A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 2009.

Wielkość: px
Rozpocząć pokaz od strony:

Download "A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 2009."

Transkrypt

1 A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 009 Uniwerse Mikołaja Kopernika w Toruniu Kaedra Ekonomerii i Saski WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA Z a r s r e ś c i. W niniejszm opracowaniu zaproponowano użcie modeli klas RCA (RCA RCA-GARCH RCA-MA Sign RCA Sign RCA-MA i Sign RCA-GARCH) do orzmania prognoz warunkowej średniej dla sóp zwrou. Dla porównania wznaczono prognoz na podsawie modelu klas ARMA-GARCH obliczono bled prognoz ex pos oraz miar kierunku zgodności. Modele klas RCA mogą bć przdane do wznaczenia warunkowej średniej wówczas gd nie jeseśm wsanie zbudować modelu ARMA-GARCH. S ł o w a k l u c z o w e: RCA Sign RCA RCA-MA Sign RCA-MA RCA-GARCH Sign RCA- GARCH prognozowanie błęd prognoz.. WSTĘP Wprowadzenie losowego parameru do modelu auoregresjnego zwiększa możliwości aplikacjne ego modelu gdż pozwala na uwzględnienie podwższonej kuroz i grubch ogonów rozkładów. Jednak model RCA jes wsanie modelować zmienną wariancję lko w przpadku gd jes ona opisana za pomocą modelu ARCH. Sąd modfikacja modelu RCA polegająca na rozszerzeniu modelu RCA o model GARCH. Inną modfikacją modelu RCA jes wprowadzenie do modelu RCA funkcji znaków kóra pozwala na modelowanie asmerii reakcji sóp zwrou na różne informacje pochodzące z rnku oraz podwższa warości kuroz procesu. Uwzględnienie losowego charakeru sóp zwrou może nasąpiś poprzez wprowadzenie do modelu RCA części MA. Celem niniejszego arkułu jes zbadanie własności prognoscznch modeli RCA RCA-MA RCA-GARCH Sign RCA Sign RCA-MA oraz Sign Praca naukowa finansowana ze środków na naukę w laach jako projek badawcz.

2 76 RCA-GARCH. W części empircznej przedsawione zosaną aplikacje omawianch modeli.. MODELE RCA Nauralnm uogólnieniem klascznch liniowch modeli auoregresjnch są modele auoregresjne z losowmi paramerami (RCA). Klasczn sacjonarn jednowmiarow model auoregresjn rzędu pierwszego z losowm paramerem (ozn. RCA()) można zapisać w posaci: gdzie: ( φ + δ ) + ε = () δ 0 0 iid ~ σ δ 0 0 ε σ ε φ + σ δ <. (3) Warunek (3) jes warunkiem koniecznm i wsarczającm sacjonarności drugiego rzędu procesu naomias warunki ()-(3) gwaranują ścisłą sacjonarność procesu. Ściśle sacjonarn proces opisan równaniami ()-(3) charakerzuje się średnią zero oraz sałą wariancją i kurozą (Aue 004; Górka 007b). Thavaneswaran i Appadoo (006) zaproponowali dołączenie do modelu RCA() funkcji znaku: dla > 0 s = 0 dla = 0 (4) dla < 0. Wówczas sacjonarn model RCA() z funkcją znaku (ozn. Sign RCA()) ma posać (Thavaneswaran Appadoo 006): ( φ + δ + Φs ) + ε = () (5) gdzie paramer i proces spełniają warunki ()-(3). Zaem uwzględnienie funkcji znaku w modelu RCA wskazuje że zmiana warości parameru zależ od znaku obserwacji poprzedniej. Jeżeli spełnione są warunki ()-(3) o proces (5) charakerzuje się zerową bezwarunkową średnią oraz sałą bezwarunkową wariancją i kurozą (Thavaneswaran Appadoo 006). Warość wariancji i kuroz jes większa niż dla procesu opisanego poprzez model RCA() cz AR() (Górka 007b). Pełn opis ch modeli wraz z własnościami meodami esmacji oraz aplikację można znaleźć w prac Nicholls i Quinn (98)

3 Własności prognosczne modeli klas RCA 77 Propozcja Thavaneswaran Appadoo i Becor (006) uwzględnienia dodakowo średnią ruchomą rzędu pierwszego (Thavaneswaran Appadoo Becor 006): ( + δ ) + ε θε = + φ (6) gdzie paramer i proces spełniają warunki ()-(3). Model (6) nosi nazwę modelu RCA()-MA() i ma bezwarunkową średnią zero sałą bezwarunkową wariancję oraz kurozę. Warość wariancji i kuroz jes wższa niż w przpadku modelu ARMA(). Dołączenia do modelu RCA()-MA() funkcji znaku pozwala na uwzględnienie asmerii reakcji sóp zwrou na różne informacje pochodzące z rnku. Wówczas mam do cznienia z modelem Sign RCA()-MA() opisanm równaniem (Thavaneswaran Appadoo Becor 006): ( + δ + Φs ) + ε θε = + φ (7) gdzie paramer i proces spełniają warunki ()-(3). Model opisan równaniem (7) podobnie jak model opisan równaniem (6) charakerzuję się zerową bezwarunkową średnią oraz sałą warunkową wariancją i kurozą. Zarówno warość wariancji jak i kuroz jes wższa niż dla RCA()-MA(). Model RCA modeluje zmienną wariancję warunkową lko w przpadku gd jes ona opisana za pomocą modelu ARCH(). Sąd inna od poprzednich modfikacja modelu RCA polegająca na rozszerzeniu modelu RCA o model GARCH. Wówczas model opisan równaniem () można zapisać za pomocą równań (Thavaneswaran Appadoo Becor 006): ε = ( φ + δ ) + ε = (8) h = α h z p q 0 + α iε i + = j= gdzie iid ( 0 ) ~ z β h j j z σ α 0 α 0 oraz β 0. Model (8) nosi nazwę 0 > i modelu RCA()-GARCH(pq). Ogólne podsawowe charakerski modelu RCA()-GARCH(pq) wnoszą: ( ) = 0 E (9) E ( ) [ h ] σ z = ( ). φ E (0) σ δ W przpadku modelu opisanego równaniem (5) orzmujem model Sign RCA()-GARCH(pq): j

4 78 ( φ + δ + Φs ) + ε = ε = h = α h z gdzie iid ( 0 ) p q 0 + α iε i + = j= () β h j j z ~ σ z α 0 > 0 α i 0 β j 0 Φ α 0. W przpadku modelu Sign RCA()-GARCH(pq) podsawowe charakerski wnoszą: ( ) = 0 E () E ( ) [ h ] σ = z ( ). φ Φ E (3) σ δ 3. ESTYMACJA PARAMETRÓW MODELI. PREDYKTORY Ocen paramerów poszczególnch modeli można orzmać sosując meodę największej wiargodności (MNW). Prz założeniu normalności rozkładu składników losowch funkcja wiargodności dla modelu RCA() ma posać (Górka 007a): N u ( σ + σ ) N N ln L = ln π ln ε δ = = σ ε + σ δ (4) gdzie u = δ + ε = φ. Dla modelu Sign RCA() nie zmienia się sama funkcja (4) a lko sposób u δ + ε = φ + Φs. = obliczania resz a mianowicie: ( ) W przpadku modelu RCA()-GARCH(pq) w sosunku do modelu RCA() zmienia sposób się obliczania funkcji wiargodności gdzie N ln L = ln π N = ln N u = σ z E( h ) + σ δ p q 0 + α iε i + β j = j= ( σ E( h ) + σ ) z j δ (5) h = α h zaś jes akie samo jak dla modelu RCA(). Prezenowane modele mają nasępujące posacie jednookresowego predkora warunkowej średniej dla:

5 Własności prognosczne modeli klas RCA 79 modelu RCA(): ( F ) = φ P = E + + (6) modelu Sign RCA()): ( F ) = ( + Φs ) P = E + + φ (7) modelu RCA()-MA(): ( F ) = φ + θε P = E + + (8) modelu Sign RCA()-MA(): ( F ) = ( φ + Φs ) + θε P = E + + (9) Dla modeli RCA()-GARCH(pq) oraz Sign RCA()-GARCH(pq) predkor warunkowej średniej wnosi (6) albo (7) odpowiednio. 4. ANALIZA EMPIRYCZNA Do analiz empircznej wkorzsano procenowe logarmiczne sop zwrou danch dziennch cen meali szlachench (złoa srebra plan i palladu) kursów waluowch (dolara i euro) oraz sop zwrou wbranch świaowch indeksów giełdowch 3 (DJIA NASDAQ SP500 FT-SE00 HANGSENG NIKKEI) w okresie od 4 scznia 000 do września 008 roku. Przed przsąpieniem do analiz sascznej i ekonomercznej dane sprowadzono do czasowej porównwalności. W en sposób uzskano szeregów czasowch po 63 obserwacji każd. Szeregi pierwone charakerzował się wsępowaniem pierwiaska jednoskowego naomias szeregi procenowch logarmicznch sóp zwrou bł sacjonarne. Szeregi sóp zwrou podzielono na dwa zbior: od -000 obserwacji jako okres prób oraz od jako okres werfikacji prognoz. Dla prób zbadano sasczne własności szeregów procenowch logarmicznch sop zwrou oraz warości sask wbranch esów (wniki w abeli ). Rozkład sóp zwrou charakerzował się podwższona kurozą (w sosunku do rozkładu normalnego) oraz zróżnicowaną skośnością. W siedmiu analizowanch przpadkach wsępowała auokorelacja rzędu pierwszego. Tes LBI 4 we wszskich przpadkach wskazwał na zmienność parameru auoregresjnego. Dane pochodzą ze sron hp:// (cen PM) Dane pochodzą ze sron hp://bossa.pl W eście m hipoeza zerowa oznacza sałość parameru auoregresjnego (Górka 007a).

6 80 Tabela. Własności sasczne procenowch logarmicznch sóp zwrou oraz warości sask esu Boxa-Ljunga Engla ARCH DF LBI Sopa zwrou skośność kuroza Boxa-Ljunga Engla ARCH es złoo srebro plana pallad EUR USD DJIA NASDAQ SP FT-SE HANGSENG NIKKEI Czcionką pogrubioną zaznaczono przpadki gdzie nasąpiło odrzucenie H 0 na korzść H prz 5% poziomie isoności. Źródło: obliczenia własne. Dla każdego szeregu sóp zwrou dokonano esmacji modeli ARMA- GARCH oraz modeli RCA Sign RCA RCA-MA Sign RCA-MA RCA- GARCH oraz Sign RCA-GARCH 5. W przpadku modeli ARMA-GARCH wbrano e modele kóre posiadał sascznie isone paramer i miał najmniejszą warość krerium informacjnego. Z klas modeli RCA wbrano wszskie modele ze sascznie isonmi paramerami. Nasępnie dla wbranch modeli wznaczono jednookresowe prognoz saczne dla osanich 63 obserwacji w próbie oraz dla 63 obserwacji poza próbą. Dla porównania obliczono błęd prognoz ex pos oraz miar zgodności kierunku zmian (Brzeszczński Kelm 00). Dla sóp zwrou cen złoa kursu dolara oraz indeksu DJIA ze względu na brak isoności paramerów nie udało się dopasować żadnego modelu pu ARMA-GARCH. W przpadku modeli klas RCA model RCA-MA posiadał sascznie isone paramer dla złoa i DJIA zaś model RCA-MA i model Sign RCA-MA dla sop zwrou kursu dolara. Miar zgodności kierunku zmian prognoz nie przekraczał 60%. Wszskie analizowane szeregi można bło opisać za pomocą co najmniej jednego modelu klas RCA. Dla przkładu w abeli zamieszczono oszacowane modele dla palladu. DF LBI 5 Obliczenia zosał wkonane z wkorzsaniem programu Gauss 6.0.

7 Własności prognosczne modeli klas RCA 8 Tabela. Modele procenowch logarmicznch sóp zwrou palladu RCA() RCA()- Sign RCA()- AR()- AR() GARCH() GARCH() GARCH() φ 034*** 0093*** 00943*** 00449** 00874*** Φ 00567** 0347*** 094*** 0966*** 009*** 00930*** 0478*** 08693*** 0870*** 085*** lnl AIC BIC Oznaczenia: *** - % poziom isoności ** - 5% poziom isoności * - 0% poziom isoności. Źródło: obliczenia własne. Najmniejszą warość krerium AIC posiada model Sign RCA-GARCH naomias krerium BIC preferuje model RCA-GARCH. Tes LR wskazuje na wbór modelu RCA-GARCH. Tabela 3 zawiera błęd prognoz ex pos dla prognoz obliczonch w próbie oraz dla prognoz obliczonch poza próbą. Najmniejsze warości błędów w próbie orzmano dla modelu AR(). Poza próbą najlepsze warości prognosczne posiadał model Sign RCA-GARCH. Różnice pomiędz błędami dla poszczególnch modeli są niewielkie. Miar zgodności kierunku zmian dla wszskich modeli są akie same i nie przekraczają 60%. Tabela 3. Błęd prognoz ex pos dla całego okresu prognozowania dla prognoz warunkowej średniej dla palladu Model Błąd RCA()- Sign RCA()- AR()- RCA() AR() GARCH() GARCH() GARCH() w próbie (obserwacje ) ME MSE RMSE MAE Q Q Q % Q % poza próbą (obserwacje 00-63) ME MSE RMSE MAE

8 8 Q Q Q % Q % Oznaczenia: ME błąd średni MSE - błąd średniokwadraow RMSE - pierwiasek błędu średniokwadraowego MAE - średni błąd bezwzględn Q miara zgodności kierunku zmian prognoz i warości rzeczwisch Q miara zdolności prognozowania punków zwronch Q % oraz Q % - odpowiednio przefilrowane miar Q i Q. Źródło: obliczenia własne. Oszacowane modele dla sóp zwrou SP500 zawiera abela 4. W m przpadku es LR wskazuje na wbór modelu AR-GARCH chociaż warości: funkcji wiargodności i kreriów informacjnch są porównwalne do warości uzskanch przez RCA-GARCH. Błęd prognoz (abela 5) są najmniejsze dla AR-GARCH w próbie oraz RCA-GARCH poza próbą. W m przpadku modele dla kórch paramer jes ujemn posiadają 00% zdolność prognozowania punków zwronch. Wnika o głównie z charakeru sóp zwrou (zmienności znaku) oraz ze znaku parameru. Pozosałe miar zgodności nie przekraczają 60%. Tabela 4. Modele procenowch logarmicznch sóp zwrou SP500 RCA()-GARCH() RCA()-MA() AR() AR()-GARCH() φ * 08989*** * * θ -0940*** 0009*** 0009*** 006*** 0064*** 09303*** 0930*** lnl AIC BIC Oznaczenia: *** - % poziom isoności ** - 5% poziom isoności * - 0% poziom isoności. Źródło: obliczenia własne. Tabela 5. Błęd prognoz ex pos dla całego okresu prognozowania dla prognoz warunkowej średniej dla SP500 Model Błąd RCA()- GARCH() RCA()-MA() AR() AR()-GARCH() w próbie (obserwacje ) ME MSE RMSE MAE

9 Własności prognosczne modeli klas RCA 83 Q Q Q % Q % poza próbą (obserwacje 00-63) ME MSE RMSE MAE Q Q Q % Q % Oznaczenia: ME błąd średni MSE - błąd średniokwadraow RMSE - pierwiasek błędu średniokwadraowego MAE - średni błąd bezwzględn Q miara zgodności kierunku zmian prognoz i warości rzeczwisch Q miara zdolności prognozowania punków zwronch Q % oraz Q % - odpowiednio przefilrowane miar Q i Q. Źródło: obliczenia własne. 5. PODSUMOWANIE W prac zaprezenowano wkorzsanie modeli klas RCA do wznaczania prognoz warunkowej średniej sóp zwrou. Do analiz empircznej wkorzsano szeregów reprezenującch cen meali szlachench kursów waluowch oraz wbranch indeksów giełdowch. Analiza oszacowanch modeli błędów ex pos oraz miar kierunku zmian pozwalają na sformułowanie nasępującch wniosków: modele klas RCA wsępują również wówczas gd nie wsępuje auokorelacja szeregu czasowego za pomocą modeli klas RCA można prognozować warunkową średnią nawe w przpadku gd nie jes o możliwe za pomocą modeli klas ARMA-GARCH prognoz warunkowej średniej orzmane za pomocą modeli klas RCA charakerzują się podobnmi błędami ex pos jak prognoz orzmane za pomocą modeli klas ARMA-GARCH. W przpadku jednch szeregów błęd e są mniejsze niż dla modeli klas ARMA-GARCH w przpadku innch szeregów są większe modele klas RCA nie mają zasosowania do prognozowania zgodności kierunku zmian prognoz orzmane za pomocą modeli klas RCA obarczone są dużmi błędami ex pos co oznacza że ich walor prognosczne są bardzo słabe.

10 84 Niniejsze opracowanie nie wczerpuje badania przdaności modeli klas RCA do wznaczania prognoz warunkowej średniej. LITERATURA Aue A. (004) Srong Approximaion for RCA() Time Series wih Applicaions Saisics & Probabili Leers Brzeszczński J. Kelm R. (00) Ekonomerczne modele rnków finansowch WIG- Press Warszawa. Górka J. (007a) Modele auoregresjne z losowmi paramerami [w:] Osińska M. (red.) Proces STUR. Modelowanie i zasosowanie do finansowch szeregów czasowch Wdawnicwo Dom Organizaora Toruń. Górka J. (007b) Opisu kuroz rozkładów za pomocą wbranch modeli z funkcją znaku [w:] Dnamiczne modele ekonomerczne red. Z. Zieliński. UMK Toruń. Nicholls D. F. Quinn B. G. (98) Random Coefficien Auoregressive Models: An Inroducion Springer New York. Thavaneswaran A. Appadoo S. S. Becor C. R. (006) Recen Developmens in Volaili Modeling and Applicaions Journal of Applied Mahemaics and Decision Sciences -3. Thavaneswaran A. Appadoo S. S. (006) Properies of a New Famil of Volaili Sing Models Compuers and Mahemaics wih Applicaions FORECAST PROPERTIES OF FAMILY RCA MODELS A b s r a c. This paper proposes o use RCA models RCA-MA models RCA-GARCH models Sign RCA models Sign RCA-MA models and Sign RCA-GARCH models o obain forecass of condiional mean of reurns. There we could find example for meal like: gold silver plainum pallad foreign exchange raes (USD/PLN EURO/PLN). For comparison he forecass of condiional mean from ARMA-GARCH models were calculaed. Calculaed forecass errors ou of differen models have been compared. K e w o r d s: RCA Sign RCA RCA-MA Sign RCA-MA RCA-GARCH Sign RCA-GARCH forecasing forecasing errors.

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA *

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA * ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ 2009 Uniwersytet Mikołaja Kopernika w Toruniu Katedra Ekonometrii i Statystyki Joanna Górka WŁASNOŚCI PROGNOSTYCZNE

Bardziej szczegółowo

PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM 1. Joanna Górka. Wydział Nauk Ekonomicznych i Zarządzania UMK w Toruniu Katedra Ekonometrii i Statystyki

PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM 1. Joanna Górka. Wydział Nauk Ekonomicznych i Zarządzania UMK w Toruniu Katedra Ekonometrii i Statystyki PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM Joanna Górka Wdział Nauk Ekonomicznch i Zarządzania UMK w Toruniu Kaedra Ekonomerii i Saski WSTĘP Niesacjonarne proces o średniej zero mogą bć reprezenowane

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 5

Stanisław Cichocki Natalia Nehrebecka. Wykład 5 Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

Magdalena Osińska, Joanna Górka Uniwersytet Mikołaja Kopernika w Toruniu

Magdalena Osińska, Joanna Górka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 5 w Toruniu Kaedra Ekonomerii i Saski, Uniwerse Mikołaja Kopernika w Toruniu Uniwerse Mikołaja Kopernika w Toruniu Idenfikacja

Bardziej szczegółowo

Konspekty wykładów z ekonometrii

Konspekty wykładów z ekonometrii Konspek wkładów z ekonomerii Budowa i werfikaca modelu - reść przkładu W wniku ssemacznch badań popu na warzwa w pewnm mieście, orzmano nasępuące szeregi czasowe: przros (zmian) popu na warzwa (w zł. na

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 3

Stanisław Cichocki Natalia Nehrebecka. Wykład 3 Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Ekonometria I materiały do ćwiczeń

Ekonometria I materiały do ćwiczeń lp daa wkładu ema Wkład dr Doroa Ciołek Ćwiczenia mgr inż. - Rodzaje danch sascznch - Zmienne ekonomiczne jako zmienne losowe 1a) Przkład problemów badawczch hipoeza, propozcja modelu ekonomercznego, zmienne

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 3

Stanisław Cichocki Natalia Nehrebecka. Wykład 3 Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 2 1. Zmienne sacjonarne

Bardziej szczegółowo

1. Szereg niesezonowy 1.1. Opis szeregu

1. Szereg niesezonowy 1.1. Opis szeregu kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 4

Stanisław Cichocki Natalia Nehrebecka. Wykład 4 Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Gdański Zasosowanie modelu

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

FINANSOWE SZEREGI CZASOWE WYKŁAD 3

FINANSOWE SZEREGI CZASOWE WYKŁAD 3 FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).

Bardziej szczegółowo

Analiza szeregów czasowych uwagi dodatkowe

Analiza szeregów czasowych uwagi dodatkowe Analiza szeregów czasowch uwagi dodakowe Jerz Sefanowski Poliechnika Poznańska Zaawansowana Eksploracja Danch Prognozowanie Wbór i konsrukcja modelu o dobrch własnościach predkcji przszłch warości zmiennej.

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

SYMULACYJNE BADANIE EFEKTYWNOŚCI WYKORZYSTANIA METOD NUMERYCZNYCH W PROGNOZOWANIU ZMIENNEJ ZAWIERAJĄCEJ LUKI NIESYSTEMATYCZNE

SYMULACYJNE BADANIE EFEKTYWNOŚCI WYKORZYSTANIA METOD NUMERYCZNYCH W PROGNOZOWANIU ZMIENNEJ ZAWIERAJĄCEJ LUKI NIESYSTEMATYCZNE Sudia Ekonomiczne. Zesz Naukowe Uniwerseu Ekonomicznego w Kaowicach ISSN 8-86 Nr 4 7 Zachodniopomorski Uniwerse Technologiczn w Szczecinie Wdział Ekonomiczn Kaedra Zasosowań Maemaki w Ekonomii maciej.oeserreich@zu.edu.pl

Bardziej szczegółowo

MODEL TENDENCJI ROZWOJOWEJ

MODEL TENDENCJI ROZWOJOWEJ MODEL TENDENCJI ROZWOJOWEJ Model endencji rozwojowej o konsrukcja eoreczna (równanie lub układ równań) opisująca kszałowanie się określonego zjawiska jako funkcji: zmiennej czasowej wahań okresowch (sezonowe

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

Magdalena Sokalska Szkoła Główna Handlowa. Modelowanie zmienności stóp zwrotu danych finansowych o wysokiej częstotliwości

Magdalena Sokalska Szkoła Główna Handlowa. Modelowanie zmienności stóp zwrotu danych finansowych o wysokiej częstotliwości DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Szkoła Główna Handlowa Modelowanie zmienności

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1

Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1 Jacek Kwiakowski Uniwersye Mikołaja Kopernika w Toruniu Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1 WSTĘP Powszechnie wiadomo, że podsawowymi własnościami procesów finansowych

Bardziej szczegółowo

Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu. Własności procesów STUR w świetle metod z teorii chaosu 1

Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu. Własności procesów STUR w świetle metod z teorii chaosu 1 DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6-8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

Modele warunkowej heteroscedastyczności

Modele warunkowej heteroscedastyczności Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

PROGNOZY I SYMULACJE

PROGNOZY I SYMULACJE orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

Piotr Fiszeder Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie procesów finansowych z długą pamięcią w średniej i wariancji

Piotr Fiszeder Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie procesów finansowych z długą pamięcią w średniej i wariancji DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Piotr Fiszeder Uniwersytet Mikołaja

Bardziej szczegółowo

Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16

Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16 Value at Risk (VaR) Jerzy Mycielski WNE 2018 Jerzy Mycielski (Institute) Value at Risk (VaR) 2018 1 / 16 Warunkowa heteroskedastyczność O warunkowej autoregresyjnej heteroskedastyczności mówimy, gdy σ

Bardziej szczegółowo

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K. Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim

oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim WYKŁAD 9 34 Pochodna nkcji w pnkcie Inerpreacja geomerczna pochodnej Własności pochodnch Twierdzenia Rolle a Lagrange a Cach ego Regla de lhôspiala Niech ( ) O( ) będzie nkcją określoną w pewnm ooczeni

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzata Doman Akademia Ekonomiczna w Poznaniu

Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzata Doman Akademia Ekonomiczna w Poznaniu Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzaa Doman Akademia Ekonomiczna w Poznaniu Modele mikrosrukury rynku Bageho (97) informed raders próbują wykorzysać swoją przewagę informacyjną

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu

Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Zbudowany i pozytywnie zweryfikowany jednorównaniowy model ekonometryczny. jest uŝyteczny do analizy zaleŝności między zmiennymi uwzględnionymi w

Zbudowany i pozytywnie zweryfikowany jednorównaniowy model ekonometryczny. jest uŝyteczny do analizy zaleŝności między zmiennymi uwzględnionymi w ROGNOZOWANIE EKONOMERYCZNE (REDYKCJA EKONOMERYCZNA) ZEAW V Zbudowan i pozwnie zwerfikowan jednorównaniow model ekonomerczn je uŝeczn do analiz zaleŝności międz zmiennmi uwzględnionmi w modelu w okreie,

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION

Bardziej szczegółowo

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1 Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie

Bardziej szczegółowo

Ćwiczenie 5 PROGNOZOWANIE

Ćwiczenie 5 PROGNOZOWANIE Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,

Bardziej szczegółowo

ESTYMACJA RYZYKA WOBEC UJEMNYCH CEN ENERGII ELEKTRYCZNEJ

ESTYMACJA RYZYKA WOBEC UJEMNYCH CEN ENERGII ELEKTRYCZNEJ Sudia Ekonomiczne. Zesz Naukowe Uniwerseu Ekonomicznego w Kaowicach ISSN 2083-8611 Nr 340 2017 Informaka i Ekonomeria 10 Alicja Ganczarek-Gamro Uniwerse Ekonomiczn w Kaowicach Wdział Informaki i Komunikacji

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA

Bardziej szczegółowo

Ekonometria Wykład 4 Prognozowanie, sezonowość. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 4 Prognozowanie, sezonowość. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 4 Prognozowanie, sezonowość Dr Michał Gradzewicz Katedra Ekonomii I KAE Plan wykładu Prognozowanie Założenia i własności predykcji ekonometrycznej Stabilność modelu ekonometrycznego

Bardziej szczegółowo

ZASTOSOWANIA EKONOMETRII

ZASTOSOWANIA EKONOMETRII ZASTOSOWANIA EKONOMETRII Budowa, esmacja, werfikacja i inerpreacja modelu ekonomercznego. dr Doroa Ciołek Kaedra Ekonomerii Wdział Zarządzania UG hp://wzr.pl/~dciolek doroa.ciolek@ug.edu.pl Lieraura Osińska

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

5. Model sezonowości i autoregresji zmiennej prognozowanej

5. Model sezonowości i autoregresji zmiennej prognozowanej 5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =

Bardziej szczegółowo

Instytut Logistyki i Magazynowania

Instytut Logistyki i Magazynowania Insu Logiski i Magaznowania Ćwiczenia 1 mgr Dawid Doliński Dawid.Dolinski@ilim.poznan.pl lub Dawid.Dolinski@wsl.com.pl Tel. 0(61) 850 49 45 ZALICZENIE PRZEDMIOTU 5 punków Blok zajęć z Panem mgr D.Dolińskim

Bardziej szczegółowo

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 013 ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarswa Wiejskiego w Warszawie BADANIE EFEKTYWNOŚCI INFORMACYJNEJ

Bardziej szczegółowo

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu

Bardziej szczegółowo

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Elecrical Engineering 0 Janusz WALCZAK* Seweryn MAZURKIEWICZ* PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO W arykule opisano meodę generacji

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Metody prognozowania: Jakość prognoz Wprowadzenie (1) 6. Oszacowanie przypuszczalnej trafności prognozy

Metody prognozowania: Jakość prognoz Wprowadzenie (1) 6. Oszacowanie przypuszczalnej trafności prognozy Metod prognozowania: Jakość prognoz Dr inż. Sebastian Skoczpiec ver. 03.2012 Wprowadzenie (1) 1. Sformułowanie zadania prognostcznego: 2. Określenie przesłanek prognostcznch: 3. Zebranie danch 4. Określenie

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

Krzysztof Piontek Akademia Ekonomiczna we Wrocławiu. Modelowanie warunkowej kurtozy oraz skośności w finansowych szeregach czasowych

Krzysztof Piontek Akademia Ekonomiczna we Wrocławiu. Modelowanie warunkowej kurtozy oraz skośności w finansowych szeregach czasowych DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 5 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu Modelowanie

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem

Bardziej szczegółowo

BADANIE EFEKTYWNOŚCI PROGNOZ ZMIENNYCH OPISUJĄCYCH WYBRANE ASPEKTY FUNKCJONOWANIA PORTU SZCZECIN-ŚWINOUJŚCIE

BADANIE EFEKTYWNOŚCI PROGNOZ ZMIENNYCH OPISUJĄCYCH WYBRANE ASPEKTY FUNKCJONOWANIA PORTU SZCZECIN-ŚWINOUJŚCIE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Mariusz Doszń * Barłomiej Pachis ** Uniwerse Szczecińsi BADANIE EFEKTYWNOŚCI PROGNOZ ZMIENNYCH OPISUJĄCYCH WYBRANE ASPEKTY FUNKCJONOWANIA

Bardziej szczegółowo

Elżbieta Szulc Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie zależności między przestrzennoczasowymi procesami ekonomicznymi

Elżbieta Szulc Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie zależności między przestrzennoczasowymi procesami ekonomicznymi DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyk Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo