Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp."

Transkrypt

1 MES 2 Wprowadzenie do MES Everything important is simple! Podstawowe zasady MES Dzielimy konstrukcję na proste fragmenty (analogia klocki Lego, cegły), które nazywamy elementami skończonymi (ES). ES są połączone w węzłach Rozwiązujemy zagadnienie dla każdego ES, czyli ustalamy (zwykle w sposób bardzo przybliżony) relacje pomiędzy siłami a przemieszczeniami w węzłach Rozwiązujemy całe zagadnienie poprzez na przykład zadowalanie warunków równowagi oraz warunków brzegowych w węzłach. W wyniku tego wyznaczamy przemieszczenia w węzłach Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp. Część I Naprężenia ważne dla inżynierów Naprężenia w konstrukcji Dla konstrukcji w równowadze obciążenia zewnętrzne reakcji w zamocowaniu Każda konstrukcja służy przewodnikiem obciążenia od jednej części do drugiej Dla równowagi pozostałej części konstrukcji w przekroju musi działać obciążenie ze strony części odrzuconej Naprężenie (jak i siła) jest wektorem. W każdym przekroju można go rozłożyć na składowe: normalną i styczną. Mamy jedną składową styczną w przypadku płaskiego modelu konstrukcji oraz dwie składowych w przypadku modelu przestrzennego. Składowe normalne i styczne są w jakimś sensie analogiem współrzędnych punktu. Co zmieniła optymalizacja topologiczna Kolejność rozwoju produktu kiedyś... Pomysł Rysunek techniczny (CAD) Obliczenia (CAE) Produkcja (CAM)...i teraz Obliczenia (CAE) Pomysł Model D (CAD) Obliczenia (CAE) Produkcja (Druk D, CAM) Kolejność prac przy optymalizacji istniejącej konstrukcji - obudowa sprężarki VW

2 Materiały Altair W tym miejscu były bardzo ciekawe przykłady z dziedziny optymalizacji topologicznej. Naprężenia z tytułami Nazewnictwo Składnia używana do naprężeń to σ AB, gdzie A oś prostopadła do przekroju σ yy B kierunek naprężenia σ yx Uwagi σ xx σ xy σ xx σ xy. w D w każdym punkcie mamy naprężenia normalne σ xx,σ yy,σ zz oraz 6 stycznych σ xy,σ xz,...,σ zy y x σ yx σ yy 2. Z warunków równowagi (moment obrotowy 0) wynika, żeσ xy σ yx. W D analogicznie σ xz σ zx, σ yz σ zy.. Często dla naprężeń stycznych zamiast σ używa się τ, czyli σ xy τ xy Naprężenia z tytułami ważne dla inżyniera I.Rokach,

3 y x σ Naprężenia główne, 2D σ (albo σ ) maksymalne naprężenie normalne (czyli rozciągające lub ściskające) w danym punkcie. W kierunku prostopadłym do niego działaσ 2 (σ 22 ) minimalne naprężenie normalne. W obydwóch tych przekrojach brak naprężeń stycznych. y x σ 2 Naprężenia główne, D Analogiczne naprężenia σ > σ 2 > σ działają na prostopadłych płaszczyznach w danym punkcie. Naprężenia główne i ich kierunki są ważnym wynikiem obliczeń dla każdego inżyniera i dlatego są wyznaczane przez każdy program MES. W SWS dla nich używa się następujących oznaczeń: σ naprężenie pierwsze główne, σ 2 naprężenie długie główne, σ naprężenie trzecie główne. Kierunki tych naprężeń można zobaczyć wyświetlając wyniki w postaci wektorowego pola naprężeń. W przypadku jednoosiowego rozciągania kryterium plastyczności jest prosty σ σ Y, gdzie σ Y granica plastyczności. Dla przypadku wieloosiowego obciążenia istnieje wiele kryteriów, najbardziej popularny z których to kryterium von Misesa (9) σ eff σ Y, gdzie σ eff 2 (σ σ 2 ) 2 +(σ σ ) 2 +(σ 2 σ ) 2 Naprężenia zredukowane lub efektywne są najważniejszym wynikiem analizy dla konstrukcji metalowych. W SWS, jak i w innych programach, jest to domyślny wynik analizy statycznej. Mówiąc precyzyjnie, nie jest to naprężenie, bo nie jest ani wektorem, ani tensorem. Jest to raczej miara (jak indeks giełdowy) intensywności naprężeń w danym punkcie. Relację pomiędzy MES a wytrzymałością M M Σσ P M Σσ P M Px 2 M Px x P Σp P Celem analizy MES jest wyznaczenie rozkładu naprężeń w dowolnym przekroju konstrukcji. Zwykle ten rozkład jest dokładniejszy od przewidywań wytrzymałości materiałów. Wspólnymi dla wyników MES i wytrzymałości są siły wypadkowe i momenty w przekrojach. Uwaga! Jeżeli z najprostszej analizy wytrzymałościowej (np. σ P/A) wynika, że średni poziom naprężeń w przekroju przekracza dopuszczalną wartość, to nie ma sensu robić analizę MES w nadziei, że jej wyrok będzie inny. x I.Rokach,

4 Część II Podstawowe operacje na wektorach i macierzach Podstawowe operacje na wektorach Po co nam te wektory i macierze? Wiele zagadnień inżynierskich (w tym MES) sprowadza się do rozwiązywania układów równań liniowych x +x 2 +x 0 22x +222x 2 +2x 20 x +x 2 +x 0 Rozwiązując taki układ realnie wykonujemy operacje tylko na liczbach x +x 2 +x x +222x 2 +2x 20 x +x 2 +x 0 0x +0x 2 +0x 00 22x +222x 2 +2x 20 x +x 2 +x 0 (2)+() 0x +0x 2 +0x 00 22x +222x 2 +2x 20 (22+)x +(222+)x 2 +(2+)x x +0x 2 +0x 00 22x +222x 2 +2x 20 55x +225x 2 +5x 50 Z powodów ściśle pragmatycznych oddzielamy liczby (czyli to, co jest istotne w układzie równań) od niewiadomych nazwy których nie są istotne. Np. zamiast x,x 2,x można użyća,b,c. x (?) x Definicja 2 wektorów a (a, a 2,..., a n ), b (b, b 2,..., b n ) x Mnożenie wektora przez skalar λa (λa, λa 2,..., λa n ) Przykład a (,2,) λ 0 λa (0,20,0) Dodawanie lub odejmowanie wektorów a±b (a ±b, a 2 ±b 2,..., a n ±b n ) UWAGA! Wektory muszą składać się z jednakowej ilości elementów Przykład a (,2,) b (0,20,0) a+b (,22,) Iloczyn skalarny wektorów I.Rokach,

5 ab a b + a 2 b a n b n n a i b i UWAGA! Wektory muszą składać się z jednakowej ilości elementów Przykład a (,2,) b (0,20,0) ab Podstawowe operacje na macierzach Definicja kilku macierzy [ ] [ ] a a A 2 a b b B 2 b a 2 a 22 a 2 b 2 b 22 b 2 c c 2 C c 2 c 22 c c 2 Mnożenie macierzy przez skalar [ ] λa λa λa 2 λa λa 2 λa 22 λa 2 Dlaczego jest tak samo jak w przypadku wektorów? Bo wektor jest macierzą (-wierszową lub -kolumnową) Dodawanie lub odejmowanie macierzy [ ] a ±b A±B a 2 ±b 2 a ±b a 2 ±b 2 a 22 ±b 22 a 2 ±b 2 UWAGA! Macierze muszą mieć jednakowe wymiary Transponowanie macierzy (a ij a ji ) A [ ] a a 2 a A a 2 a 22 a T 2 Realnie jest to obracanie macierzy wokół przekątnej Mnożenie macierzy a a 2 a 2 a 22 a a 2 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a i c i2 a 2i c i a 2i c i2 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a c +a 2 c 2 +a c a 2i c i a i c i2 a 2i c i I.Rokach,

6 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a i c i2 a c 2 +a 2 c 22 +a c 2 a 2i c i a 2i c i2 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a 2i c i a 2 c +a 22 c 2 +a 2 c a i c i2 a 2i c i2 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a i c i2 a 2i c i a 2i c i2 a 2 c 2 +a 22 c 22 +a 2 c 2 UWAGA! Ilość kolumn macierzy A musi być równa ilości wierszy macierzy C Macierzowy zapis iloczynu skalarnego ab a b +...+a n b n [a... a n ] b.. b n Odwracanie macierzy a a aa AA I, gdzie I Warunki:. Macierz A musi być kwadratowa 2. A 0 Właściwości macierzy jednostkowej I AI IA A xi Ix x a x +a 2 x 2 +a x b Układ równań a 2 x +a 22 x 2 +a 2 x b 2 można zapisać jako a x +a 2 x 2 +a x b a a 2 a a 2 a 22 a 2 a a 2 a x x 2 x b b 2 b I.Rokach,

7 Pozwiązywanie układu równań liniowych poprzez odwracanie macierzy. Ax b, gdzie A jest macierzą kwadratową ( A 0), x i b są wektorami kolumnowymi 2. A Ax A b. Ix A b 4. x A b Szczególne rodzaje macierzy Macierz symetrycznaa ij a ji A A T ZALETA Przechowujemy w pamięci tylko połowę macierzy (dolny lub górny trójkąt) Macierz pasmowa (rzadka) ZALETA Przechowujemy w pamięci tylko pasmo lub jego połowę (w przypadku macierzy symetrycznej) Zaleta MES Macierze otrzymywane w MES zwykle są symetryczne i pasmowe Część III Łagodne wprowadzenie do MES Dwie sprężyny Najprostszy ES sprężyna () x i f i k j f j u i u j Podstawowe parametry Węzły: i, j Sztywność: k (N/m, kg/mm) Przemieszczenia w węzłach: u i, u j (m, mm) Siły w węzłach:f i,f j (N, kg) I.Rokach,

8 Relacja siła przemieszczenia f k(u j u i ) k, gdzie u j u i Warunek równowagi f i +f j 0 f j f i f Równania równowagi w każdym z węzłów (2 jednakowych równania) f i f k(u j u i ) ku i ku j () f j f k(u j u i ) ku i + ku j (2) Ten sam układ równań w postaci macierzowej [ ][ ] [ k k ui k k k u j albo ku f, gdzie k macierz sztywności elementu ][ ui ] u j [ fi f j ] () u wektor przemieszczeń f wektor obciążenia Właściwości macierzy sztywności. k jest macierzą symetryczną 2. k 0. Co to oznacza matematycznie i fizycznie? Warto odnotować, że wystarczy zamocować jeden z końców sprężyny, żeby każde z równań () i (2) miało rozwiązanie. Np. jeżeli u i 0 () f k 0 ku j, u j f/k Układ z dwóch sprężyn F 2 F F 2 F x k F 2 k 2 2 F F u u 2 u f f 2 f 2 f 2 2 Dla każdej ze sprężyn [ ][ ] [ ] k k u f k k u 2 f 2 [ ][ ] [ ] k2 k 2 u2 f 2 k 2 k 2 u gdzief e i wewnętrzna siłą, działającą w węźle o lokalnym numerze i w ES numere Ogólny układ równań Warunek równowagi układu: w każdym węźle siła zewnętrzna (F i ) jest równa sumie sił wewnętrznych (f e j ) f 2 2 (4) (5) F f, F 2 f 2 +f 2, F f 2 2 co daje albo KU F k k 0 k k +k 2 k 2 u u 2 F F 2 (6) 0 k 2 k 2 u F I.Rokach,

9 Ogólny układ równań - inna metoda Rozszerzamy macierzy sztywności każdego z ES. Dla pierwszego elementu równania w postaci macierzowej i tradycyjnej k k 0 u f k k 0u 2 f u 0 k u k 2 u 2 +0u f k u +k 2 u 2 +0u f 2 0u +0u 2 +0u 0 Tu kolorem szarym pokazano sztucznie dołożone elementy zerowe. Dla drugiego elementu u 0 0 k 2 k 2 u 2 f 2 0 k 2 k 2 u f 2 2 Po dodaniu tych dwóch układów stronami otrzymujemy ten sam wynik, co wcześniej. k k u f 0 k k 0+ 0 k 2 k 2 u 2 f 2 + f k 2 k 2 u 0 f 2 2 UWAGA: Numeracja węzłów jest istotna! x k F k 2 2 F F 2 u u u 2 Nowe macierze elementów i nowy układ równań k 0 k k k 2 0 k 2 k 2 Nowy układ równań k 0 k 0 k 2 k 2 k 0 k u F 0 k 2 k 2 u 2 F 2 k k 2 k +k 2 u F Przykładowe zadanie x k P k 2 2 u u 2 u Załóżmy, że u 0, F 2 F P. Musimy wyznaczyć przemieszczenia u 2, u oraz siłę reakcji F. Uwaga: mamy układ równań z niewiadomymi, po w każdym wierszu k k 0 k k +k 2 k 2 0 u 2 F P (7) 0 k 2 k 2 u P P k 0 k u 2 +0u F k 0+(k +k 2 )u 2 k 2 u P 0 0 k 2 u 2 +k 2 u P k u 2 F [ ][ ] [ (k +k 2 ) k 2 u2 P k 2 k 2 u P] I.Rokach,

10 [ (k + k 2) k 2 k 2 + k 2 k 2 k 2 ][ u2 u k u 2 F ] [ ] P+P P k u 2 F k u 2 2P k 2 u 2 +k 2 u P Rozwiązanie u 2 2P/k, u 2P/k +P/k 2, F 2P Schemat działania k 2 k 2 f f 2 k f 2 f 2 k 2 2 P u u 2 u 2 u 2 2 k u f k 2 u 2 f 2 Wyznaczamy k i f f k 2 f 2 f k [k ] [k 2 ] P u u 2 u 2 u k u f k 2 u 2 f 2 Wyznaczamy siły w elementach u 0, F? u 2? u? Ku F Wyznaczamy F,u 2,u A jak jest na prawdę? D model MES (oś) MES (powierchnia) Rozkład naprężeń osiowych w środku i na powierzchni konstrukcji Łatwo zobaczyć, że przewidywania klasycznej wytrzymałości są prawidłowe na jakieś odległości od strefy gwałtownej zmiany kształtu konstrukcji. Zwykle strefa ta ma długość od 0,5 do jednego promienia odpowiedniej części cylindra. Gdyby w tej strefie naprężenia łagodnie zmieniały bym się od wyższych dla cienkiego cylindra ku niższym dla grubego cylindra nic złego we wzorach wytrzymałości bym nie było. Niestety w wierzchołku karbu mamy strefę wysokich naprężeń, która pozostanie tam nawet jeżeli go zaokrąglimy. Właśnie w takich strefach powstają pęknięcia. (Nieco) bardziej skomplikowany przykład Opis zagadnienia I.Rokach,

11 x k k 2 P k 4 2 Dane wyjściowe k 00 N/mm,k N/mm,k 00 N/mm, u 0,P 400 N,u 4 mm Co wyznaczamy?. Przemieszczenia w węzłach 2, 2. Reakcje w węzłach, 4. Siły wewnętrzne we wszystkich sprężynach Macierze sztywności Macierze sztywności elementów [ k ] k 2 [ ] k [ ] Globalna macierz sztywności K Ogólny układ równań Wyjściowy układ równań u 2 u F 0 P 400 F 4 Końcowy układ równań [ ][ ] [ ] u u u 2 F 00u +00 F 4 [ ][ ] [ ] u u u 2 F 00u +00 F 4 00u 2 F [ ][ ] [ ] 2 u2 0 2 u 5 2, + 00( u ) F 4 00u 2 F [ ][ ] [ 2 u u 0] 00( u ) F I.Rokach,

12 Rozwiązanie Przemieszczenia i reakcje u 2 0/5 2 mm, u u 2 /2 mm F 00u N, F 4 00( u ) 200 N -200 N 400 N -200 N 2 2 mm mm 4 mm Siły w elementach. Sprawdzenie poprawności obliczonych wartości reakcji: Dla każdej sprężyny: ściskana czy rozciągana?. Sprężyna nr jest rozciągana siłą 200 N. Dlaczego? 4. Sprężyna nr jest ściskana siłą 200 N. Dlaczego? [ ][ ] [ ] u2 f 2 5. Dla sprężyny nr 2: u f 2 2 f 2 f (u 2 u ) 200 (2 ) 200 N Procedura agregacji jeszcze raz P k k 2 2 x k +k 2 k k k k k 2 0 k 2 +k +k 4 k k k k k 4 0 k 4 k 4 k u 0 u u P P F 2 0 2P F 5 Literatura. Bendsøe, M.P., Sigmund, O. Topology optimization. In: Optimization of Structural and Mechanical Systems, Ed.:Arora J.S.,World Scientific, Huang, X., Xie, Y.M., Evolutionary Topology Optimization of Continuum Structures, Wiley, Yijun Liu. Introduction to finite element method. Lecture Notes. University of Cincinnati, I.Rokach,

Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp.

Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp. MES 2 Everything important is simple! odstawowe zasady MES Dzielimy konstrukcję na proste fragmenty (analogia klocki Lego, cegły), które nazywamy elementami skończonymi (ES). ES są połączone w węzłach

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

A A A A A A A A A n n

A A A A A A A A A n n DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

Analiza stanu naprężenia - pojęcia podstawowe

Analiza stanu naprężenia - pojęcia podstawowe 10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Wprowadzenie do WK1 Stan naprężenia

Wprowadzenie do WK1 Stan naprężenia Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Integralność konstrukcji w eksploatacji

Integralność konstrukcji w eksploatacji 1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji

Bardziej szczegółowo

4. Elementy liniowej Teorii Sprężystości

4. Elementy liniowej Teorii Sprężystości 4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowany został materiał, obciążenie i umocowanie (krok 0).

Bardziej szczegółowo

DYNAMIKA RAM WERSJA KOMPUTEROWA

DYNAMIKA RAM WERSJA KOMPUTEROWA DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności: 7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić

Bardziej szczegółowo

mgr inż. Paweł Szeptyński Podstawy wytrzymałości materiałów i mechaniki układów prętowych 07 Teoria stanu naprężenia i odkształcenia

mgr inż. Paweł Szeptyński Podstawy wytrzymałości materiałów i mechaniki układów prętowych 07 Teoria stanu naprężenia i odkształcenia NAPRĘŻENIE Teoria stanu naprężenia i odkształcenia Naprężeniem nazywamy gęstość powierzchniowych sił wewnętrznych obrazujących oddziaływanie jednej części ciała na drugą, po dokonaniu jego myślowego rozcięcia.

Bardziej szczegółowo

Stateczność ramy. Wersja komputerowa

Stateczność ramy. Wersja komputerowa Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

9. PODSTAWY TEORII PLASTYCZNOŚCI

9. PODSTAWY TEORII PLASTYCZNOŚCI 9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

Kilka spraw praktycz-

Kilka spraw praktycz- Kilka spraw praktycz- MES2 2 nych Część I Uproszczenia, cd. Symetria konstrukcji Zasada nr. Uwzględniamy symetrię rakz -displ. y-displ.=z-displ. z z y y z y rak z-displ. rak z-displ. W tym przypadku wystarczy

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)

Bardziej szczegółowo

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

Temat: Mimośrodowe ściskanie i rozciąganie

Temat: Mimośrodowe ściskanie i rozciąganie Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów BILET No 1

Mechanika i wytrzymałość materiałów BILET No 1 Mechanika i wytrzymałość materiałów BILET No 1 1. Prawa ruchu Newtona. 2. Projektowanie prętów skręcanych ze względu na wytrzymałość oraz kąt skręcania. 3. Belka AB o cięŝarze G oparta jak pokazano na

Bardziej szczegółowo

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Macierze Lekcja I: Wprowadzenie

Macierze Lekcja I: Wprowadzenie Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

Geometria w R 3. Iloczyn skalarny wektorów

Geometria w R 3. Iloczyn skalarny wektorów Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =

Bardziej szczegółowo

MES1 Metoda elementów skończonych - I Finite Element Method - I. Mechanika i Budowa Maszyn I stopień ogólnoakademicki

MES1 Metoda elementów skończonych - I Finite Element Method - I. Mechanika i Budowa Maszyn I stopień ogólnoakademicki KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2016/2017 MES1 Metoda elementów skończonych - I Finite Element Method - I A. USYTUOWANIE

Bardziej szczegółowo

Modelowanie w MES. Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0).

Modelowanie w MES. Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0). MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0). Krok

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami

Bardziej szczegółowo

ROZWIĄZANIE PROBLEMU NIELINIOWEGO

ROZWIĄZANIE PROBLEMU NIELINIOWEGO Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja

Bardziej szczegółowo

8. PODSTAWY ANALIZY NIELINIOWEJ

8. PODSTAWY ANALIZY NIELINIOWEJ 8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:

Bardziej szczegółowo

w stanie granicznym nośności

w stanie granicznym nośności Wytrzyałość ateriałów Hipotezy wytrzyałościowe 1 Podstawy wyiarowania w stanie graniczny nośności Wyiarowanie konstrukcji polega na doborze wyiarów i kształtu przekrojów eleentów. Podstawą doboru jest

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N

Bardziej szczegółowo

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz 1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

J. Szantyr Wykład 10 Stan naprężenia w płynie

J. Szantyr Wykład 10 Stan naprężenia w płynie J. Szantyr Wykład 10 Stan naprężenia w płynie Można udowodnić, że tensor stanu naprężenia w płynie jest tensorem symetrycznym, czyli: itd. xy = yx Redukuje to liczbę niewiadomych naprężeń lepkościowych

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

8. WIADOMOŚCI WSTĘPNE

8. WIADOMOŚCI WSTĘPNE Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 1 8. WIDOMOŚCI WSTĘPNE 8.1. KLSYFIKCJ ZSDNICZYCH ELEMENTÓW KONSTRUKCJI Podstawą klasyfikacji zasadniczych elementów konstrukcji jest kształt geometryczny

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych

Bardziej szczegółowo

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia

Bardziej szczegółowo