+)x x +0x 2 +0x 00 22x +222x 2 +2x 20 55x +225x 2 +5x 50 Z powodów ściśle pragmatycznych oddzielamy liczby (czyli to, co jest istotne w układzie równań) od niewiadomych nazwy których nie są istotne. Np. zamiast x,x 2,x można użyća,b,c. x (?) x Definicja 2 wektorów a (a, a 2,..., a n ), b (b, b 2,..., b n ) x Mnożenie wektora przez skalar λa (λa, λa 2,..., λa n ) Przykład a (,2,) λ 0 λa (0,20,0) Dodawanie lub odejmowanie wektorów a±b (a ±b, a 2 ±b 2,..., a n ±b n ) UWAGA! Wektory muszą składać się z jednakowej ilości elementów Przykład a (,2,) b (0,20,0) a+b (,22,) Iloczyn skalarny wektorów I.Rokach,
5 ab a b + a 2 b a n b n n a i b i UWAGA! Wektory muszą składać się z jednakowej ilości elementów Przykład a (,2,) b (0,20,0) ab Podstawowe operacje na macierzach Definicja kilku macierzy [ ] [ ] a a A 2 a b b B 2 b a 2 a 22 a 2 b 2 b 22 b 2 c c 2 C c 2 c 22 c c 2 Mnożenie macierzy przez skalar [ ] λa λa λa 2 λa λa 2 λa 22 λa 2 Dlaczego jest tak samo jak w przypadku wektorów? Bo wektor jest macierzą (-wierszową lub -kolumnową) Dodawanie lub odejmowanie macierzy [ ] a ±b A±B a 2 ±b 2 a ±b a 2 ±b 2 a 22 ±b 22 a 2 ±b 2 UWAGA! Macierze muszą mieć jednakowe wymiary Transponowanie macierzy (a ij a ji ) A [ ] a a 2 a A a 2 a 22 a T 2 Realnie jest to obracanie macierzy wokół przekątnej Mnożenie macierzy a a 2 a 2 a 22 a a 2 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a i c i2 a 2i c i a 2i c i2 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a c +a 2 c 2 +a c a 2i c i a i c i2 a 2i c i I.Rokach,
6 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a i c i2 a c 2 +a 2 c 22 +a c 2 a 2i c i a 2i c i2 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a 2i c i a 2 c +a 22 c 2 +a 2 c a i c i2 a 2i c i2 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a i c i2 a 2i c i a 2i c i2 a 2 c 2 +a 22 c 22 +a 2 c 2 UWAGA! Ilość kolumn macierzy A musi być równa ilości wierszy macierzy C Macierzowy zapis iloczynu skalarnego ab a b +...+a n b n [a... a n ] b.. b n Odwracanie macierzy a a aa AA I, gdzie I Warunki:. Macierz A musi być kwadratowa 2. A 0 Właściwości macierzy jednostkowej I AI IA A xi Ix x a x +a 2 x 2 +a x b Układ równań a 2 x +a 22 x 2 +a 2 x b 2 można zapisać jako a x +a 2 x 2 +a x b a a 2 a a 2 a 22 a 2 a a 2 a x x 2 x b b 2 b I.Rokach,
7 Pozwiązywanie układu równań liniowych poprzez odwracanie macierzy. Ax b, gdzie A jest macierzą kwadratową ( A 0), x i b są wektorami kolumnowymi 2. A Ax A b. Ix A b 4. x A b Szczególne rodzaje macierzy Macierz symetrycznaa ij a ji A A T ZALETA Przechowujemy w pamięci tylko połowę macierzy (dolny lub górny trójkąt) Macierz pasmowa (rzadka) ZALETA Przechowujemy w pamięci tylko pasmo lub jego połowę (w przypadku macierzy symetrycznej) Zaleta MES Macierze otrzymywane w MES zwykle są symetryczne i pasmowe Część III Łagodne wprowadzenie do MES Dwie sprężyny Najprostszy ES sprężyna () x i f i k j f j u i u j Podstawowe parametry Węzły: i, j Sztywność: k (N/m, kg/mm) Przemieszczenia w węzłach: u i, u j (m, mm) Siły w węzłach:f i,f j (N, kg) I.Rokach,
8 Relacja siła przemieszczenia f k(u j u i ) k, gdzie u j u i Warunek równowagi f i +f j 0 f j f i f Równania równowagi w każdym z węzłów (2 jednakowych równania) f i f k(u j u i ) ku i ku j () f j f k(u j u i ) ku i + ku j (2) Ten sam układ równań w postaci macierzowej [ ][ ] [ k k ui k k k u j albo ku f, gdzie k macierz sztywności elementu ][ ui ] u j [ fi f j ] () u wektor przemieszczeń f wektor obciążenia Właściwości macierzy sztywności. k jest macierzą symetryczną 2. k 0. Co to oznacza matematycznie i fizycznie? Warto odnotować, że wystarczy zamocować jeden z końców sprężyny, żeby każde z równań () i (2) miało rozwiązanie. Np. jeżeli u i 0 () f k 0 ku j, u j f/k Układ z dwóch sprężyn F 2 F F 2 F x k F 2 k 2 2 F F u u 2 u f f 2 f 2 f 2 2 Dla każdej ze sprężyn [ ][ ] [ ] k k u f k k u 2 f 2 [ ][ ] [ ] k2 k 2 u2 f 2 k 2 k 2 u gdzief e i wewnętrzna siłą, działającą w węźle o lokalnym numerze i w ES numere Ogólny układ równań Warunek równowagi układu: w każdym węźle siła zewnętrzna (F i ) jest równa sumie sił wewnętrznych (f e j ) f 2 2 (4) (5) F f, F 2 f 2 +f 2, F f 2 2 co daje albo KU F k k 0 k k +k 2 k 2 u u 2 F F 2 (6) 0 k 2 k 2 u F I.Rokach,
9 Ogólny układ równań - inna metoda Rozszerzamy macierzy sztywności każdego z ES. Dla pierwszego elementu równania w postaci macierzowej i tradycyjnej k k 0 u f k k 0u 2 f u 0 k u k 2 u 2 +0u f k u +k 2 u 2 +0u f 2 0u +0u 2 +0u 0 Tu kolorem szarym pokazano sztucznie dołożone elementy zerowe. Dla drugiego elementu u 0 0 k 2 k 2 u 2 f 2 0 k 2 k 2 u f 2 2 Po dodaniu tych dwóch układów stronami otrzymujemy ten sam wynik, co wcześniej. k k u f 0 k k 0+ 0 k 2 k 2 u 2 f 2 + f k 2 k 2 u 0 f 2 2 UWAGA: Numeracja węzłów jest istotna! x k F k 2 2 F F 2 u u u 2 Nowe macierze elementów i nowy układ równań k 0 k k k 2 0 k 2 k 2 Nowy układ równań k 0 k 0 k 2 k 2 k 0 k u F 0 k 2 k 2 u 2 F 2 k k 2 k +k 2 u F Przykładowe zadanie x k P k 2 2 u u 2 u Załóżmy, że u 0, F 2 F P. Musimy wyznaczyć przemieszczenia u 2, u oraz siłę reakcji F. Uwaga: mamy układ równań z niewiadomymi, po w każdym wierszu k k 0 k k +k 2 k 2 0 u 2 F P (7) 0 k 2 k 2 u P P k 0 k u 2 +0u F k 0+(k +k 2 )u 2 k 2 u P 0 0 k 2 u 2 +k 2 u P k u 2 F [ ][ ] [ (k +k 2 ) k 2 u2 P k 2 k 2 u P] I.Rokach,
10 [ (k + k 2) k 2 k 2 + k 2 k 2 k 2 ][ u2 u k u 2 F ] [ ] P+P P k u 2 F k u 2 2P k 2 u 2 +k 2 u P Rozwiązanie u 2 2P/k, u 2P/k +P/k 2, F 2P Schemat działania k 2 k 2 f f 2 k f 2 f 2 k 2 2 P u u 2 u 2 u 2 2 k u f k 2 u 2 f 2 Wyznaczamy k i f f k 2 f 2 f k [k ] [k 2 ] P u u 2 u 2 u k u f k 2 u 2 f 2 Wyznaczamy siły w elementach u 0, F? u 2? u? Ku F Wyznaczamy F,u 2,u A jak jest na prawdę? D model MES (oś) MES (powierchnia) Rozkład naprężeń osiowych w środku i na powierzchni konstrukcji Łatwo zobaczyć, że przewidywania klasycznej wytrzymałości są prawidłowe na jakieś odległości od strefy gwałtownej zmiany kształtu konstrukcji. Zwykle strefa ta ma długość od 0,5 do jednego promienia odpowiedniej części cylindra. Gdyby w tej strefie naprężenia łagodnie zmieniały bym się od wyższych dla cienkiego cylindra ku niższym dla grubego cylindra nic złego we wzorach wytrzymałości bym nie było. Niestety w wierzchołku karbu mamy strefę wysokich naprężeń, która pozostanie tam nawet jeżeli go zaokrąglimy. Właśnie w takich strefach powstają pęknięcia. (Nieco) bardziej skomplikowany przykład Opis zagadnienia I.Rokach,
11 x k k 2 P k 4 2 Dane wyjściowe k 00 N/mm,k N/mm,k 00 N/mm, u 0,P 400 N,u 4 mm Co wyznaczamy?. Przemieszczenia w węzłach 2, 2. Reakcje w węzłach, 4. Siły wewnętrzne we wszystkich sprężynach Macierze sztywności Macierze sztywności elementów [ k ] k 2 [ ] k [ ] Globalna macierz sztywności K Ogólny układ równań Wyjściowy układ równań u 2 u F 0 P 400 F 4 Końcowy układ równań [ ][ ] [ ] u u u 2 F 00u +00 F 4 [ ][ ] [ ] u u u 2 F 00u +00 F 4 00u 2 F [ ][ ] [ ] 2 u2 0 2 u 5 2, + 00( u ) F 4 00u 2 F [ ][ ] [ 2 u u 0] 00( u ) F I.Rokach,
12 Rozwiązanie Przemieszczenia i reakcje u 2 0/5 2 mm, u u 2 /2 mm F 00u N, F 4 00( u ) 200 N -200 N 400 N -200 N 2 2 mm mm 4 mm Siły w elementach. Sprawdzenie poprawności obliczonych wartości reakcji: Dla każdej sprężyny: ściskana czy rozciągana?. Sprężyna nr jest rozciągana siłą 200 N. Dlaczego? 4. Sprężyna nr jest ściskana siłą 200 N. Dlaczego? [ ][ ] [ ] u2 f 2 5. Dla sprężyny nr 2: u f 2 2 f 2 f (u 2 u ) 200 (2 ) 200 N Procedura agregacji jeszcze raz P k k 2 2 x k +k 2 k k k k k 2 0 k 2 +k +k 4 k k k k k 4 0 k 4 k 4 k u 0 u u P P F 2 0 2P F 5 Literatura. Bendsøe, M.P., Sigmund, O. Topology optimization. In: Optimization of Structural and Mechanical Systems, Ed.:Arora J.S.,World Scientific, Huang, X., Xie, Y.M., Evolutionary Topology Optimization of Continuum Structures, Wiley, Yijun Liu. Introduction to finite element method. Lecture Notes. University of Cincinnati, I.Rokach,
Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp.
MES 2 Everything important is simple! odstawowe zasady MES Dzielimy konstrukcję na proste fragmenty (analogia klocki Lego, cegły), które nazywamy elementami skończonymi (ES). ES są połączone w węzłach
Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia
MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F
F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi
MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów
TENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
A A A A A A A A A n n
DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Analiza stanu naprężenia - pojęcia podstawowe
10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Integralność konstrukcji w eksploatacji
1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji
4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS
MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowany został materiał, obciążenie i umocowanie (krok 0).
DYNAMIKA RAM WERSJA KOMPUTEROWA
DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY
ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:
1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]
7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:
7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić
mgr inż. Paweł Szeptyński Podstawy wytrzymałości materiałów i mechaniki układów prętowych 07 Teoria stanu naprężenia i odkształcenia
NAPRĘŻENIE Teoria stanu naprężenia i odkształcenia Naprężeniem nazywamy gęstość powierzchniowych sił wewnętrznych obrazujących oddziaływanie jednej części ciała na drugą, po dokonaniu jego myślowego rozcięcia.
Stateczność ramy. Wersja komputerowa
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.
Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej
; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.
Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
9. PODSTAWY TEORII PLASTYCZNOŚCI
9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Twierdzenia o wzajemności
Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F
Kilka spraw praktycz-
Kilka spraw praktycz- MES2 2 nych Część I Uproszczenia, cd. Symetria konstrukcji Zasada nr. Uwzględniamy symetrię rakz -displ. y-displ.=z-displ. z z y y z y rak z-displ. rak z-displ. W tym przypadku wystarczy
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)
Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D
Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia
Mechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
Temat: Mimośrodowe ściskanie i rozciąganie
Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia
Mechanika i wytrzymałość materiałów BILET No 1
Mechanika i wytrzymałość materiałów BILET No 1 1. Prawa ruchu Newtona. 2. Projektowanie prętów skręcanych ze względu na wytrzymałość oraz kąt skręcania. 3. Belka AB o cięŝarze G oparta jak pokazano na
Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Macierze Lekcja I: Wprowadzenie
Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m
Liczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
Geometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
MES1 Metoda elementów skończonych - I Finite Element Method - I. Mechanika i Budowa Maszyn I stopień ogólnoakademicki
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2016/2017 MES1 Metoda elementów skończonych - I Finite Element Method - I A. USYTUOWANIE
Modelowanie w MES. Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0).
MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0). Krok
Wytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA
POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami
ROZWIĄZANIE PROBLEMU NIELINIOWEGO
Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja
8. PODSTAWY ANALIZY NIELINIOWEJ
8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:
w stanie granicznym nośności
Wytrzyałość ateriałów Hipotezy wytrzyałościowe 1 Podstawy wyiarowania w stanie graniczny nośności Wyiarowanie konstrukcji polega na doborze wyiarów i kształtu przekrojów eleentów. Podstawą doboru jest
[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N
1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz
1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
Stateczność ramy - wersja komputerowa
Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych
J. Szantyr Wykład 10 Stan naprężenia w płynie
J. Szantyr Wykład 10 Stan naprężenia w płynie Można udowodnić, że tensor stanu naprężenia w płynie jest tensorem symetrycznym, czyli: itd. xy = yx Redukuje to liczbę niewiadomych naprężeń lepkościowych
Geometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
8. WIADOMOŚCI WSTĘPNE
Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 1 8. WIDOMOŚCI WSTĘPNE 8.1. KLSYFIKCJ ZSDNICZYCH ELEMENTÓW KONSTRUKCJI Podstawą klasyfikacji zasadniczych elementów konstrukcji jest kształt geometryczny
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia