ELEMENTY MECHANIKI TECHNICZNEJ, STATYKI I WYTRZYMAŁOŚĆ MATERIAŁÓW. OBLICZENIA PROJEKTOWE WYBRANYCH ELEMENTÓW MASZYN

Wielkość: px
Rozpocząć pokaz od strony:

Download "ELEMENTY MECHANIKI TECHNICZNEJ, STATYKI I WYTRZYMAŁOŚĆ MATERIAŁÓW. OBLICZENIA PROJEKTOWE WYBRANYCH ELEMENTÓW MASZYN"

Transkrypt

1 Katedra InŜnierii i paratur Przemsłu SpoŜwczego ELEMENTY MECHNIKI TECHNICZNEJ, STTYKI I WYTRZYMŁOŚĆ MTERIŁÓW. OLICZENI PROJEKTOWE WYRNYCH ELEMENTÓW MSZYN Opracował: Maciej Kabziński SIŁY Siłą nazwa się wielkość fizczną charakterzującą oddziałwania międz ciałami. Siła jest wielkością wektorową, zatem do jej opisu, oprócz podania wartości, niezbędne jest określenie kierunku i zwrotu oddziałwania. Kierunek działania sił związan jest z połoŝeniem linii działania sił (stanowiącej przedłuŝenie wektora sił) względem osi układu współrzędnch (najczęściej: układ dwuwmiarow - oraz trójwmiarow --z). Z kolei zwrot sił jest zaleŝn od skierowania wierzchołka wektora sił względem poszczególnch osi układu współrzędnch. I tak, sił skierowane zgodnie ze zwrotem danej osi układu współrzędnch uznajem za dodatnie, zaś te skierowane niezgodnie za ujemne (rs. 1 i ). Rs. 1. Zwrot sił względem osi : 1 sił o zwrocie dodatnim, sił nie działające względem osi, 3 sił o zwrocie ujemnm. Rs.. Zwrot sił względem osi : 1 sił o zwrocie dodatnim, sił nie działające względem osi, 3 sił o zwrocie ujemnm.

2 Z przedstawionch na rsunkach 1 i danch wnika ponadto, Ŝe sił skierowane prostopadle do rozpatrwanej osi nie wkazują wobec niej działania. Sił mogą bć połoŝone pod pewnm kątem bądź nachleniem do rozpatrwanej osi (rs. 3). Rs. 3. Sił: połoŝone pod pewnm kątem (z lewej) i nachleniem (z prawej). Sił takie moŝna rozłoŝć na sił składowe (ilość składowch jest uzaleŝniona od ilości wmiarów ilości osi w rozpatrwanm układzie odniesienia). Rozkładanie sił (wznaczanie wartości sił składowch) połoŝonch pod pewnm kątem polega na mnoŝeniu wartości sił przez funkcje trgonometrczne tego kąta. I tak, w przpadku kątów przległch do rozpatrwanej osi wkorzstuje się cosinus kąta, natomiast dla kątów naprzeciwległch sinus. Przkład podano na rsunku 5. G G = cos = sin = sin G = cos G Rs. 5. Rozkładanie sił połoŝonch pod kątem do osi. Z kolei, rozłoŝenie sił połoŝonej względem rozpatrwanej osi z pod pewnm nachleniem polega na mnoŝeniu wartości tej sił przez iloraz wmiaru równoległego do rozpatrwanej osi do długości wektora sił (rs. 6). W tm przpadku długość wektora sił moŝna określić na podstawie twierdzenia Pitagorasa (rs. 6).

3 a a + b = c = c c = a + b b = c Rs. 6. Rozkładanie sił połoŝonej pod pewnm nachleniem do rozpatrwanej osi. Kolejnm zagadnieniem jest otrzmwanie sił wpadkowej prz znanch siłach składowch (składanie sił). W tm wpadku wgodnie jest posługiwać się metodą opartą na twierdzeniu Pitagorasa do wznaczenia wartości sił, natomiast kierunek i zwrot sił znajduje się za pomocą metod równoległoboku (rs. 7). Rs. 7. Składanie sił ( w - wartość sił wpadkowej). w = + Ze względu na charakter działania i pochodzenia rozróŝnia się następujące rodzaje sił: masowe (lub objętościowe) proporcjonalne do mas rozłoŝonej w objętości, działające na wszstkie punkt ciała, powierzchniowe powstające prz bezpośrednim zetknięciu się jednego ciała z drugim, zewnętrzne pochodzące od punktów lub ciał naleŝącch do rozpatrwanego układu mechanicznego,

4 wewnętrzne pochodzące od punktów lub ciał naleŝącch do rozpatrwanego układu mechanicznego, cznne (obciąŝenia zewnętrzne) mogące wwołać ruch, bierne reakcje powstające wskutek działania sił cznnch. Jednostką sił w układzie SI jest niuton [N], ponadto w wielu obszarach techniki korzsta się z jednostki kilogram-siła [kg] (inne oznaczenie: kgf), która bła jednostką podstawową cięŝarowego układu jednostek. ZaleŜności międz niutonem a kilogramem-siłą przedstawiają się następująco: kg m 1 N = 1,10197kG s 1 kg = 9,80665N MOMENT SIŁY Momentem sił nazwa się dąŝenie sił do wprawienia ciała w ruch obrotow względem punktu (rs. 8) bądź osi. Z praktcznego punktu widzenia moment sił jest ilocznem wektorowm sił i ramienia jej działania względem określonego punktu bądź osi: _ M = r Rs. 8. Moment sił. Moment tworzą sił lub ich składowe połoŝone prostopadle do promienia działania. Sił połoŝone równolegle do promienia nie tworzą momentów. Moment sił jest jednostką wektorową, zatem jak wiadomo naleŝ (oprócz podania wartości) określić jego kierunek i zwrot. I tak, moment dodatni to taki, którego działanie będzie powodowało obrót ciała w kierunku przeciwnm do ruchu wskazówek zegara (rs. Xa). Stąd teŝ moment powodując obrót ciała zgodnie z ruchem wskazówek zegara definiuje się jako ujemn (rs. 9a). MoŜliwe jest równieŝ przjęcie, Ŝe moment działając zgodnie z ruchem wskazówek zegara uznaje się za dodatki (rs. 9b), jednakŝe częściej stosowane jest uprzednio podane załoŝenie.

5 Rs. 9. Zwrot działania momentu sił w zaleŝności od przjętego załoŝenia. Jednostką momentu jest niutonometr [Nm]. RÓWNOWG SIŁ W UKŁDCH ZIEśNYCH Układami zbieŝnmi nazwa się takie ciała lub zbior ciał, w którch sił działające lub ich linie oddziałwania zbiegają się w jednm punkcie (rs. 10). Układ sił zbieŝnch pozostaje w równowadze, jeŝeli suma wszstkich sił i wszstkich momentów sił (względem obranego punktu) jest równa zero, zgodnie z zasadą bezwładności: jeŝeli na ciało nie działa Ŝadna siła, lub działające na ciało sił wzajemnie się równowaŝą, to ciało pozostaje w spocznku lub porusza się ruchem jednostajnm prostoliniowm, co moŝna zapisać: = M Równowagę sił opisuje równanie równowagi układu (na rsunku 10. przedstawiono M = P cos + S cos = P sin + S sin Q Rs. 10. Równowaga sił przkładowego układu zbieŝnego. (suma momentów wnosi 0, gdŝ odległość linii działania sił P, S i Q od punktu wnosi równieŝ 0)

6 NLIZ UKŁDÓW ELKOWYCH PŁSKICH Układ sił, którch sił leŝą w jednej płaszczźnie nazwa się układem płaskim. Do jednch z najbardziej rozpowszechnionch płaskich układów sił naleŝą układ belkowe. Układ takie składają się z belki oraz podpór (rs. 11). Rs. 11. Schemat układu belkowego (punkt i są punktami podparcia belki). Podparcia belek (podpor) mogą mieć róŝną konstrukcję najczęściej spotka się 3 rodzaje podpór: utwierdzenia całkowite (rs. 1a), podpor przegubowe stałe (rs. 1b), podpor przegubowe ruchome (rs. 1c). Rs. 1. Rodzaje podpór. W zaleŝności od rodzaju podpor wstępują odmienne ich reakcje (reakcją podpor nazwa się siłę lub sił wwołane przez obciąŝenie podpor belką, na zasadzie akcja-reakcja). Reakcje w podporach pojawiają się wted, gd dane rozwiązanie konstrukcjne blokuje określon rodzaj ruchu belki. I tak, zastosowanie podpor ruchomej oraz podpor stałej na długości belki wwołuje pojednczą reakcję, prostopadłą po powierzchni, na której umiejscowiona jest podpora. Z kolei umieszczenie podpor stałej na końcu belki wwołuje reakcję, zapiswaną najczęściej w postaci sił składowch (w przpadku podpor ruchomej reakcja działająca względem osi nie wstępuje, ze względu na kompensację obciąŝenia przez ruch podpor). Natomiast w przpadku utwierdzeń całkowitch wstępuje reakcja prostopadła do podłoŝa, na którm umieszczono podporę, ponadto w belce powstaje moment. Podpor oraz ich reakcje przedstawiono na rs. 13. Rs. 13. Reakcje podpór b) podpora na skraju belki, c) podpora umieszczona na długości belki (w punkcie b. reakcję najczęściej zapisuje się w postaci sił składowch). naliza układów belkowch pod kątem zginania składa się wznaczenia równań równowagi sił (względem poszczególnch osi) i momentów działającch na belkę oraz wznaczenia wartości sił tnącch i momentów gnącch działającch w poszczególnch

7 przedziałach (przedziałami belki są jej fragment oddzielone punktami charakterstcznmi, np. miejsca zainstalowania podpór, przegubów, działania sił, momentów itp.). Siłami tnącmi (T) nazwa się sił lub ich składowe działające prostopadle do przekroju poprzecznego belki (tj. prostopadle względem długości belki). Siłę tnącą w danm przedziale belki stanowi suma rzutów sił po jednej stronie granic przedziału. Momentem gnącm (M g ) nazwa się iloczn sił lub jej składowej i odległości od danego punktu odniesienia dąŝącch do wgięcia belki. W danm przedziale belki jest sumą momentów tworzonch przez poszczególne sił działające w tm przedziale. Wielkość tą moŝna przedstawić równaniem: = P ( a) M g gdzie: P siła działająca na belkę w danm punkcie a odległość sił od punktu jej działania punkt charakterstczn przedziału (zmienn) naliza zginania belki wmaga, ab moment gnąc rozpatrwać względem punktu 0, któr moŝna sobie wobrazić jako punkt leŝąc w nieskończenie małej odległości od wbranego końca belki (rs. 14). Rs. 14. PołoŜenie punktu 0 względem belki. UWG! Moment gnąc nie jest toŝsam sumą momentów dla belki. Oprócz sił jednostkowch na belkę mogą równieŝ działać obciąŝenia ciągłe (q). ObciąŜenia ciągłe moŝna zdefiniować jako siłę rozłoŝoną na pewnej długości (q a) (rs. 15) Rs. 15. elka z obciąŝeniem ciągłm (pominięto reakcje podpór).

8 Dla układu przedstawionego na powŝszm rsunku równania równowagi przedstawiają się następująco: M = q a = q a (a) Podana powŝej w nawiasie wartość stanowi połoŝenie środka geometrcznego obciąŝenia (w przpadku obciąŝenia o zarsie prostokątnm środek ten wnosi połowę długości boku przległego do belki). Z kolei wraŝenia na siłę tnącą i moment gnąc podano poniŝej: T = q( a) 1 (a jest odległością początku obciąŝenia od punktu odniesienia) M g = q( a) Wartości tch dwóch wielkości moŝna przedstawić na wkresie T(), M g (): Ze względu na fakt wstępowania obciąŝenia ciągłego wkres momentu gnącego nie jest linią prostą, zatem dokonując analiz naleŝ wznaczć jego wartość maksmalną oraz odległość tej wartości od punktu odniesienia. Na powŝszm wkresie dobrze widoczne jest, Ŝe wartość ta znajduje się w tej samej odległości od punktu odniesienia co wartość zerowa sił tnącej. Zatem ab znaleźć odległość M g ma od punktu odniesienia naleŝ do w równaniu na siłę tnącą podstawić w miejsce T wartość zero. W przpadku obciąŝenia belki momentem (np. pochodzącm od utwierdzenia całkowitego), jego wielkość zapisuje się w sumie momentów (równania równowagi) podając dodatkowo jego zwrot (dodatni bądź ujemn). W celu zrozumienia poszczególnch elementów wchodzącch w skład analiz zginania belki zostaną rozwiązane przkład 1, i 3.

9 <P r z k ł a d 1.> Podaj równania równowagi oraz wznacz wartości reakcji podpor dla układu przedstawionego na rsunku (rs. 16): Rs. 16. Dane do Przkładu 1. (a miara długości, np. a=1m, a=5dm, a=30mm itd.) Równania równowagi: P = R + cos P P M = R = P P 1 1 a + P + sin P sin a 3a Wznaczenie reakcji podpor (z dowolnego z równań równowagi): (dla równania dla osi ) R P1 + sin P Zatem: R = P 1 sin P <P r z k ł a d.> Podaj równania równowagi, wartości reakcji belek, sił tnącch oraz momentów gnącch dla układu belkowego przedstawionego na rsunku (rs. 17): Równania równowagi: P P M = P = R a Rs. 17. Dane do Przkładu. P a P 3a (Ŝadna z danch sił nie działa względem osi ) Wznaczanie reakcji podpór (z równań równowagi): R = P (z równania równowagi sił dla osi ) R

10 R a = R a + P 3a (z sum momentów) Podstawiam R do równania na R i otrzmujem: R a = P R a + P 3a / a ( ) R = P R + 3P Uporządkowujem równanie stronami i otrzmujem: R = P Stąd: R = P R = P P = P Zatem moŝem zapisać: R = R P = Następnie przstępujem do określenia przedziałów belki, wznaczenia wartości sił tnącej oraz momentu gnącego. Działania te zostaną zapisane w poniŝszej tabeli. Nr Granice przedziału Siła tnąca T Moment gnąc M g 1 0 a P P 3 1 a a a 3 3a P + P ( a) = Pa R P = P P ( a) = = P 3Pa ( a) + Obliczenia (wartości dla poszczególnch punktów przedziałów) i T M g 1 =0 -P 0 1 =a -P -Pa =a 0 -Pa =a 0 -Pa 3 =a P -Pa 3 =3a P 0 Po wkonaniu obliczeń w tabeli na jej podstawie sporządza się wkres T() i M g ():

11 <Przkład 3.> Podaj równania równowagi, wartości sił tnącch oraz momentów gnącch dla układu belkowego przedstawionego na rsunku (rs. 18), R =R =qa : Równania równowagi: = R q 3a M = q 3a 3a 3a Rs. 18. Dane do Przkładu 3. Wartości sił tnącch i momentów gnącch podano w tabeli: Granice Siła tnąca Obliczenia Nr Moment gnąc M przedziału T g i T M g 1 =0 3qa a R -q (-a) R q qa 1 =3a 0 Następnie, na podstawie obliczeń z tabeli, rsujem wkres: ZauwaŜm, Ŝe nie musim wznaczać połoŝenia na osi M gma, gdŝ w punkcie 1 =3a otrzmaliśm wartość T=0.

ELEMENTY MECHANIKI TECHNICZNEJ, STATYKI I WYTRZYMAŁOŚĆ MATERIAŁÓW

ELEMENTY MECHANIKI TECHNICZNEJ, STATYKI I WYTRZYMAŁOŚĆ MATERIAŁÓW D o u ż t k u w e w n ę t r z n e g o Katedra Inżnierii i Aparatur Przemsłu Spożwczego LMNTY MCHANIKI TCHNICZNJ, STATYKI I WYTRZYMAŁOŚĆ MATRIAŁÓW Ćwiczenia projektowe Opracowanie: Maciej Kabziński Kraków,

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia. rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2 POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACI I ZARZĄDZANIA. Katedra Podstaw Sstemów Technicznch Płaska geometria mas c c 3c Dla zadanego pola przekroju wznaczć: - połoŝenie środka cięŝkości S( s, s ) - moment

Bardziej szczegółowo

MATURA PRÓBNA 2 KLASA I LO

MATURA PRÓBNA 2 KLASA I LO IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy.

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy. rzkład 0.. Łuk trójprzegubow. Rsunek 0.. przedstawia łuk trójprzegubow, którego oś ma kształt półokręgu (jest to łuk kołow ). Łuk obciążon jest ciężarem konstrukcji podwieszonej. Narsować wkres momentów

Bardziej szczegółowo

MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW - OBLICZANIE SIŁ WEWNĘTRZNYCH W BELKACH

MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW - OBLICZANIE SIŁ WEWNĘTRZNYCH W BELKACH ECHANIKA I WYTRZYAŁOŚĆ ATERIAŁÓW - OBLICZANIE SIŁ WEWNĘTRZNYCH W BELKACH ZAD. 1. OBLICZYĆ SIŁY TNĄCE ORAZ OENTY ZGINAJĄCE W BELCE ORAZ NARYSOWAĆ WYKRESY TYCH SIŁ Wyznaczamy siły reakcji. Obciążenie ciągłe

Bardziej szczegółowo

ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f

ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f IMIE I NAZWISKO ZADANIE Poniżej znajduje się fragment wkresu funkcji = f (). -7 -- - - 6 7 Dorsuj brakujac a część wkresu wiedzac, że dziedzina funkcji f jest przedział,, a wkres jest smetrczn względem

Bardziej szczegółowo

Zginanie belek o przekroju prostokątnym i dwuteowym naprężenia normalne i styczne, projektowanie 8

Zginanie belek o przekroju prostokątnym i dwuteowym naprężenia normalne i styczne, projektowanie 8 Zinanie belek o przekroju prostokątnm i dwuteowm naprężenia normalne i stczne, projektowanie 8 Na rs. 8.1 przedstawiono belkę obciążoną momentami zinającmi w płaszczźnie x. oment nąceo dla tak obciążonej

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ 3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie

Bardziej szczegółowo

Ć w i c z e n i e K 2 b

Ć w i c z e n i e K 2 b Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH

7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH 7. WYZNCZNIE SIŁ WEWNĘTRZNYCH W ELKCH Zadanie 7.1 Dla belki jak na rysunku 7.1.1 ułożyć równania sił wewnętrznych i sporządzić ich wykresy. Dane: q, a, M =. Rys.7.1.1 Rys.7.1. W zależności od rodzaju podpór

Bardziej szczegółowo

EGZAMIN PRÓBNY CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 50 ZADANIE 1 (1 PKT) ZADANIE 2 (1 PKT) ZADANIE 3 (1 PKT) ZADANIE 4 (1 PKT) ZADANIE 5 (1 PKT)

EGZAMIN PRÓBNY CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 50 ZADANIE 1 (1 PKT) ZADANIE 2 (1 PKT) ZADANIE 3 (1 PKT) ZADANIE 4 (1 PKT) ZADANIE 5 (1 PKT) IMIE I NAZWISKO EGZAMIN PRÓBNY CZAS PRACY: MIN. SUMA PUNKTÓW: 5 ZADANIE ( PKT) Dziedzina funkcji f (x) = x jest zbiór x 2 +x 6 A) R \ {, 2} B) (, 2) C) (, ) (2, + ) D) (, 2) (, + ) ZADANIE 2 ( PKT) W pewnej

Bardziej szczegółowo

Badania zginanych belek

Badania zginanych belek Mechanika i wtrzmałość materiałów - instrukcja do ćwiczenia laboratorjneo: Badania zinanch belek oprac. dr inż. Ludomir J. JNKOWSKI, dr inż. nna NIKODM. Wprowadzenie W wtrzmałości materiałów stan obciążenia

Bardziej szczegółowo

Określenie i podział więzów

Określenie i podział więzów 3.2.1. Określenie i podział więzów Ciałem swobodnm nazwam ciało, które ma nieograniczoną swobodę ruchu. Jednak zwkle ciało materialne nie może zajmować dowolnego miejsca w przestrzeni lub poruszać się

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 8 MARCA 015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Przbliżenie dziesiętne

Bardziej szczegółowo

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ .. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 17751 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozważm treść następujacego

Bardziej szczegółowo

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej 1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm

Bardziej szczegółowo

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć: adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

Ruch po równi pochyłej

Ruch po równi pochyłej Sławomir Jemielit Ruch po równi pochłej Z równi pochłej o kącie nachlenia do poziomu α zsuwa się ciało o masie m. Jakie jest przspieszenie ciała, jeśli współcznnik tarcia ciała o równię wnosi f? W jakich

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 KWIETNIA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczbę 5 7 zaokr aglam do liczb,6.

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi: Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane

Bardziej szczegółowo

gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1

gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek konieczny geometrycznej

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32 PRÓBNA MATURA ZADANIE ( PKT) Wskaż liczbę, której % jest równe 8. A) B) C), D) ZADANIE ( PKT) Odległość liczb od liczb -8 na osi liczbowej jest równa A) 8 B) + 8 C) + 8 D) 8 ZADANIE ( PKT) Wskaż rsunek,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 9 MARCA 019 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Cena nart po obniżce o

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematka Poziom rozszerzon Listopad W niniejszm schemacie oceniania zadań otwartch są prezentowane przkładowe poprawne odpowiedzi. W tego tpu ch

Bardziej szczegółowo

Scenariusz lekcji Zwierciadła i obrazy w zwierciadłach

Scenariusz lekcji Zwierciadła i obrazy w zwierciadłach Scenariusz lekcji. Temat lekcji: Zwierciadła i obraz w zwierciadłach 2. Cele: a) Cele poznawcze: Uczeń wie: - co to jest promień świetln, - Ŝe światło rozchodzi się prostoliniowo, - na czm polega zjawisko

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Przedmiot Mechanika teoretyczna Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Mechanika: ogólna, techniczna, teoretyczna. Dział fizyki zajmujący się badaniem

Bardziej szczegółowo

Mechanika i Budowa Maszyn

Mechanika i Budowa Maszyn Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut Miejsce na naklejkę z kodem szkoł OKE ŁÓDŹ CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 008 PRZYKŁADOWY ZESTAW ZADAŃ NR Czas prac 0 minut Instrukcja dla zdającego. Sprawdź, cz arkusz egzaminacjn zawiera

Bardziej szczegółowo

Rozwiązywanie układu równań metodą przeciwnych współczynników

Rozwiązywanie układu równań metodą przeciwnych współczynników Rozwiązwanie układu równań metodą przeciwnch współcznników Sposob postępowania krok po kroku: I. przgotowanie równań. pozbwam się ułamków mnoŝąc kaŝd jednomian równania równań przez najmniejszą wspólną

Bardziej szczegółowo

REDUKCJA PŁASKIEGO UKŁADU SIŁ

REDUKCJA PŁASKIEGO UKŁADU SIŁ olitechnika rocławska dział Budownictwa lądowego i odnego Katedra echaniki Budowli i Inżnierii iejskiej EDUKCJA ŁASKIEG UKŁADU SIŁ ZIĄZANIE ANALITYCZNE I GAFICZNE Zadanie nr. Dokonać redukcji układu sił

Bardziej szczegółowo

Liczby, działania i procenty. Potęgi I pierwiastki

Liczby, działania i procenty. Potęgi I pierwiastki Zakres materiału obowiązując do egzaminu poprawkowego z matematki klasa technikum str Dział programow Liczb, działania i procent Potęgi I pierwiastki Zbior i przedział liczbowe Wrażenia algebraiczne Równania

Bardziej szczegółowo

Więcej arkuszy znajdziesz na stronie: arkusze.pl

Więcej arkuszy znajdziesz na stronie: arkusze.pl KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematka Poziom rozszerzon Listopad W niniejszm schemacie oceniania zadań otwartch są prezentowane przkładowe poprawne odpowiedzi. W tego tpu ch

Bardziej szczegółowo

Marcin Zdanowicz Mechanika budowli Przewodnik do ćwiczeń dla studentów architektury CZĘŚĆ I

Marcin Zdanowicz Mechanika budowli Przewodnik do ćwiczeń dla studentów architektury CZĘŚĆ I ŃSTWOW WYŻSZ SZKOŁ ZWODOW W NYSIE SKRYT NR 8 arcin Zdanowicz echanika budowli rzewodnik do ćwiczeń dla studentów architektur CZĘŚĆ I OFICYN WYDWNICZ WSZ W NYSIE NYS 5 SEKRETRZ OFICYNY: Tomasz Drewniak

Bardziej szczegółowo

Charakterystyki geometryczne figur płaskich. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji

Charakterystyki geometryczne figur płaskich. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Charakterstki geometrczne figur płaskich dr hab. inż. Tadeusz Chż Katedra Mechaniki Konstrukcji Wielkości geometrczne charakterzujące przekrój pod względem wtrzmałościowm to: pole przekroju (A), (ang.

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

V JURAJSKI TURNIEJ MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM FINAŁ 14 maja 2005 r.

V JURAJSKI TURNIEJ MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM FINAŁ 14 maja 2005 r. V JURAJSKI TURNIEJ MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM FINAŁ 4 maja 005 r. Przecztaj uważnie poniższą instrukcję: Test składa się z dwóch części. Pierwsza część zawiera 0 zadań wielokrotnego wboru. Tlko

Bardziej szczegółowo

Definicja wartości bezwzględnej. x < x y. x =

Definicja wartości bezwzględnej. x < x y. x = 1.9. WARTOŚĆ BEZWZGLĘDNA Definicja wartości bezwzględnej... gd... 0 =... gd... < 0 Własności wartości bezwzględnej 0 = = = n a n = a, gd n jest liczbą parzstą Przkład 1.9.1. Oblicz: a) b) c) 1 d) 0 e)

Bardziej szczegółowo

Przykład: Płatew swobodnie podparta o przekroju z dwuteownika IPE

Przykład: Płatew swobodnie podparta o przekroju z dwuteownika IPE Dokument Ref: SX01a-PL-EU Strona 1 z Dot. Eurocodu EN Wkonanł Mladen Lukic Data Jan 006 Sprawdził Alain Bureau Data Jan 006 Przkład: Płatew swobodnie podparta o przekroju z Przkład ten podaje szczegół

Bardziej szczegółowo

14. Grupy, pierścienie i ciała.

14. Grupy, pierścienie i ciała. 4. Grup, pierścienie i ciała. Definicja : Zbiór A nazwam grupą jeśli jest wposaŝon w działanie wewnętrzne łączne, jeśli to działanie posiada element neutraln i kaŝd element zbioru A posiada element odwrotn.

Bardziej szczegółowo

ZałoŜenia przyjmowane przy obliczaniu obciąŝeń wewnętrznych belek

ZałoŜenia przyjmowane przy obliczaniu obciąŝeń wewnętrznych belek Wprowadzenie nr 2* do ćwiczeń z przedmiotu Wytrzymałość materiałów dla studentów II roku studiów dziennych I stopnia w kierunku Energetyka na wydz. Energetyki i Paliw w semestrze zimowym 2012/2013 1.Zakres

Bardziej szczegółowo

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów

Bardziej szczegółowo

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju

Bardziej szczegółowo

Mechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga.

Mechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Mechanika i Wytrzymałość Materiałów Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Przedmiot Mechanika (ogólna, techniczna, teoretyczna): Dział fizyki

Bardziej szczegółowo

Podstawy mechaniki 2018_2019. Równowaga bryły sztywnej

Podstawy mechaniki 2018_2019. Równowaga bryły sztywnej Podstawy mechaniki 2018_2019 Równowaga bryły sztywnej Równowaga bryły sztywnej Ogólne warunki równowagi Przypadek płaskiego (dwuwymiarowego) układu sił Obiekty w równowadze Podpory i ich modele O czym

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach

Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach Instrukcja przygotowania i realizacji scenariusza dotyczącego ćwiczenia 6 z przedmiotu "Wytrzymałość materiałów", przeznaczona dla studentów II roku studiów stacjonarnych I stopnia w kierunku Energetyka

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:

Bardziej szczegółowo

3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci

3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci .. UKŁADY RÓWNAŃ LINIOWYCH Równanie liniowe z dwiema niewiadommi Równaniem liniowm z dwiema niewiadommi i nazwam równanie postaci A B C 0, gdzie A, B, C R i A B 0 m równania z dwiema niewiadommi nazwam

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów 9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt

Bardziej szczegółowo

Wykład FIZYKA I. 9. Ruch drgający swobodny

Wykład FIZYKA I. 9. Ruch drgający swobodny Wkład FIZYK I 9. Ruch drgając swobodn Katedra Optki i Fotoniki Wdział Podstawowch Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizka.html RUCH DRGJĄCY Drganie (ruch drgając)

Bardziej szczegółowo

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe Rozwiązanie równań stanu dla układów liniowch - pola wektorowe Przgotowanie: Dariusz Pazderski Wprowadzenie Rozważm liniowe równanie stanu układu niesingularnego stacjonarnego o m wejściach: ẋ = A+ Bu,

Bardziej szczegółowo

Rysunek 4.1. Odwzorowanie przez soczewkę. PołoŜenie obrazu znajdziemy, korzystając z równania (3.41). Odpowiednio dla obu powierzchni mamy O C

Rysunek 4.1. Odwzorowanie przez soczewkę. PołoŜenie obrazu znajdziemy, korzystając z równania (3.41). Odpowiednio dla obu powierzchni mamy O C Temat 4: Podstaw optki geometrcznej-3 Ilość godzin na temat wkładu: Zagadnienia: Cienka soczewka sferczna. Wzór soczewkow. Konstrukcja obrazu w soczewce cienkiej. Powiększenie soczewki cienkiej. Soczewka

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

MECHANIKA BUDOWLI LINIE WPŁYWU BELKI CIĄGŁEJ

MECHANIKA BUDOWLI LINIE WPŁYWU BELKI CIĄGŁEJ Zadanie 6 1. Narysować linie wpływu wszystkich reakcji i momentów podporowych oraz momentu i siły tnącej w przekroju - dla belki. 2. Obliczyć rzędne na wszystkich liniach wpływu w czterech punktach: 1)

Bardziej szczegółowo

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5. WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja

Bardziej szczegółowo

Wykresy momentów gnących: belki i proste ramy płaskie Praca domowa

Wykresy momentów gnących: belki i proste ramy płaskie Praca domowa ODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (OWYM) Wykresy momentów gnących: beki i proste ramy płaskie raca domowa Automatyka i Robotyka, sem. 3. Dr inŝ.. Anna Dąbrowska-Tkaczyk LITERATURA 1. Lewiński J., Wiczyński

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY MARCA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Stężenie roztworu poczatkowo wzrosło

Bardziej szczegółowo

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych bez pisania funkcji Układ płaski - konwencja zwrotu osi układu domniemany globalny układ współrzędnych ze zwrotem osi jak na rysunku (nawet jeśli

Bardziej szczegółowo

1. ANALIZA BELEK I RAM PŁASKICH

1. ANALIZA BELEK I RAM PŁASKICH 5/6 1. NIZ BEEK I RM PŁSKICH 1 1. NIZ BEEK I RM PŁSKICH 1.1 naliza kinematyczna podstawowe definicje Podstawowym pojęciem stosowanym w analizie kinematycznej belek i ram płaskich jest tarcza sztywna. Jest

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY MAJA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 ( 4) 2 8 4 jest

Bardziej szczegółowo

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,

Bardziej szczegółowo

Zginanie proste belek

Zginanie proste belek Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach

Bardziej szczegółowo

Wykład FIZYKA I. 9. Ruch drgający swobodny. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 9. Ruch drgający swobodny.  Dr hab. inż. Władysław Artur Woźniak Dr hab. inż. Władsław rtur Woźniak Wkład FIZYK I 9. Ruch drgając swobodn Dr hab. inż. Władsław rtur Woźniak Insttut Fizki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizka.html Dr hab.

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

LISTA ZADAŃ Z MECHANIKI OGÓLNEJ

LISTA ZADAŃ Z MECHANIKI OGÓLNEJ . RCHUNEK WEKTOROWY LIST ZDŃ Z MECHNIKI OGÓLNEJ Zd. 1 Dne są wektor: = i + 3j + 5k ; b = i j + k. Oblicz sumę wektorów e = + b orz kosinus kątów, jkie tworz wektor e z osimi ukłdu ( kosinus kierunkowe

Bardziej szczegółowo

matematyka Matura próbna

matematyka Matura próbna Gazeta Edukacja Sprawdź, cz zdasz! Egzamin maturaln matematka MTEMTYK zas prac: minut Matura próbna Maturzsto! Po raz pierwsz napiszesz obowiązkową maturę z matematki na poziomie podstawowm Rozwiąż zadania

Bardziej szczegółowo

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym

Bardziej szczegółowo

Imperfekcje globalne i lokalne

Imperfekcje globalne i lokalne Imperfekcje globalne i lokalne Prz obliczaniu nośności i stateczności konstrukcji stalowch szczególnego znaczenia nabiera konieczność uwzględniania warunków wkonania, transportu i montażu elementów konstrukcjnch.

Bardziej szczegółowo

Ć w i c z e n i e K 1

Ć w i c z e n i e K 1 kademia Górniczo Hutnicza Wdział nżnierii echanicznej i Robotki Katedra Wtrzmałości, Zmęczenia ateriałów i Konstrukcji azwisko i mię: azwisko i mię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena: Podpis:

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

Z1/1. ANALIZA BELEK ZADANIE 1

Z1/1. ANALIZA BELEK ZADANIE 1 05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej

Bardziej szczegółowo

P R O J E K T N R 1 WYTRZYMAŁOŚCI MATERIAŁÓW. Zawiera: Wyznaczenie wymiarów przekroju poprzecznego belki zginanej poprzecznie

P R O J E K T N R 1 WYTRZYMAŁOŚCI MATERIAŁÓW. Zawiera: Wyznaczenie wymiarów przekroju poprzecznego belki zginanej poprzecznie atedra Wtrzmałości Materiałów Rok akad. 005/06 Wdział Inżnierii Lądowej emestr zimow Politechniki rakowskiej P R O J E T N R 1 Z WYTRZYMAŁOŚCI MATERIAŁÓW Zawiera: Wznaczenie wmiarów przekroju poprzecznego

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.

Bardziej szczegółowo

Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez

Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez Liczb zespolone Ciało liczb zespolonch Niech C = R. Zdefiniujm dwa działania w C. Dodawanie + : C C zdefiniowane jest przez (, ) + (, ) = ( +, + ). Ćwiczenie. Obliczm (, ) + (, 0) =.................................................

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania

Bardziej szczegółowo